

## BDSYSTENS

### Factors Affecting the Adoption of 3D Printing Technologies (SLS) as Manufacturing Platforms – Role of Standards for Adoption

Praveen Tummala

2016-06-10

WWW.3DSYSTEMS.COM NYSE:DDD

## **SLS Print Technology**

## SLS:

- Uses thermoplastic semi-crystalline polymers as print materials
- Print material in powder form
- Powder material is pre-heated to 10 degrees below the melt point for every layer and a Laser is used to provide additional energy for melting
- Process is repeated layer after layer until the print is complete
- Capable of producing robust, durable & functional parts

### **Factors Affecting Adoption for Additive Manufacturing**

- 1. Print Speed
- 2. Part Cost
- 3. Part Performance, Quality & Accuracy
- 4. Thermal Process Limitations Thermal Distribution, Rate of Heating, Rate of Cooling
- Intelligent Machine Controls Closed-loop Feedback Controls, In-process Calibration, Smart Software, Measure & Record Process
- 6. Challenges Imposed by Material Form Requirements
- 7. Orientation of Parts & Orientation of Fillers in Composites
- 8. Quality & Reliability Standards; EH&S Standards
- 9. Lack of Studies concerning Part Performance over Time
- 10. Applications Development White Papers, Process Guides

### **Print Speed**

|                                              | 0.1 mm Layers | 0.125 mm Layers |  |
|----------------------------------------------|---------------|-----------------|--|
| Total Build Height (mm)                      | 300           | 300             |  |
| Weight of Parts (Kg)                         | 2.0           | 1.9             |  |
| Total Build Time                             | 23:28         | 18:34           |  |
| Warm Up Time                                 | 1:19          | 58:23           |  |
| Build Time                                   | 20:04         | 15:35           |  |
| Cool Down Time                               | 2:04          | 2:04            |  |
| Scan Time                                    | 6:58          | 4:50            |  |
| Add Powder Layer Time                        | 12:38         | 10:11           |  |
| Wait for Tempreature Time                    | 1:43          | 1:26            |  |
| Minimum Layer Compensation Time              | 0:13          | 0:11            |  |
| Pause & Misc. Times (Mostly during cooldown) | 1:54          | 1:50            |  |
| Layer Thickness (mm)                         | 0.100         | 0.125           |  |
| Fill Laser Power, output value (W)           | 63 - 66       | 93 - 97         |  |
| Outline Laser Power, output value (W)        | 20            | 30              |  |
| Scan Spacing (mm)                            | 0.20          | 0.25            |  |
| Tensile Strength (MPa)                       | 46.0          | 38.0            |  |
| Elongation At Break (%)                      | 22.0          | 15.0            |  |
| Tensile Modulus (MPa)                        | 1775          | 1460            |  |
| Density (g/cc)                               | 0.948         | 0.910           |  |

### Part Cost; Part Performance, Quality & Accuracy

#### Part Cost:

- Cost of Print Material
- Recyclability of Print Material

### Part Performance:

 Physical, Mechanical & Thermal properties

#### **Part Quality:**

 Sidewalls, Top & Bottom Surfaces, Warpage

#### Part Accuracy:

 Definition, Smallest Feature



### **Thermal Process Limitations – Rate of Cooling**

Temp Set Point: 185C



### **Intelligent Machine Controls**

- Closed-loop Feedback
  Controls: Exists for most heaters but absent for Laser, Variation of beam shape and size center to the corners, Laser power variation in Z
- In-process Calibration: Exists for primary Temp sensor only
- Smart Software: Capable of suggesting orientation, process parameters, allow ease of design etc.
- Measure & Record Process: For validation, problem determination & solving



## **Print Material Challenges**

- •Semi-crystalline thermoplastic in powder form (precipitated, cryo-ground)
- •Particle size distribution (powder flow, part resolution)
- •Thermal characteristics (process latitude) melt & recrystallization (part distortion, part definition, heated powder cake hardness, powder recyclability)
- •Powder flow characteristics (particle size, particle shape, static charges, change with temperature)
- •Melt Viscosity & Surface energy (for coalescence and layer to layer adhesion)
- •Powder recyclability (thermal characteristics, molecular weight change, agglomeration of heated powder)
- •Excellent Thermal stability

#### X vs Z; or at another angle to XY

#### Fiber Orientation in X, Y, Z

| Unfilled Material        | X<br>Direction | Z<br>Direction | Fiber Filled<br>Material | X<br>Direction | Y<br>Direction | Z<br>Direction |
|--------------------------|----------------|----------------|--------------------------|----------------|----------------|----------------|
| Tensile Modulus,<br>MPa  | 1760           | 1600           | Tensile<br>Modulus, MPa  | 5640           | 3390           | 2940           |
| Tensile Strength,<br>MPa | 46.0           | 45.5           | Tensile<br>Strength, MPa | 49.8           | 43.3           | 32.6           |
| Elongation at            | 19.0           | 9.5            | Elongation at            | 4.5            | 3.5            | 2.7            |
| Вreaк, %                 |                |                | BIEdK, %                 |                |                |                |

3DSYSTEMS

### **Quality & Reliability Standards:**

Compliance to ISO, TS16949 type of standards for Machine & Materials manufacturing Machine performance over time – Preventive maintenance SPC techniques for reliability – six lot data, six sigma process

### EH&S Standards:

Air Quality/Environmental testing - VOC emissions (hazardous decomposition products) Explosion Severity testing

# BDSYSTEMS

### **Part Performance over Time:**

• Need to generate fatigue, creep, exposure, RTI type data

### **Applications Development:**

- Advance through developing new applications for the AM processes, publish more white papers
- Generate better machine guides, material guides, process guides & troubleshooting guides

# BDSYSTEMS

### Adopt the Advantages

- Hollow Parts using Fused Deposition print process for Speed
- Lower Density but Higher Strength to weight ratio

| Printed Part Density, g/cc              | 0.44 |
|-----------------------------------------|------|
| Tensile Strength, MPa                   | 33   |
| Strength-to-weight ratio,<br>MPa/(g/cc) | 76   |
| Tensile Modulus, MPa                    | 1710 |
| Elongation at Break, %                  | 22   |

- Freedom of part placement, orientation
- Capability to apply different parameters to different parts
- Change settings on the fly
- Different hatch patters for different speeds & properties

### Acknowledgements

- Khalil Moussa
- Jenny Reilly
- Christian Folgar
- Steven Goransson

## Thank you!!

### May need to think outside the box to overcome these barriers



Doctor, i took my medicines at 6 o'clock today

But why ? I told you, you must take them 9





I know, but i wanted to surprise the bacteria

fb.com/dielaughter fb.com/BeLykBro