Semi-automated Estimation of Reliability Measures from Jaintenance Work Order Records

Tyler Bikaun, PhD Candidate (UWA)

TLP Community of Interest Workshop, 2021 Model-Based Enterprise Summit, NIST, April 12 - 16, 2021

> Data Science Transforming Maintenance





**Our Challenge** 

Acquiring reliability measures for assets is crucial for maintenance strategy validation and optimisation



We use **technical language processing** to emulate a prototypical reliability engineer

and assess the impacts decisions made when processing records have on resulting

#### reliability measures

|                |        |        |                                            | WOLK OLUCI DESCLIPTIONS                                                                                                    |  |  |  |
|----------------|--------|--------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Plant          | Α      | В      | H2G-33 damaged seal                        | 48 DAY THROAT BUSH ROTATION and internal inspection to assess remaining life                                               |  |  |  |
| Asset Type     | Pump   | Pump   | SCE Pump Seized K2G36A                     | Change out motor                                                                                                           |  |  |  |
| MWOs           | 14,508 | 89,259 | H11 Drive belts snapped                    | Please change out Electrical motor on #1 sump as it has been submerged in liquor                                           |  |  |  |
| Mean<br>Tokens | 5.5    | 8.0    | H11 High vibration, realign<br>unit D2G62B | TIS Vacuum and clear scale from #1 Horizontal sump pit and discharge line . Pit is currently blocked and causing flooding. |  |  |  |





### Pipeline and Scenario Modelling

#### Stage One



Data Science Transforming Maintenance



|                              | <b>Plant A</b> | Plant B |  |
|------------------------------|----------------|---------|--|
| Assets                       | 903            | 3079    |  |
| Samples                      | 3112           | 35170   |  |
| Failures                     | 1874           | 6746    |  |
| Suspensions                  | 14             | 2850    |  |
| Eligible Assets <sup>1</sup> | 93             | 669     |  |
| Compute Time                 | 22s            | 91s     |  |
| F1 Score                     | 79.3%          | 54.3%   |  |

#### **Evaluation**

Human evaluation of classifications on 20 assets sampled i.i.d from each data set

#### Performance

Minimal SME resources required and only minutes to compute

<sup>1</sup>All experiments performed with \$2000 or 8 hour threshold, and each asset required at least 5 pieces of evidence for MTBF estimation.



### Pipeline Results – Scenario Modelling

| Scenario   | Asset <sup>2</sup> | MWOs       | MTBF<br>(days) | Asset <sup>2</sup> | MWOs        | MTBF<br>(days) |
|------------|--------------------|------------|----------------|--------------------|-------------|----------------|
| <b>S1</b>  |                    | 58T/15F/0S | 184.8          |                    | 134T/0F/23S | -              |
| <b>S2</b>  | A1                 | 58T/29F/0S | 97.1           | <b>B</b> 1         | 134T/0F/23S | -              |
| <b>S3</b>  |                    | 20T/9F/0S  | 226.2          |                    | 115T/9F/16S | 185.6          |
| <b>S</b> 1 |                    | 90T/17F/0S | 181.9          |                    | _           | -              |
| S2         | A2                 | 90T/30T/0S | 101.9          | B2                 | 10T/7F/0S   | 318.8          |
| S3         |                    | 40T/14F/0S | 209.9          |                    | 15T/6F/2S   | 334.1          |
| S1         |                    | 31T/11F/0S | 244.3          |                    | _           | -              |
| <b>S</b> 2 | A3                 | 31T.15F/0S | 191.7          | B3                 | 137T/1F/16S | -              |
| <b>S</b> 3 |                    | 10T/7F/0S  | 408.5          |                    | 114T/5F/11S | 301.4          |

<sup>1</sup>All experiments performed with \$2000 or 8 hour threshold, and each asset required at least 5 pieces of evidence for MTBF estimation.

<sup>2</sup>A1 – centrifugal pump, A2 – piston pump, A3 – peristaltic pump, B1 – Warman 8/6 FAH, B2 – Worthington 10LR15A, B3 – Warman 10/6 FM



## Fast

Less than **10 min end-to-end time** for pipeline construction, validation and application



Process 1,000s of assets with 10,000s of records in minutes without significant SME resources



**Transparent** pipeline construction and application with configurable parameterisation



**Consistent** adherence to industry standard statistical life time estimation



Code will be available at: https://code-ittc.csiro.au/tyler.bikaun/mtbf\_from\_mwo

### Caveats, Limitations and Future Work



- Need structured fortuitous data fields and expert rules to reason about EOL events
- Currently only applicable to individual assets not sub-systems/systems



- Increase applicability to systems/sub-systems
- Improved reasoning over unstructured data fields
- Further reduce SME resource requirements



# **Thank You**



This research is funded by the ARC Training Centre for Transforming Maintenance through Data Science and the Mineral Research Institute of Western Australia





For More Information:

ARC Training Centre for Transforming Maintenance through Data Science

Email | tyler.bikaun@research.uwa.edu.au Web | http:www.maintenance.org.au

All Icons in this presentation were source from Noun Project: Expand (IconMark), Speed (sandiindra, Adrien Coquet), Recycle (emka angelina), Expert (Becris), Standard (Justin Blake, US), AI (Waleed Elagamy, EG)

