

International Workshop on Robot use in Nuclear Facilities at Nist February 3rd, 2016

Radiation Tolerance of Robots

2016/2/3

Shinji Kawatsuma Japan Atomic Energy Agency

Features of Robots in nuclear facilities

- Not robots but System
- Remote operation (Man Machine Interface)
- Real-time Signal Transmission
- Signal Transmission surrounded by shielding wall and many heavy equipment
- Radiation Tolerance
- Decontamination
- Mobility for emergency logistics
- Maintainability with short time
- Conformity power: Customizing or optimizing for each situation

•

•

•

Radiation Map in the Fukushima daiichi NPPs site at March 23, 2011

Radiation Map in the unit 1 of Fukushima daiichi NPPs

Guideline of Radiation Tolerance

- To be established
- It was required to be up to Several tens Sv in outside and most of inside of Reactor buildings
- It should be required to be much more for going to some parts of the buildings
- It is desired to be much more for going up to upstairs, because dose rate could not estimated.

Radiation Tolerance of components of the robots

```
Table · 1 · Rough · Evaluation · of · Radiation · Tolerance · of · Parts · for · robots · and · heavy · machines ·
```

Semiconductors	10-100k · <u>G y</u> -
Cable.	1 M - 1 0 0 M · G y
0 i I 🕫	-10k · Gy

Developed based on [3]

Semiconductors is critical!

Radiation Tolerance of components of the robots

Table · 2 · Rough · Evaluation · of · Radiation · Tolerance

of · Semiconductors · on · the · shelf »

♥	
Bipolar·transistor.	10k· <u>Gy</u>
Bipolar · Op · Amp.	100k · <u>Gy</u> .
CPU 4	20-100· <u>Gy</u>
C C D &	10-100· <u>Gy</u>

Developed based on [3]

Among Semiconductors,
CPU and CCD are Critical!

Radiation Tolerance of components of the robots

JAEA established the guideline and reported to "remote control project team of Government and TEPCO, according to the data of 1980-90's.

- ➤ It was evaluated the CPU and CCD has around 50 Sv radiation tolerance.
- Management Level was determined
 20Sv for heavy construction machines
- Management Level was determined 30Sv for heavy construction machines
- ➤ In case, radiation test done, and Management Level of Quince was determined around 150Sv.

Mechanism of radiation damage of semiconductor

Total dose effect could be critical causes, because ion or electron could not attack directly to semiconductor in the robots.

Radiation hardening

Option 1:

Develop and Use radiation hardening semiconductor

Option 2:

- Identify radiation resistance level of COTS(*) and develop Data base
 *COTS : Components On The Shelf
- Select higher radiation resistance level COTS
- Develop and add compensation circuit

Develop management(replacing) plan on circuits

Option 3:

Move semiconductors to lower dose level area

Practice experience

- As for BSM,
 - Servo drivers moved to lower dose area,
 - Sensor circuits were added compensation circuits.
- As for Unmanned construction machines
 - Radiation resistance level of semiconductors were evaluated
 - Management plan was developed
 - The machines were deployed according to the management plan.
- As for QUINCE
 - Irradiation tests were conducted for optimize (expand) the management plan

We shall overcome!!

