
Program Slicing in the Presence of Pointers
(Extended Abstract)

James R. Lyle David Binkley
National Institute of Standards and Technology Loyola College in Maryland

jimmy@swe.ncsl.nist.gov National Institute of Standards and Technology
binkley@swe.ncsl.nist.gov

Index Terms--Program slicing, data flow analysis, debugging, pointers, software tools, soft-
ware engineering.

I. Introduction

Program slicing is a family of program decomposition techniques based on extracting state-

ments relevant to a computation in a program. Program slicing as originally defined produces a

smaller program that reproduces a subset of the original program’s behavior [16]. This is advan-

tageous since, by excluding irrelevant statements, the slice can collect an algorithm that may be

scattered throughout a program. It should be easier for a programmer interested in a subset of

the program’s behavior to understand the corresponding slice than to deal with the entire pro-

gram. The utility and power of program slicing comes from the potential automation of tedious

and error prone tasks. Program slicing has applications to program debugging [17, 18, 13, 19,

16], program testing, program integration [7], parallel program execution [16], software metrics

[16, 14], reverse engineering [2], and software maintenance [5]. Several variations on this theme

have been developed, includingprogram dicing, dynamic slicing[1, 12] anddecomposition slic-

ing.

The most important goals of research in program slicing are the following:

• to compute slices faster,
• to find algorithms that produce smaller slices,
• to dev elop new applications of program slicing, and,
• to compute slices for a wider collection of language constructs.

There have been many papers on applications of program slicing, and improvements to algorithm

speed and precision [4, 8], but few papers have addressed difficult language constructs such as

pointers [9, 11]. Program slicing cannot become a useful tool until slicing algorithms can deal

with real world program features such as pointers. This paper presents an algorithm for comput-

ing program slices for programming languages that use pointers. An early version of this pointer

tracking algorithm has been implemented as part ofunravel, a program slicing tool developed at

NIST. The goal of our work is to produce a slicing algorithm that is useful on real code (ANSI

C). We begin with a simple algorithm that is expensive in storage and computation time, and

then improve its performance by exploiting features of good programming style.

A. Definitions

Definition: A slicing criterionfor a program slice is a tuple< i ,V > wherei is a statement

in the program andV is a subset of the program variables. A slice of a program is computedwith

respect to v, at statement i.

Definition: A program sliceof programP for slicing criterion, <i,V>, is an executable pro-

gram obtained by deleting zero or more statements from P such that the values of the variables in

V are the same when execution reaches statementi of both P and the slice of P [16].

Definition: Refs(n)is the set of variables referenced (the variable’s value is used) at state-

mentn.

Extended Abstract - 2 - June 15, 1993

Definition: Defs(n)is the set of variables defined (the variable is assigned a value) at state-

mentn.

Definition: Succ(n)is the set of statements that could be executed immediately after state-

mentn.

Definition: Irefs(n) is the set of pointer variables dereferenced that have values used at

statementn. The set members are represented as ordered pairs of the form(v,k), wherev is a

pointer variable andk is the level of dereferencing (i.e.v hask * operators applied).

Definition: Idefs(n)is the set of pointer variables dereferenced that have values assigned at

statementn. The set members are represented as ordered pairs of the form(v,k), wherev is a

pointer variable andk is the level of dereferencing (i.e.v hask * operators applied).

B. Background

It is not possible to keep track of exactly where a pointer in a linked list points. However,

since the statements involved in the creation and manipulation of a linked list could operate on

any of the nodes in the linked list, keeping detailed information about which list node each node

points to may not enable a slicing algorithm to compute a smaller slice. We recognize two types

of addresses, addresses of static objects and addresses of dynamic objects, each address type

requires a different approach. The essential difference is that addresses of dynamic objects can-

not easily be tracked precisely and an indirect assignment through a dynamic address must be

treated like an assignment to an array element.

A slicing criterion using a dynamic object can be ambiguous. For example, consider the

slicing criterion, <22,at->value> on the program in Figure 1. The slice should consist of

Extended Abstract - 3 - June 15, 1993

1 typedef List_struct List;
2 struct List_struct {
3 int value;
4 List *next;
5 } List;
6
7 main()
8 {
9 List *at,*head = NULL,*node;
10 int n;
11
12 n = 0;
13 while (n < 10){
14 node = (List *) malloc (sizeof(List));
15 node -> value = n++;
16 node -> next = head;
17 head = node;
18 }
19 at = head;
20 at -> value = 47;
21 at = at -> next;
22 at -> value = 8;
23 }

Figure 1.

statements: {12, 13, 14, 16, 17, 19, 21, 21}. However, if the assignment toat->value is treated

as a scalar then lines 20 and 15 are not included in the slice. If the slicing criterion meansslice

on thevalue member thatat currently points to, then lines 20 and 15 should not be included in

the slice. However, if the slicing criterion meansslice on the anyvalue member thatat might

point to, then lines 20 and 15 should be in the slice.

C. Algorithm Overview

Our approach for ANSI C exploits how pointers are used in real world programs. There are

several common patterns of usage that can be exploited to produce practical pointer slicing algo-

rithms.

Extended Abstract - 4 - June 15, 1993

The algorithm requires a pre-pass over the program to compute lists of possible address val-

ues for each pointer at each statement in the program. Our algorithm is similar to one developed

by [15]. The standard slicing algorithm must be modified to not only keep track of data but also

addresses. These modifications can be made to either a control flow based slicing algorithm [16]

or a PDG [4] based slicing algorithm.

II. Changes to the Slicing Algorithm

We present our changes in the context of a recursive formulation of program slicing for a

language with noif statements orloop statements. The formulation can be easily extended for

control structures by associating a list of statements required to be also included in the slice with

each statement. This recursive formulation is convenient for discussing program slicing but, it is

not a practical implementation algorithm.

Let v be some program variable name,n be some statement. LetPi (n, v) be a function

that returns the set of addresses that *...*v (where there arei * ’s) could point to at statementn.

P1 is understood if no subscript is written. Note thatP0(n, v) = {v } and for i > 1,

Pi (n, v) = {x|x∈P1(n, y)∀y∈Pi−1(n, v)}. Let is_dynamic(a)be a boolean function that

returnstrue if a is dynamically created and returnsfalseotherwise.

Recursive Slicing Algorithm:
S<m∈succ(n),v> = {n} if v ∈ defs(n) & refs(n) =∅

= S<n,v> if v ∈/ defs(n)
= {n} ∪ S<n,x>∀x∈refs(n) if v ∈ defs(n) & refs(n)≠ ∅

Extended Abstract - 5 - June 15, 1993

Definition: Theactive setat statementn is the union of all variablesx found in slicing crite-

rion on statementn induced by the recursion. The active set at statementn is the set of all vari-

ables that could influence any statement in the slice executed after statementn. Any variable not

in the active set at statementn can be safely changed without affecting the computation of the

slice.

We hav e two cases, how pointers change treatment ofref sets and how pointers change

treatment ofidefsets.

A. Ref sets

Suppose we have a statement such as:

n: A = *B + C;

Consider the slicing criterion:S < m, X > wherem∈ succ(n). If A ∈/ X this statement does

not belong in the slice and can be passed by. IfA ∈ X & A ∈ defs(n)the slice,S < m, X >, is

the statement,n, unioned with the following:

S<m=succ(n),X> = {n}
∪ S<n,v>∀v∈ refs(n)
∪ S<n,v>∀v∈X & v ∈/ defs(n)
∪ S<n,v>∀v∈P(n, B)

The last member of the above union generalizes tok levels of indirection by:

S<n,v>∀v∈Pi (n, b)∀i , 1 ≤ i ≤ k(b, k)∈irefs(n)

B. Def sets

Suppose we have a statement such as:

n: *B = A;

Extended Abstract - 6 - June 15, 1993

Consider the slicing criterion:S < m, X > wherem∈ succ(n). If X ∩ P(n, B) ≠ ∅ state-

mentn should be included in the slice, unioned with the following:

S<m=succ(n),X> = {n}
∪ S<n,v>∀v∈ refs(n)
∪ S<n,v>∀v∈P(n, B)
∪ S<n,B>

If there are at least two members of P(n,B), say,y∈/ Xandz ∈ X, the sliceS<n,P(n,B)>, captures

the case where B actually points to a variable (y in this example) not inX andz should remain

in the active set since statementn does not change the value ofz. If z is the only member of

P(n,B)and if is_dynamic(z)is falsethen the slice onz should be omitted since statementn must

change the value ofz.

If is_dynamic(z)is true thenz must be sliced on since there could be several instances ofz.

B could point to one of several possible addresses other thanz and thereforez must remain in the

active set for statementn.

III. Capturing The Pointer State

The extension to program slicing requires that it be possible to determine where pointer

variables might be pointing at each program statement. Addresses are introduced into the pointer

state from two sources, applying theaddress ofoperator (&) to a declared variable and the

address of storage allocated from the heap returned bymalloc class functions. The information

on addresses is collected by identifying statements that introduce addresses into a program and

the addresses are then propagated through the program to obtain the pointer state for each state-

ment. This is somewhat like symbolic execution [10, 3] in that possible values of variables

Extended Abstract - 7 - June 15, 1993

(pointer variables only) are determined by static program analysis rather than by actual program

execution. It is useful to observe that embedded within the program flow graph is a subgraph

that represents generation and manipulation of addresses. Every program statement does not

have to be analyzed since only the statements corresponding to nodes of this subgraph need to be

analyzed to determine the pointer state. This subgraph is smaller, usually much smaller, than the

original program.

Definition: ThePointer State Subgraph(PSS) is obtained for a control flow graph by delet-

ing nodes that correspond to statements that do not assign a pointer value and by deleting any

branch node and corresponding join node if all nodes from the branch node to the corresponding

join node have been deleted.

First, we consider the pointer state for addresses of declared variables.

A. Addresses of Declared Variables

Given thatn is a statement,v is a variable, andQ(n, v) = {all currently known variables

that v might point to after statementn executes}. The functionQ is used to accumulate infor-

mation about the pointer state. EventuallyQ becomesP, the pointer state function used by the

slicing algorithm.Qi is defined analogously toPi .

The algorithm for capturing the pointer state is the following:

1. Construct the PSS
2. Scan the PSS for address creation
3. Propagate created addresses
4. Repeat until no more changes occur

Extended Abstract - 8 - June 15, 1993

The pointer state of each node is propagated from the node to all successor nodes by taking

the union of the pointer state for all variables not defined at the node with any changes required

by the propagation rule for the kind of statement corresponding to the node of the PSS. The fol-

lowing table gives the basic address propagation rules.

Statement Propagation Rule

A = &x Q(n,A) = {x}
A = B Q(n,A) = Q(n,B)
A = *B Q(n,A) = ∪ Q(n, X)∀X∈Q(n, B)
A = **B Q(n,A) = ∪ Q(n, X)∀X∈Q(n,Y)∀Y∈Q(n, B)
A = *...*B Q(n,A) = Qk(n, B) wherek is indirection level

*A = &x Q(n,Y) = Q(n,Y) ∪ {x}, ∀Y∈Q(n, A)
**A = &x Q(n,Z) =Q(n,Y) ∪ {x}, ∀Z∈Q(n,Y)∀Y∈Q(n, A)

*...*A = &x Q(n,Z) =Qi (n, A) ∪ {x}, where k is indirection level

B. Addresses From The Heap

Consider line 14 of Figure 1:

14 node = (List *) malloc (sizeof(List));

The variablenodeis receiving the value of a different address of storage on the heap each pass

through the loop at lines 13--18. It is not possible to determine by static analysis how many

times storage is dynamically allocated from the heap or to track assignments to individual loca-

tions. This implies that an approximation that lumped together several dynamically allocated

storage locations should be introduced. For example, the heap could be treated as a single array

with assignments to individual members treated as both an assignment and a reference or tracked

with methods such as [6]. However, treating the heap as a single array is too conservative; by

partitioning the heap into several arrays we can do much better. The heap should be partitioned

by object type so that all objects of the same type are treated as if they hav e been collected into a

Extended Abstract - 9 - June 15, 1993

single array. Then the entire array of objects of a single type from the heap can be treated as a

single object of a given type with a change to a dynamic object treated as an update to an array.

It is not easy to identify the type of object that a chunk of dynamically allocated storage is

being used to contain since routines such asmalloc only returns an address to a block of storage

of the requested size. This address may be directly assigned to a pointer of the matching type or

may be assigned by a cast operation to a pointer of another type or even to an integer variable.

Suchpointer laundering, casting a pointer to another pointer type or even non-pointer type so

that the true type of the pointer is obscured, requires that all assignments of values that are used

as pointers must be tracked to ensure that the pointer state is correctly captured.

To capture the pointer state, introduce a pseudo-variable address for each address allocation

point in a program. This is usually every call to amalloc class function, however, it might be the

case that a program has its own memory allocation function to allocate storage for program

objects. The memory allocation function callsmalloc or directly obtains heap storage from the

run time environment. For such a program, each memory allocation function invocation would

be where to introduce a pseudo-variable.

IV. Summary

The contributions of this paper are the changes required to incorporate pointers in program

slicing algorithms, and the informal definition of the pointer state subgraph. Slicing program-

ming languages such as C require efficient treatment of pointers. The pointer state subgraph pro-

vides a significantly smaller graph for analysis to capture the pointer state than the entire pro-

gram flow graph.

Extended Abstract - 10 - June 15, 1993

References

[1] H. Agrawal and J. R. Horgan, “Dynamic Program Slicing,”Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation, pp.
246-256 (June 20-22, 1990).

[2] J. Beck and D. Eichmann,Program and Interface Slicing for Reverse Engineering,Pro-
ceedings Working Conference on Reverse Engineering, Baltimore, Maryland (May
21-23, 1993).

[3] L. A. Clarke, “A System to Generate Test Data and Symbolically Execute Programs,”
IEEE Transactions on Software EngineeringSE-2p. 215 222 (Sept. 1977).

[4] J. Ferrante, K. Ottenstein, and J. Warren, “The Program Dependence Graph and its Use
in Optimization,”ACM TOPLAS9(3) pp. 319-349 (July 1987).

[5] K. B. Gallagher and J. R. Lyle, “Using Program Slicing in Software Maintenance,”
IEEE Transactions on Software Engineering17(8) pp. 751-761 (August 1991).

[6] R. Hamlet, B. Gifford, and B. Nikolik,Exploring Dataflow Testing of Arrays,Proceed-
ings 15th International Conference on Software Engineering, Baltimore, Maryland (May
21-23, 1993).

[7] S. Horwitz, J. Prins, and T. Reps, “Integrating Noninterfering Versions of Programs,”
ACM TOPLAS11(3) pp. 345-387 (July 1989).

[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using Dependence
Graphs,”ACM TOPLAS12(1) pp. 26-60 (January 1990).

[9] S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence analysis for pointer variables,”Pro-
ceedings of the ACM SIGPLAN 89 Conference on Programming Language Design and
Implementation,(Portland, OR, June 21-23, 1989), ACM SIGPLAN Notices24(7) pp.
28-40 (July 1989).

[10] W. E. Howden, “Symbolic Testing and the DISSECT Symbolic Evaluation System,”
IEEE Transactions on Software EngineeringSE-3pp. 266-278 (1977).

[11] J. Jiang, X. Zhou, and D. Robson,Program Slicing For C -- The Problems In Implemen-
tation,Proceedings Conference on Software Maintenance 1991, Sorrento, Italy (October
15-17, 1991).

[12] B. Korel and J. Laski, “Dynamic Program Slicing,”Information Processing Letters
29(3) pp. 155-163 (October 1988).

[13] J. R. Lyle and M. Weiser,Automatic Program Bug Location by Program Slicing,Pro-
ceedings of Second International Conference on Computers and Applications, Peking,
China (June 1987).

[14] L. Ott and J. Thuss,Slice Based Metrics for Estimating Cohesion,Proceedings First
International Software Metrics Symposium, Baltimore, Maryland (May 21-23, 1993).

[15] William E. Weihl, “Interprocedural Data Flow Analysis in the Presence of Pointers, Pro-
cedure Variables and Label Variables,”Conference Record of the Seventh Annual ACM
Symposium on Principles of Programming Languages, pp. 83-94 (January 1980).

Extended Abstract - 11 - June 15, 1993

[16] M. Weiser, “Program Slicing,” IEEE Transactions on Software Engineering,
SE-10(4) pp. 352-357 (July 1984).

[17] M. Weiser, “Programmers Use Slices When Debugging,”CACM 25(7) pp. 446-452
(July 1982).

[18] M. Weiser and J. R. Lyle, “Experiments on Slicing-Based Debugging Aids,” pp.
187-197 inEmpirical Studies of Programmers, ed. E. Soloway and S. Iyengar,Ablex
Publishing Corporation, Norwood, New Jersey (1986).

[19] M. Weiser, “Program Slicing,”Proceedings of the Fifth International Conference on
Software Engineering, pp. 439-449 (March 1981).

Extended Abstract - 12 - June 15, 1993

