International Conference on Characterization and Metrology for ULSI Technology March 15-18, 2005

Atomic Layer Deposition of High-k Dielectric and Metal Gate Stacks for MOS Devices

Yoshi Senzaki, Kisik Choi, Paul D. Kirsch, Prashant Majhi, Byoung Hun Lee

Accelerating the next technology revolution.

SEMATECH

SEMATECH, the SEMATECH logo, AMRC, Advanced Materials Research Center, ATDF, the ATDF logo, Advanced Technology Development Facility, ISMI and International SEMATECH Manufacturing Initiative are servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

Outline

1. Introduction

2. ALD of High-k Dielectric

- High-k dielectric ALD processes
- Electrical properties of MOS devices
- Scaling the Hf-based dielectric
- 3. ALD of Metal Gate
 - ALD Metal Nitrides TiN, HfN, HfSiN, TaN
 - Work function evaluation

MOSFET Device Goals for 45 nm node and beyond

Application	EOT (nm)	CET (nm)	Jg (A/cm ²)
High Performance (HP)	= 0.8</td <td><!--= 1.2</td--><td><!--= 100</td--></td></td>	= 1.2</td <td><!--= 100</td--></td>	= 100</td
Low Standby Power (LSTP)	= 1.6</td <td><!--= 2.4</td--><td><!--= 2.2x10<sup-->-3</td></td>	= 2.4</td <td><!--= 2.2x10<sup-->-3</td>	= 2.2x10<sup -3

- Density of interface traps (D_{it}) </= 5x10¹⁰ # / cm²·eV
- High frequency (100kHz) CV hysteresis </= 10 mV
- $V_t \pm 0.2V$ of control SiO₂ with same EOT
- V_t stability ± 10mV of unstressed film
- Mobility >/= 90% of SiO₂ at EOT 0.8nm
- Defect Density </= 0.14 defects / cm²
- Thermal stability (physical and electrical) at 1000°C, 5 sec
- Thickness uniformity (3 sigma) </= 4%
- Reliability comparable to SiO₂

Factors That Influence Metal Electrode Properties

Introduction: Why Metal ALD?

• Why metal electrodes?

✓ poly electrode depletion limits device scaling

✓ poly electrode can interact with high-k materials

• Why ALD metal electrodes?

- ✓ Excellent thin film thickness uniformity control
- ✓ Excellent composition control
- ✓ Little damage to gate oxide (compared to PVD)
- ✓ Low temperature deposition with low impurity

✓ Conformality at nanoscale structures and potentially 3-D devices

Multiple potential applications for ALD metal films

✓ Metal gate electrode: TaN, TiN, W, Ru..

✓ Cu diffusion barrier/adhesion promoter: TaN, Ta, TaSiN, TiN, WN..

- ✓ Cu seed layer: Cu
- ✓ Plug for via hole: W, WN_x
- ✓ Barrier: TiN, Ti

Gate "ELECTRODE" Specifications

Application	EWF (n metal)	EWF (p metal)	
CMOS on bulk Si	4.1 +/-0.05	5.2 +/-0.05	
CMOS on FDSOI, FINFET	4.4 +/-0.05	4.9 +/-0.05	

- Gate stack subjected to S/D dopant activation anneal (1000 C, 5 sec)
- $V_t \pm 0.1 V$ of control SiO₂ with same EOT
- + V_t stability \pm 10mV of unstressed film
- Mobility >/= 95% of SiO₂
- Density of interface traps (D_{it}) </= 5x10¹⁰ # / cm²·eV
- High frequency (100kHz) CV hysteresis </= 10 mV
- Reliability comparable to Poly/SiO₂
- Defect Density </= 0.14 defects / cm²
- Thickness uniformity (3 sigma) </= 4%

ALD Processes: Metal-Organic Liquid Precursors for HfO₂

Hf-t-Butoxide $Hf(C_4H_9O)_4$ Dep. Rate: 0.24Å/cycle

TEMAHf (Tetrakisethylmethyl amino hafnium) Hf(NMeEt)₄

Dep. Rate: 0.89Å/cycle Less impurities in the HfO₂ films Lower leakage current of HfO₂

--> Precursor of choice

ECS Proceedings, 2003

Precursor Co-injection ALD Concept for HfSiOx

●A+B(g) ●

Introduction of A+B(g) onto the substrate surface

•Formation of an A+B(s) monolayer surface

Introduction of C(g) onto A+B(s) surface

•Formation of C(s) monolayer surface

Introduction of A(g) + B(g) onto the substrate surface

• Formation of an A+B(s) monolayer surface

Introduction of C(g) onto A+B(s) surface

• Formation of C(s) monolayer surface

HfSiOx ALD Precursors

TEMAHf

TEMASi

Chemical compatibility -> suppresses gas phase reaction

J. Vac. Sci. Technol. (A), vol. 22, p.1175 (2004).

Leakage Current (J_g) Reduction of Hf(Si)O

 J_{q} reduction: $10^{2} - 10^{3}$ x vs. SiO₂/PloySi

Mobility Progress with HfO₂ and HfSiO

HfO₂ and HfSiO show mobility results similar to nitrided oxide
Significant improvement relative to historical dataset

[4] P.A. Kraus et al., Semiconductor Fabtech v. 23, p. 73 (2004).

Mobility Progress at Peak and High Field

HfSiO performs similarly to SiON but with scaling benefit

* P.A. Kraus et al., Semiconductor Fabtech v. 23, p. 73 (2004).

N Content in Interfacial SiON Layer

- 1. <u>Mobility</u>: NH₃ N in interfacial layer degrades mobility.
- 2. <u>EELS</u>: High N content near Si substrate (inversion layer).
- 3. -25% (peak μ) -15% (1MV/cm μ).

Similar Physical Thickness in SiO_x and SiON

- After processing (1000C-5s), SiO(N) T_{phy} is similar (TEM is ±2Å)
- Suggests fixed charge from N [rather than physical thickness screening effect] degrades mobility
- Consistent with peak / high field mobility results

Scaling the Hf-based dielectric

HfSiO Nitridation Improves V_t Stability

Metal Electrode: Test Structures

Process route/flow in place for PFET and NFET with various metal gates

- Capacitors:
 Primary vehicle for initial work-function evaluation
- Transistors: thin (~10 nm) metal layer under poly electrode
- Concentrating on dual work function (band edge) metal gate stacks in conjunction with Hf-based high-k films
- Also assessing near mid-gap metals for FD-SOI applications

Accelerating the next technology revolution.

SEMATEC

TiN Film Characterization

- Surface oxide that drops to 5-8% in the bulk
- RMS roughness ~0.8 nm
- Ti/N ~1.0-1.2 depending on technique

ALD-TIN MOSCAP Data

ALD TiN on ALD HfOx (4,6,8,10 nm)

 $V_{fb} = \Phi_{ms} - Q_f / \epsilon_{ox} \cdot EOT$ V_{fb} : flat band voltage Φ_{ms} : gate work function Q_f : interface charge density

Electrode	Gate Dielectric	$\Phi_{\sf ms}$ ' [V]	Nf [chg/cm ²]	Work Function Φ_{m} [eV]
100 A ALD-TiN	ISSG	-0.52	1.1x10e11	4.5
100 A ALD-TIN	ALD-HfOx	-0.46	7x10e11	4.5
100 A ALD-TiN	MOCVD-HfOx	-0.37	1x10e12	4.6

Marginal dependence of Work function and N_f on the gate dielectric material

Transistor Characteristics of ALD TiN on ALD HfSiOx (40 A)

Ig-Vg (n/pMOS) of ALD TiN on HfSiOx (40 A)

EOT = 2.0 nm $V_{fb}(n) = -0.55 V$ $V_{fb}(p) = 0.45 V$ $Jg_{(n) ([Vfb-1])} = 5 e-3 [A/cm^2]$

Demonstration of High Performance with High-k and TiN (Mid-Gap) Gate

- 85 nm baseline exhibits high performance
- Mobility (e/h) NOT a showstopper
- NEED band-edge metals

HfN Film Analysis

• < 5% Carbon in the film

• High concentration of surface oxide that quickly drops to ~2%

C-V and I-V curves of HfN/HfSiO/SiO₂ stack

HfN 15nm /HfSiOx 3nm/SiO₂ 2nm dot size: 5e⁻⁵ cm²

C-V and I-V curves of HfSiN/HfSiO/SiO₂

HfSiN 15nm /HfSiOx 3nm/SiO₂ 2nm dot size: 5e⁻⁵ cm²

Work Function of ALD Metal Nitrides

XRD and XRR of ALD TaN_x

-XRD confirmed amorphous nature of films (even after annealing up to 900°C)

- XRR density ~ 8g/cc; half of bulk value

ALD TaN Deposition Temperature Effect

- Dep rate is strongly dependent on temp. (~1.5 Å/cycle at 350°C and ~ 0.25 Å/cycle at 200°C)
- TaN film deposited at 200°C resulted in discontinuous film
- SIMS data with high silicon count at the surface confirms TEM data

350°C ALD TaN Properties of ALD-TaN

Linear growth of TaN Film on bare Si at 350°C

AES data: carbon content in TaN film is high

Linear increase of thickness with # of ALD cycles. Dep rate > 0.1nm/cycle

- The TaN film has a surface oxide and ~10% O in the bulk
- The N : Ta in the bulk is nearly 1 : 1
- C present at a similar % ~ 1:1:1 C:N:Ta

METAL ELECTRODE: Thickness Effect

ALD TIN

Work Function of ALD TiN saturates around 200 cycles at ~4.7 eV Work Function of ALD TaN saturates < 50 Å at ~4.8 eV

High-k (HfSiOx) Surface Treatment Effects on Work Function of Metal Electrodes

HCI treatment helps reduce TiN Work Function by more than 0.2eV

TaN is relatively independent on dielectric modification

Thermal Stability of Ru on HfSiOx and SiO₂ HRTEM cross section analysis

C-V and I-V curves for Ru/HfO₂ vs Ru/HfSiOx

Accelerating the next technology revolution.

Conclusions

- HfO₂ and Hf_xSi_{1-x}O₂ ALD processes scale physical thickness below ~2nm utilizing metal-amide precursors and ozone.
- 2) ALD chemistry proceeds similarly on multiple surface preparations including HF last without growth incubation.
- Promising high field mobility more than 85% of universal SiO₂ mobility has been achieved at EOT ~1nm with 100-1000x Jg reduction.

Conclusions (cont'd)

5) ALD metal gate electrodes such as TiN, HfN, HfSiN deposited on HfO₂ and HfSiOx showed mid gap characteristics.

6) Thickness dependency of Work Function of metal electrode was observed for ALD TiN.

7) PVD Ru is thermally more stable on HfO_2 as compared with SiO₂ and $HfSiO_x$.

