

Molecules to Manufacturing: Expanding the Polymeric Materials Toolbox

In-Situ Processing Measurements

Design, Research, and Education for Additive Manufacturing Systems

http://www.me.vt.edu/dreams

Christopher B. Williams

Electromechanical Corporation Senior Faculty Fellow

Associate Professor, Mechanical Engineering

Director, DREAMS Lab

cbwill@vt.edu

Associate Director, Macromolecules & Interfaces Institute

Macromolecules Innovation Institute

At the intersection of science, engineering, and society

rginiaTech Invent the Future

VT Additive Manufacturing Faculty

AM Processes

Chris Williams (ME)

Rayne Zheng (ME)

Blake Johnson (ISE)

Tim Long (Chem)

Michael Bortner (ChemE) Shashank Priya (ME)

Hang Yu (MSE)

2015 College of Engineering Team Hire

Donald Baird (ChemE)

Carolina Tallon (MSE)

Process Modeling

Intelligent Manufacturing

James Kong (ISE)

Ran Jin (ISE)

Scott Case (BEAM)

Steve McKnight (NCR)

Advanced Materials

DREAMS Lab: Facilities

Metal/Ceramic/Sand Binder Jetting

Multi-Material Jetting

Polymer Powder Bed Fusion

⁶ DoF Extrusion D R E A M S

Mask Projection Vat Photopolymerization

Additive Manufacturing Research Facilities

VirginiaTech

Multi-Material Precision Extrusion (B. Johnson)

Mask Projection Vat Photopolymerization (R. Zheng)

VirginiaTech Research Across the AM Process

VT Additive Manufacturing Faculty

AM Processes

Chris Williams (ME)

Advanced Materials

Tim Long (Chem)

Process Modeling

Intelligent Manufacturing

David Dillard (BEAM)

James Kong (ISE)

Moore & Williams, Rapid Prototyping Journal, 2014

rginiaTech **VT Additive Manufacturing Faculty** Invent the Future Intelligent **Process Modeling Advanced Materials AM Processes Manufacturing** Tim Long (Chem) David Dillard (BEAM) Chris Williams (ME) James Kong (ISE) 1000000 1000000 100000 10000

Schultz, Lambert, Chartrain, ..., Williams & Long, ACS Macro Lett., 2014

Invent the Future

VirginiaTech VT Additive Manufacturing Faculty

AM Processes

Chris Williams (ME)

Advanced Materials

Tim Long (Chem)

60

50

40 **(N)** 30

20

10

0

0

60

50

40

20

10

0

0

100 (N)

Process Modeling

Intelligent Manufacturing

James Kong (ISE)

David Dillard (BEAM)

Determination of the mode I adhesive fracture energy, GIC, of structural adhesives using the double cantilever beam (DCB) and tapered double cantilever beam (TDCB) specimens, in BS 7991:2001. 2001.

Vu, Bass, Meisel, Orler, Williams & Dillard, SFF, 2014

VirginiaTech

VT Additive Manufacturing Faculty

AM Processes

Chris Williams (ME)

Intelligent Manufacturing

James Kong (ISE)

Rao, Liu, Roberson, Kong & Williams, ASME Trans Journal of Manufacturing Science and Engineering, 2015

Opportunity to realize breakthrough products via concurrent design of polymer chemistry,

DREAMS

part geometry, and manufacturing process.

Macromolecules Innovation Institute At the intersection of science, engineering, and society

To achieve this goal, we need ...

Pre-process measurements

- > Materials screening methodologies
- > What makes a material printable?
- > Map characterization of raw material to process parameters

In-situ process measurements

- Process-structure-property relationships
- > How do process parameters affect the printed material?
- > What is the quality of the printing part's shape & composition?

Post-process measurements

- > Validate quality of final part shape and material
- > What are the properties of the printed part?

DREAMS

VirginiaTech Projection Stereolithography

DREAMS

A photocuring accessory offers rheological characterization of UV-curable polymers

TA Instruments-Discovery Hybrid Accessories http://www.tainstruments.com

UV Curing Accessory

- High-pressure mercury light source for UV radiation
- UV wavelengths in the range of 320 to 500 nm
- ✤ UV-curing accessory with light guide, reflecting mirror assembly, and collimator

WirginiaTech Invent the Future A photocuring accessory offers calorimetric characterization of UV-curable polymers

12

DREAMS

Critical Exposure & Intensity

- Photorheometry was used to compare critical exposures of polymer (with 2wt% QDs) cured at different intensities.
- Less total energy is needed for lower intensities

ialech

Invent the Future

DREAMS

rginiaTech Invent the Future Relevant Process Variables

- Exposure
- Wavelength
- Intensity

- Temperature
 - Humidity
 - Material composition
 - Photo initiator
 - Photo absorber
 - Fillers
 - Age

VirginiaTech

In-situ Measurements for Photopolymerization

UV Intensity Correction via CCD

Zheng et al., *Review of* Scientific Instrument, 2012 DREAMS

In-situ Measurements for Photopolymerization

In-situ Interferometry

rginiaTech

Invent the Future

In-situ Measurements for Photopolymerization

In-situ Interferometry + Closed Loop Control

Complexity of Polymer AM

giniaTech

Invent the Future

Material

- Rheology (shear & temp)
- Stiffness
- Degradation (recycling)

Environment

- Temperature
- Humidity
- Heat transfer

> Print

- Melt temperature
- Shear
- Foolpath

> Part

- Heat transfer from shape & toolpath
 - Location

Process & Materials

Big Area Additive Manufacturing

Heterogeneous Sensing + Data Fusion

13 sensors are installed on the machine.

Which are useful? Can we use all of them? Or should we use a few of them?

Z. Kong (Virginia Tech)

rginiaTech

Invent the Future

Rao, Liu, Roberson, Kong & Williams, ASME Trans Journal of Manufacturing Science & Engineering, 2015

Monitoring Video

Digital Microscope based Machine Vision System

Z. Kong (Virginia Tech)

Looking ahead...

AM enables a designer to specify material location and material properties on a <u>voxel-by-voxel</u> basis. DREAMS

General AM Embedding Process

- 1. Design channels
- Pause build (& remove support)
- 3. Embed component
- 4. Anchor component

5. Resume build

Meisel, Elliott, Williams, 2014, Journal of Intelligent Systems & Structures DREAMS

Stiltner, Elliott & Williams, 2011, Int'l Solid Freeform Fabrication Symposium

rginiaTech Embedded Thermocouples

CAD models - channels for thermocouples

DREAMS

VirginiaTech Invent the Future Embedded Fiber Sensor

Virginia

Tech

Material as a Sensor: Jettable Quantum Dot Photoplymer

Visible Light

365nm ultraviolet (UV) Light

Each polymer card is 5.0cm x 9.0cm x 1.8mm

Ivanova et al., Add Mfg, 2014; Elliot et al., Adv Eng Mat, 2013

Images of jetted QD Nanoink in (a) visible and (b) UV light

Fluorescent microscope images of QD nanoparticles in 3D Printed part.

STL as an Attack Vector

Security of Quality Control

irginiaTech

Invent the Future

We must consider the cyber security of our in-situ measurements.

Side channel measurements are <u>as important as</u> closed-loop control.

DREAMS

In-Situ Impedance-based Monitoring

Z. Kong & J. Camelio (Virginia Tech)

- Accelerometer (XYZ) mounted close to extruder
- Spectral graph theory based sensor fusion
- Significant overlap of signal features between normal and attacked parts in stages (1) and (3), not separable
- Separable signal features between normal and attacked parts in stage (2)

Z. Kong & J. Camelio (Virginia Tech)

Acknowledgements

Callie Zawaski

> Justin Sirrine

Lindsey Bass

Ivan Vu

Allison Pekkanen

Collaborators

nalech

Invent the Future

- Dr. James Kong
- Dr. Timothy Long
- Dr. David Dillard
- Dr. Jules White
- Sponsors
 - Industrial Sponsors
 - National Science Foundation
 - ≻ #1436592 (PI: Kong)
 - ▶ #146804 (PI: Camelio)
 - Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
 - Virginia Center for Innovation Technology
 - > VT Institute for Critical Technology & Applied Science

- Dr. Amelia Elliott (ORNL)
- > Dr. Jacob Moore (PSU-Altoona)
- Dr. Nicholas Meisel (PSU)
- Dr. Prahalad Rao (UNebraska)

INSTITUTE for CRITICAL TECHNOLOGY and APPLIED SCIENCE Virginia Tech

Molecules to Manufacturing: Expanding the Polymeric Materials Toolbox

In-Situ Processing Measurements

Thank you.

Christopher B. Williams cbwill@vt.edu

DREAMS

