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Abstract— In previous work, we established a linear program-
ming framework to determine sensor location from measured 
link distances between neighboring nodes in a network. Besides 
providing greater accuracy compared to other techniques, linear 
programs in particular suit large networks since they can be 
solved efficiently through distributed computing over the nodes 
without compromising the optimality of the objective function. 
This work extends our framework to determine sensor location 
from measured arrival angles instead. An extensive simulation 
suite substantiates the performance of the algorithm according 
to several network parameters, including noise up to 15% the 
maximum error; the proposed algorithm reduces the error up to 
84% depending on the noise level. 

Index Terms— Convex optimization, Network localization 

I. INTRODUCTION 

The falling price and reduced size of sensors in recent years 
have fueled the deployability of dense networks to monitor and 
relay environmental properties such as temperature, moisture, 
and light [1]. The ability to self-organize and find their loca-
tions autonomously and with high accuracy proves particularly 
useful in military and public safety operations. In dense 
networks, multilateration can render good location accuracy 
despite significant errors in range estimates between sensors. 
This has launched a research area known as sensor location 
which seeks to process potentially enormous quantities of data 
collectively to achieve optimal results. Most practical systems 
require local distributed processing to cope with dynamic links 
or nodes in motion to maintain a network updated; alterna-
tively relaying information across a large network sanctions 
the centralized processing of obsolete data, limiting scalability. 

The pioneering work in sensor location only used the link 
distances between nodes measured through received signal 
strength or arrival time [2], [3], [4], [5], [6], [7], however 
received signal strength suffers from inaccuracies due to 
multipath fading and arrival time often requires expensive 
equipment or large overhead for synchronization between 
nodes. Arrival angle offers an alternative measurement system 
suited in particular to sensor nodes equipped with smart 
antennas [8]. In time, many algorithms have incorporated 
arrival angle to complement link distances [9], [10], [11], 
[12], [13], [14], but to our knowledge only two consider angle 
measurements alone: the first concentrates on sensors with 
limited computational power, emphasizing rapid organization 
rather than location performance [7]; the second formulates an 

optimization program with requisite geometrical constraints 
on the sensor locations [15]. In order to employ efficient 
convex optimization techniques, the authors relax the original 
quadratic constraints to semi-definite constraints. Furthermore 
the approach requires a heuristic parameter whose value de-
pends on the size and geometry of the network, which if not 
chosen carefully leads to an infeasible solution [16]. 

Along the lines of our previous work [17], this paper also 
formulates an optimization program, however with convex 
geometrical constraints on the arrival angles, necessitating no 
relaxation of the original constraints and so furnishes a tighter 
solution. Besides the exact solution, linear programming in 
particular suits large networks since it can be solved through 
distributed computing over the nodes without compromising 
the optimality of the objective function [18]. 

The paper reads as follows: Section II formally states the 
sensor location problem and the subsequent section proposes 
an optimization program to solve it. In Section IV we show 
how to reconstruct the sensor locations from the solution to the 
program, followed by a section detailing an approach to refine 
this solution. Section VI presents the results from an extensive 
simulation suite to substantiate the robustness of our algorithm 
to varying levels of noise and other network parameters, and 
the last section provides conclusions and directions for further 
research. 

II. PROBLEM STATEMENT 

Let a network contain two types of nodes: nA anchor nodes 
(or anchors) with known location and nS sensor nodes (or 
sensors) with unknown location, for a total of n = nA + nS 

nodes. For simplicity, let the nodes lie on a plane such that 
node i has location xi ∈ R2 indexed through i, i = 1 . . . nA 

for the anchors and i = nA + 1 . . . n for the sensors. The set 
N contains all pairs of nodes between which the link distance 
dij is less than a network parameter R known as the radio 
range, i.e. (i, j), i < j; ||xi − xj ||2 < R. The set M contains 
all triplets of nodes which form a triangle in the network: 
(i, j, k), (i, j) ∈ N ; (j, k) ∈ N ; (i, k) ∈ N . 

Equipped with an omnidirectional antenna array or a di-
rectional rotational antenna [19], according Fig. 1 node i 
measures the arrival angle θi from a neighboring node jj

in the clockwise (or counter-clockwise) sense relative to its 
bearing θi. Given these measured angles and the locations 
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Fig. 1. The arrival angles, the interior angles, and the relative bearing of a Fig. 2. Node k has a single connection to the network. 
node. 

of the anchor nodes in the network, this paper proposes a min
P 

δi+ + δi− + δj+ + δj− 
j j i i

solution to the problem first posed in [20] to find the locations (i,j)∈N 

of the sensor nodes and their bearings in a reference coordinate 
system. s.t. θi − θi + θj − θj + θk − θk = πj k k i i j 

θi − θi ≥ 0j k 
j j 

⎫ 

⎪⎪⎬ 

θ − θ ≥ 0k i 
θk − θk ≥ 0 

⎪⎪⎭ 

III. ARRIVAL ANGLE CONSTRAINTS 

The most effective approach to sensor location employs 

i j 

δi+ ≥ 0j 

δi− ≥ 0j 

⎫ 

⎪⎪⎪⎬ 

convex optimization by placing geometrical constraints on the j+δ ≥ 0i ⎪⎪⎪⎭j−link distances between neighboring nodes of the network [2], δi ≥ 0 
[15], [17]. In the place of link distances, here we constrain the 

, ∀(i, j, k) ∈ M 

, ∀(i, j) ∈ N 

(2) 
arrival angles between neighbors instead. Denote the interior 
angle θij = θji = |θk −θk| as the absolute difference between i j 

the arrival angles from neighboring nodes i and j relative to θk 

(see Fig. 1). Exploiting the triangular structure of the network, 
the sum of the three interior angles of each triangle must equal 
π. The optimization program we solve can be stated as follows: 

where θi = θ̂  
j
i + δi+ − δi− . Let δ̃i be in the optimal solution j j j j 

to (1) and let {δ̃i+ , δ̃i−} be in any feasible solution to (2)j j 

such that {δ̃i+ , δ̃i−} ≥ 0 and δ̃i = δ̃i+ − δ̃i− . Further letj j j j j 

δ̂i+ = δ̃i+ − min{δ̃i+ , δ̃i−} and δ̂i− = δ̃i− − min{δ̃i+ , δ̃i−};j j j j j j j j 

now {δ̂i+ , δ̂i−} are not only in a feasible solution to (2) since j j 

{δ̂i+ , δ̂i−} ≥ 0 and δ̃i = δ̂i+ − δ̂i− , but are also optimal since j j j j j 

δ̂i+ + δ̂i− ≤ δ̃i+ + δ̃i− in its objective function. Moreover j j j j 

j since δ̂i+ · δ̂i− = 0, then δ̂i+ + δ̂i− = |δ̂i+ − δ̂i−| = |δ̃i |,j j j j j j j 
P

min |δj
i | + |δ |i 

(i,j)∈N proving the equivalence of (1) and (2) at optimality. 
The advantage of our approach lies in the linear constraints 

θjk θik θij 

which ensure the convexity of the problem without relaxing }| { z }| {z }| { z 
⎫ 

⎪⎪⎬ 

⎪⎪⎭ 

j jθi − θi 
j k + θk − θk 

i js.t. the original geometrical constraints. The linear program above − θθ = π+ik 
θi − θi does not directly yield the sensor locations xi, i = nA +1...n, 

but only the estimated arrival angles θi (i, j) ∈ N . In 
fact the complete algorithm requires an a 

j , 
posteriori location 

≥ 0j k 
j j , ∀(i, j, k) ∈ M 
− θ ≥ 0θ ik 

θk − θk ≥ 0i j 
(1) reconstruction stage described in the following section to 

ˆwhere θi = θi +δj
i . The objective function minimizes the sum j j 

of the absolute residuals αij between the measured angles θ̂i 
j

and the estimated angles θi while the constraints ensure thatj

the latter conform to the requisite geometry of the physical 
world. 

The optimization program above can be converted to a linear 
program in canonical form by removing the absolute signs and 
introducing four bounding constraints: 

furnish the locations of the sensors from these angles. Note 
that (2) can be applied to the triangles formed in three-
dimensional networks as well; this paper does not treat the 
reconstruction stage for such networks for the sake of brevity. 

A. Additional arrival angle constraints 

Case I: Consider node i in Fig. 2 with two neighboring nodes 
j and k which themselves are not neighbors, i.e. 
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(a) The geometry. (b) Location propagation throughout the network. (c) Reconstructed reference arrival angles and node bearings. 

Fig. 3. Location reconstruction. 

⎫ ⎫ 
�(i, j) ∈ N ⎬ dij < R ⎬ 

djk > dij(i, k) ∈ N ⇒ dik < R ⇒ . 
⎭ ⎭ djk > dik(j, k) ∈/ N djk ≥ R (a) d12 = 

p

(x1 − x2)2 + (y1 − y2)2 
! 

�While node i can estimate θjk = |θj
i − θk

i |, nodes j and d12
(b) = sin θ13 · k cannot estimate θik and θjk respectively due to lack of d13 

sin θ12 
communication between each other, forfeiting the constraint � � � � � � 

0 d13 · cos θ23x x1on the sum of the interior angles of 4ijk. Alternatively we (3)3(c) += 
0 d13 · sin θ23y y1seek a constraint on θjk through the Law of Sines which states 3 

! 
djk sin θjk that = , so djk > dij ⇒ sin θjk > sin θij . Since y2 − y1dij sin θij (d) φ = arctan 

sin θ increases monotonically in the interval 0 ≤ θ ≤ π for x2 − x1 
� � � � � ��which the interior angle θ is valid, then θjk > θij . It follows 

cos φ − sin φ 
� 

0

0y3 y1 sin φ cos φ y3 − y1 

x3 − x1x3 x1that θjk > θik through the same reasoning. Now (e) += 
� 

θjk > θij 

θjk > θik 
⇒ 2 · θjk > θij + θik, We say that the two anchor nodes propagate their locations 

to the sensor node. Once the location of the sensor node
and substituing the inequality above into 2 · θjk + θjk we have is known, it serves with another known sensor (or anchor) 

π3 · θjk > θij + θik + θjk, but θij + θik + θjk = π, so θjk > to determine the location of an unknown sensor neighoring.3 

Case II: The triangle is the smallest polygon with non-trivial 
interior angles and so provides the tightest constraints on 
each by reducing the terms in the sum of its interior angles. 
However if there exists a simple polygon of order m > 3 
which cannot be decomposed into smaller triangles of the 
network, include an additional constraint in the linear program 
such that its interior angles sum to (m − 2) · π. 

IV. LOCATION RECONSTRUCTION 

The reconstruction stage yields the locations of the sensors 
in the network from the arrival angles estimated through the 
linear program (2). The stage originates at any two anchor 
nodes (shaded) sharing a neighboring sensor node (unshaded), 
as in Fig. 3(a). Given x1 = (x1, y1) and x2 = (x2, y2) and 
θ12, θ13, and θ23, the following set of equations furnishes the 
unknown location x3 = (x3, y3) with respect to the reference 
coordinate system centered at x1 [6]: 

the two. Following the propagation path from the originating 
anchor pair in Fig. 3(b), n1 and n2 propagate their locations 
to n3, n1 and n3 to n4, n1 and n4 to n5, and n3 and n4 to 
n6. 

Denote the reference arrival angle θ̊i as the arrival angle j 
at node i from a neighboring node j in the clockwise sense 
relative to the reference coordinate system, as in Fig. 3(c). 
Note that θ̊i = θj̊ + π. The reference arrival angles canj i 
be easily found during the reconstruction stage by tracing 
their values through the interior angles from the origin of 

˚the reference coordinate system. In the figure, θ̊1 = φ, θ1 = 2 3 

φ + θ23 + π, and θ̊2 = φ − θ13 + π. Now to compute the 3 
bearing of node i, simply subtract the estimated arrival angle 
from the reference arrival angle as θi = θ̊  

j
i − θj

i . 

A. Network topologies 

Case I: In general network topologies, especially those with 
low anchor density, no single sensor node neighbors any 
two anchors, as in Fig. 4(a). Consider as an alternative the 



o 

y 

x 

2 

3 
5 

4 

1 

y 

(x y ), , 

4, 

(x y ),

(x y )4 

3 3 5(x y )5 

2 2 

x 

P 

1 

2 
4 

3 
5 5 5

(x1,y )1 

(a) The path n1 → n3 → n4 → n5 → n2 connects the two anchors. (b) Location propagation from x1 and x3 to x4, x5, and x2. 

Fig. 4. Location propagation between anchors. 

connection between the two anchors through the minimum-
hop path n1 → n3 → n4 → n5 → n2: here propagation 
originates from one known anchor n1 and one unknown sensor 
n3 rather than from an anchor pair. Since x3 is unknown, the 
value of φ is also unknown; instead orient a relative coordinate 
system centered at x1 along the line between n1 and n3, as 
in Fig. 4(b). Now propagate x1 and x3 to x4, x5, and x2 as 
described before, however rather than in terms of real values 
and with respect to the reference coordinate system, here in 
terms of the variables (x3, y3) and with respect to the relative 
coordinate system. These locations assume the following form 
with individual real-valued terms (dx, dy) computed pairwise 
and stepwise through (3): (x4, y4) = (x1 + dx 

14, y1 + dy ),14 
(x5, y5) = (x4 +dx 

45 25, y5 +45, y4 +dy ), and (x2, y2) = (x5 +dx 

dy ), or compactly25 
� � � � 

x2 x1 + d3P = , (4)
y2 y1 + d2P 

where d3P = dx and d2P = dy 
14 + dx 

45 + d25 
x 

45 + dy 
14 + dy 

25 
represent the distances from n1 and n2 respectively to the 
imaginary point P in the relative coordinate system. Once the 
propagation reaches n2, backward substitute (x2, y2) in (4) 
to solve for the unknown values (x1, y1), which in turn yield 
the locations of the other sensor nodes along the minimum-hop 
path. Now that all nodes along the path have known neighbors 
with which to propagate their locations to other unknown 
sensors, propagation can continue as described previously. 

Case II: To enable location propagation to it, a node must bear 
connections from at least two nodes with known locations. For 
node k in Fig. 2 with a single connection to the network, the 
reconstruction problem is ill-posed given only the estimated 
angle θjk and the reconstructed distance dij on the shown 
propagation path to it. Assume djk = R to provide the third 
component which completely specifies the triangle 4ijk and 
allows reconstruction of xk. 

B. Multiple location solutions 

Scale remains the inherent drawback of using measured 
angles for sensor location as opposed to measured distances: 

while knowing the three link distances of a triangle identifies 
it uniquely, knowing the three angles of a triangle merely 
generates a family of similar triangles. Hence the constraints in 
(2) are necessary for geometrical consistency, but not sufficient 
to ensure a unique solution for the sensor locations since 
they do not account for scale. In fact we shall see that the 
reconstructed location depends on the propagation path chosen 
from the originating anchor pair, where the scale of each 
triangle is determined by the reconstructed distance common 
to the preceding triangle on the path. 

Consider the network in Fig. 5 as an example. There exists 
buts one propagation path to sensor n3 from the anchor pair 
(n1, n2): reconstruct x3 through the interior angles θ12, θ13, 
and θ23 together with x1 and x2; the known distance d12 

determines the scale of 4123 and in the process furnishes d13 

and d23. In sequence, there exist two paths labeled a and b to 
sensor n4: in reconstructing x4 through path a, d13 determines 

athe scale of 4134 and in turn renders location x ; likewise, in 4 
reconstructing x4 through path b, d23 determines the scale of 

b4234 and in turn renders x4. Hence the angles estimated from 
(2) may yield multiple solutions. Since each propagation from 
the originating anchor pair accumulates location error due to 
the sequential application of more and more erroneous angle 
measurements, choose the minimum-hop path to the sensor to 
reconstruct its location; if there exist multiple candidates with 
minimum hops as in the figure, average the candidate recon-
structed locations and any associated reconstructed distances 
into single values respectively. 

V. LINK DISTANCE CONSTRAINTS 

This section proposes a method to synthesize the multiple 
location solutions inherent to measured angles into a unique 
solution which ultimately proves more robust to noise. The 
method employs the reconstructed distances given from the 
previous section in the linear program taken from [17]: 
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Fig. 5. Node k has a single connection to the network. 

min 
P 

|αij | 
(i,j)∈N 

s.t. dij + djk ≥ dik 

⎫ 

⎬ 
(5) 

dij + dik ≥ djk , ∀(i, j, k) ∈ M 
⎭

djk + dik ≥ dij 

where dij = d̂  
ij + αij . The problem minimizes the sum of 

the absolute residuals αij between the reconstructed distances 
d̂ij and the estimated distances dij , provided that the latter 
conform to requisite geometrical constraints. The approach 
follows the one described in Section III, except that, as 
explained in Section IV-B, the distance constraints are tighter 
than the angle contraints and in turn yield a unique location 
solution. Like (2), the linear program in (5) yields only the 
estimated distances from which the final sensor locations are 
reconstructed. The recontruction stage in [17] amounts to con-
verting the three estimated distances of each network triangle 
to three estimated angles through the Law of Cosines and 
proceeding as in Section IV, however now the reconstruction 
is independent of the path chosen. 

Hence the combined algorithm to estimate the arrival angles 
in Section III and reconstruct the sensor locations in Section 
IV effectively serves as an initialization step to this section. 
If given additionally the measured distances as input to the 
algorithm, then making d̂  

ij a weighted sum of the recon-
structed and measured distances offers a method to integrate 
both measured arrival angles and measured link distances. 

VI. RESULTS 

In order to quantify the performance of our algorithm, we 
conduct experiments on a network with the same structure 
as in [15], [17], [18]. The network contains 50 sensor nodes 
uniformly distributed throughout a 1 × 1 unit area. The 
three parameters of the experiments vary as the number of 

anchor nodes, the radio range, and the noise level in the 
measurements. The measured angles are generated from the 

¯ground-truth angles θi by adding Gaussian noise as in [20]. j 
¯So the algorithm accepts as input θi = θi + N (0, σ),j j

where the standard deviation σ = noise · π is a fraction 
of the maximum error π. Figure 6(a) illustrates an example 
network with #anchors = 3, R = 0.25, and noise = 0.05. 
The anchors and sensors appear as blue and cyan asterisks 
respectively, and the links as blue lines between neighboring 
nodes. The network contains 211 links for an average node 
connectivity of 7.9623. 

The two performance measures for an experiment are the 
average relative angle error over all the measured angles 

j j1 X |θ̄  
j
i − θj

i | |θ̄  − θ |i i eθ = + (6)
j¯2N θi θ̄  

j i(i,j)∈N 

and the average location error over all the sensor nodes 
n X 

ex =
1 

||x̄ i − xi||2, (7) 
nS 

i=nA +1 

where x̄ i and xi denote the ground-truth and estimated 
locations. We present results from two algorithms for each 
experiment: algorithm 1 runs (2) on the measured angles and 
subsequently reconstructs the sensor locations. The angle error 

1 1is e = 0.031 and the location error is e = 0.093; algorithm θ x 
2 runs (5) on the reconstructed distances from algorithm 1 and 
subsequently reconstructs the final sensor locations, reducing 

2the angle error to eθ = 0.019 and the location error to 
2e = 0.066. The true locations appear in Figure 6(b) as blue 
x 

astericks and the estimated locations from algorithms 1 and 2 
appear as cyan and green astericks respectively, connected to 
the true location by error lines. 

Table I contains the results for 36 experiments as the cross 
product of #anchor = {3, 5, 7}, R = {0.20, 0.25, 0.30}, and 
noise = {0, 0.05, 0.1, 0.15}. The result for each experiment is 
reported as the average over ten trials of randomly distributed 
nodes in the network. The average connectivity of the networks 
for three anchors is 5.4372 for R = 0.20, 7.7238 for R = 0.25, 
and 10.2477 for R = 0.30. For each slot in the table, there 
are four results shown according to the legend for algorithms 

1 1e eθ x1 and 2: .2 2e eθ x 
Even with perfect angle measurements, the location problem 

may be ill-posed as explained in Section IV-A: due to lack 
of connectivity, the algorithms must resort to heuristics to 
reconstruct some of the locations. This explains the nonzero 
location error in some slots of the first row of Table I despite 
the zero angle error; for some experiments, the heuristics ac-
tually add more error to the measured angles as seen from the 
results for algorithm 2. For higher levels of noise, algorithm 1 

1 1reduces the angle error up to 52% (e = 0.024, e = 0.087)θ x 
1 1for noise = 0.05, but only up to 27% (e = 0.109, e = θ x 

0.176) for noise = 0.15; algorithm 2 performs much better, 
1 1delivering values of 84% (e = 0.008, e = 0.047) and 47% θ x 

1 1(e = 0.079, e = 0.095) respectively. Boosting network θ x 



connectivity through R increases the number of triangles in the 
network, but since the interior angles of individual triangles 
are estimated independently for each triangle, algorithm 1 
witnesses no significant reduction in error; increasing con-
nectivity however does improve algorithm 2 since there are 
more triangles incident on a particular link to use in estimating 
its value. Raising the number of anchors in the network also 
enhances the performance of both algorithms. 

The computational complexity of the simplex algo-
rithm used to solve linear programs typically varies as 
O(#constraints) [21]. The sparsity of our constraint ma-
trices allows for more efficient algorithms than the sim-
plex, and so the expected complexity should not exceed 
O(#constraints). The upper bound on the number of con-
straints coincides with a fully-connected network, where the 

� � 
n n(n−1)(n−2)number of triangles is = and each one3 2 

introduces one and three constraints in (2) and (5) respectively, 
resulting in a complexity of O(n3). The observed complexity 
for up to R = 0.30 is typically much less: MAT LAB solved 
the larger linear program (5) with 1692 contraints using an 
interior-point algorithm in less than one second on a 1GHz 
Pentium IV processor. 

VII. CONCLUSIONS AND FURTHER WORK 

In previous work, we established a framework through linear 
programming to determine sensor location from measured 
link distances between neighboring nodes in a network. This 
work extends the framework to determine sensor location from 
measured arrival angles instead. An extensive simulation suite 
substantiates the performance of the algorithm according to 
several network parameters, including noise up to 15% the 
maximum error; the proposed algorithm reduces the error up 
to 84% depending on the noise level. 

Formerly we showed that the linear program with link 
distance constraints can be solved efficiently through dis-
tributed computing over the nodes without compromising the 
optimality of the objective function; our current work shows 
analogous results for the linear programs with arrival angle 
constraints. In addition, our current work involves integrating 
both measured link distances and measured arrival angles. 
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(a) The triangular connectivity of a network. (b) The reconstructed sensor locations. 

Fig. 6. Example network with three anchor nodes, R = 0.25, and noise = 0.05. 

noise R=0.20 R=0.25 R=0.30 
3 5 7 3 5 7 3 5 7 

0.00 0.000 0.079 
0.003 0.050 

0.000 0.064 
0.003 0.042 

0.000 0.049 
0.002 0.029 

0.000 0.008 
0.001 0.004 

0.000 0.005 
0.001 0.002 

0.000 0.003 
0.000 0.001 

0.000 0.000 
0.000 0.000 

0.000 0.000 
0.000 0.000 

0.000 0.000 
0.000 0.000 

0.05 0.035 0.097 
0.026 0.078 

0.034 0.094 
0.023 0.074 

0.034 0.091 
0.021 0.071 

0.031 0.094 
0.019 0.065 

0.030 0.092 
0.018 0.061 

0.030 0.090 
0.017 0.059 

0.027 0.092 
0.012 0.052 

0.025 0.089 
0.009 0.049 

0.024 0.087 
0.008 0.047 

0.10 0.077 0.150 
0.061 0.123 

0.077 0.145 
0.057 0.115 

0.073 0.137 
0.055 0.114 

0.076 0.143 
0.054 0.095 

0.073 0.138 
0.052 0.093 

0.072 0.133 
0.050 0.089 

0.071 0.141 
0.047 0.839 

0.069 0.138 
0.047 0.082 

0.068 0.129 
0.045 0.081 

0.15 0.128 0.196 
0.104 0.139 

0.127 0.184 
0.102 0.098 

0.126 0.178 
0.099 0.099 

0.119 0.193 
0.097 0.119 

0.117 0.187 
0.095 0.106 

0.115 0.182 
0.092 0.102 

0.113 0.188 
0.085 0.104 

0.111 0.181 
0.081 0.098 

0.109 0.176 
0.079 0.095 

TABLE I 
NUMERICAL RESULTS FOR EXPERIMENTS 




