
Selecting Effective Test Messages

Len Gebase
Roch Bertucat
Robert Snelick

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD, USA

Abstract - One of the first problems that must be addressed
when attempting to test the reliability of any software
implementation is determining what is to be tested. The
number of paths an implementation can follow is generally
much too large to be able to test all possibilities.
Pragmatic decisions must be made that allow selective
testing, but exhaustive testing covering all possible paths is
not possible.

In this paper we investigate an approach for finding sets of
messages that provide effective coverage for testing HL7
applications. HL7 messages are constrained by an XML
document that determines the form and content of the
messages. We describe a method for determining one
metric for measuring the set of messages that encompass
all paths allowed by the XML document. In general this
set of messages is also very large. Nevertheless, the metric
provides us with a concrete assessment of the scope of the
testing problem. Furthermore, we are able to formulate
techniques for filtering this large message set and
substantially reduce its size while maintaining the essential
coverage capabilities inherent in the larger message set.

Keywords: Combinations; Conformance Testing;
Filtering; Messaging Systems; Test Messages.

1 Introduction
 In the Software Diagnostics and Conformance Testing
Division [1] of the Information Technology Laboratory
(ITL) at the National Institute of Standards and Technology
(NIST) we are interested in conformance testing
methodologies and their application to various areas of
information technology. One area of current interest is
their application to health care systems. We are currently
investigating the Health Level 7 (HL7) messaging standard
[2, 3], a widely used standard for moving clinical and
administrative information between healthcare applications.

As part of our work with the HL7 healthcare messaging
standard, we have developed a tool, Message Maker [4, 5],
which supports the dynamic generation of HL7 messages.
The messages are generated based on an XML document or
profile. Message Maker provides a powerful means for
generating test messages. The messages can be used to

support the evaluation of HL7 implementations. Message
Maker provides the user with considerable flexibility for
controlling the set of test messages that are generated. The
question remains, however, as to what set of messages the
user should generate. The user can generate an unlimited
set of messages, inject errors in messages, control specific
elements of a message, as well as vary other message
characteristics. But how many messages will be needed to
adequately cover the scope of possibilities that an
implementation should support? And is the size of this
message set small enough to be employed in testing HL7
implementations?

Below we investigate one approach for finding effective
test messages based on an examination of tree structures.
We attempt to capture all paths allowed by the profile by
examining the tree structures representing HL7 messages
derivable from the profile. We determine the number of
messages that can be generated, and once we have
identified the message set, we take further steps to reduce
its size, while attempting not to sacrifice the capabilities
inherent in the original set.

2 Example Profile
 Conformance was formally introduced into Version 2.5
[6] of the HL7 standard. An Implementation Profile was
the primary mechanism introduced for supporting
conformance. The Implementation Profile is an XML [7]
document that provides a well-defined and rigorous
specification of the set of messages that can be exchanged
between HL7 applications. Using profiles, vendors can
define precisely the set of messages that they will
exchange. Each message derivable from the profile itself
has an XML representation. Since any XML document can
be represented as a tree, every HL7 message also has a tree
representation.

Each element in the profile includes attributes that
determine the element’s presence, or absence, in the
messages derived from the profile. Specifically, elements
include a Usage attribute that determines if the element
must be present, cannot be present, or might be present in a
message. Elements also include MAX and MIN attributes

that determine the element’s cardinality or the number of
times the element can be repeated.

To be precise, the allowable values for the Usage attribute
are R, RE, and X. Any element with Usage value of R,
must be present, any element with a Usage value of X
cannot be present, and any element with Usage value of
RE, may be present.

The MAX and MIN attributes may take on any non-
negative integer value. MIN must be less than MAX, but
MIN is not required to be zero even for an element with a
Usage value of RE. In this case, the element may not be
required to appear, but if it does, it must appear more than
once.

While a relatively large and complex tree is required to
represent a typical profile, we will begin by considering an
unrealistically small and simple tree. Despite its simplicity,
the tree will serve as the bases for extending our work to
more general cases. A snippet of our simple XML profile
is shown in Figure 1.

<Segment Name="S1" Usage="R" Min="1" Max="2">�
 <Field Name="F1" Usage="RE" Min="0" Max="3" >
 <Component Name="C1" Usage="RE" >
 </Component>
 <Component Name="C2" Usage="R" >
 </Component>
 <Component Name="C3" Usage="RE" >
 </Component>
 </Field>
 <Field Name="F2" Usage="RE" Min="0" Max="2" >
</Segment

Figure 1. Toy Profile.

The profile details are omitted; only the aspects of the
profile relevant to our example are shown. A real profile
would include additional XML elements, and the elements
shown would include additional attributes affecting data
content. The Name attribute is shown, however, and the
profile structure is also revealed. All profiles contain the
nesting structure shown: Field elements must be wrapped in
Segment elements, Component elements must be wrapped
in a Field, and SubComponent elements—not included in
our example--may also be included within a Component
element. No further nesting of elements is allowed
however.

The semantics of our profile are relatively simple. The
segment element, S1, must be present in all messages
conforming to the profile and the segment may repeat once.
The Field element, F1, may be repeated three times if
present and F2 may be repeated twice. The element, F1,
has three children, and the child Component, C2, must be
present whenever F1 is present; the other children may

optionally be present, but neither can be repeated.
Component elements do not include either MIN or MAX
attributes. However, if the elements did include these
attributes, and if the values of the MIN and MAX attributes
for the optional components were set to zero and one,
respectively, the semantics would be equivalent to those
shown without their presence. For the required component
including the attributes with both values set to one would
convey the same semantics. Noting the equivalence of the
two representations enables us to use the same notation for
representing all nodes in the tree. We will annotate each
node in the tree with R [m, n] to designate a required node,
or RE [m, n] to designate an optional node, that must repeat
a minimum of m times and cannot repeat more than n times.
Nodes with a Usage value of X are not allowed to appear in
valid messages and therefore will not be further considered
here.

The tree representation of our profile is show in Figure 2.

F2: RE [0, 2]
F1: RE [0, 3]

S1: R [1, 2]

C2: R [1, 1] C1: RE [0, 1]
C3: RE [0, 1]

Figure 2. Tree Representation of Toy Profile.

The tree representation shown above does not represent an
actual tree, but rather represents some number of possible
trees. The members of this set of possible trees represent
the class of conformant HL7 messages derivable from the
profile shown in Figure 1 above.

To illustrate, Figure 3 shows two tree instances
representing conforming messages.

 S1

Figure 3. Tree Instances.

Next we enumerate a class of messages belonging to our
toy profile.

3 Counting Messages
 We want to determine the number of messages that
belong to the class of well-formed messages derivable from

F2 F1

S1

C2

F2 F1
F1

C2

C2 C1 C3

the profile shown in Figure 1. We will use the tree
representation of this profile shown in Figure 2 to formulate
a counting strategy. We are only interested in messages that
are structurally distinct; variations based on content, or
node values, will not be considered.

To count tree structures we will examine sub-tree
variations. We will begin by considering nodes with only
leaf nodes for children. We will refer to nodes in the tree
as node elements to emphasize the relationship between the
nodes in the tree and the elements in the XML document.
Considering sub-trees rooted at node element, F1, it is clear
that the total number of sub-trees that can be formed from a
single occurrence of this node is exactly 4. We’ll use a
more succinct lisp-like notation than we used above to
enumerate the 4 structures as follows: (F1 (C1 C2 C3)), (F1
(C1 C2)), (F1 (C2 C3)), and (F1 (C2)). This number can,
of course, easily be derived mathematically by observing
that node C1 and C3 can appear in one of two ways, i.e.,
they can either be present or not present, and node C2 can
only appear in one way. The total number of possibilities
for the nodes appearing then is simply given by the product
of the number of ways in which each node can appear. In
general, for any sub-tree rooted at node element, E, where
all of E’s children are leaves, the total number of sub-trees,
SE , that can be formed at E, is given by Equation 1.

Equation 1: SE = where N is the number of

children of node E and is the number ways in which the
child node, , can appear.

Ci
i=1

N

∏
Ci

Ci

In the example, we have SF1 = 2 × 1 × 2 = 4.

In our example, node element F1 can appear up to three
times. What is the total number of sub-tree combinations,
then, that can be formed at F1 when the number of times F1
appears varies over the range of valid repetition values?
We have shown that for one occurrence of F1, four sub-
trees are possible. For two occurrences of F1, it is clear
that there are 4 times 4, or 16, possible ways to combine the
sub-trees, and for three occurrences there are 4 times 4
times 4, or 64 possibilities. The total number of sub-tree
combinations then that can be formed at F1 from all valid
repetitions of F1 is given by the sum of the number of
combinations that can formed for each occurrence of F1.
In general, for a node element E repeating from 1 to N
times, the number of sub-tree combinations that can be
formed at E is given by Equation 2.

Equation 2: = where CE (SE)k

k=1

N

∑ SE is the number of

sub-trees that can be formed at node E for a single

occurrence of node element E and N equals the maximum
number of times that E can repeat.

At F1, we have = + + = 84. CF1 41 42 43

We note that since the node element F1 is not required,
there is one additional sub-tree combination, the empty sub-
tree, which we should add to our count. This can be
accounted for more generally, by noting that for a node
element E repeating from 0 to N times, the above formula
can be re-written as:

Equation 3: = CE (SE)k

k= 0

N

∑

Applying the above formula, then, at node F1, we have 85
sub-tree combinations that can be formed at F1. To
proceed up the tree and determine the number of sub-tree
combinations that can be constructed at S1, we note that if
the sub-tree at F1 were replaced by a single node that
varied in 85 ways, then we could again apply Equation 1
above and get the total number of variations for a single
occurrence of S1 by taking the product of the variations at
F1 and F2. This observation allows us to apply the
formulas above to calculate the number of sub-tree
combinations at any node in the tree.

For any arbitrary node in the tree, we can calculate the
number of sub-tree combinations that can be formed at that
node by traversing down the sub-tree until we reach a sub-
tree with only leaf nodes. For any leaf node, E, that is
required, the value of SE is always 1, and for a leaf node,
E, that is not required, the value of SE is always 2. We can
then calculate the value of SE for a node, E, that has only
children that are leaves using our product formula, and thus
proceed back up the sub-tree as illustrated above. As long
as we traverse all branches of the sub-tree, the order in
which we traverse the sub-tree does not matter.

In general a node can repeat from N to M times, where N
and M are non-negative integers and M is the minimum and
N the maximum number of times the node can repeat. The
equations below can be used to handle the more general
cases:

Equation 4: = 1 +CE (SE)k

k=M

N

∑ (node E optional, M > 0)

Equation 5: = CE (SE)k

k=M

N

∑ (node E required, M > 0)

where SE is the number of sub-trees that can be formed at
node E for a single occurrence of node element E, M is a

positive integer equal to the minimum number of times the
node can repeat, and N equals the maximum number of
times that E can repeat.

If node E is optional and repeats from 0 to N times,
Equation 3 above is used to find the number of sub-tree
combinations.

Noting that the number of sub-tree combinations that can
be formed is equal to the number of structurally distinct
messages that can be constructed, we can now apply our
method to the tree shown in Figure 2. Above we found that

 = 85. For F2, we have = 3. We then have at S1, CF1 CF 2
SS1= 85 × 3 = 255. Node S1 can repeat from one to two
times. Therefore, = 255 + = 65280. CS1

1 2552

Thus we see that even for our overly simplified profile,
there are still 65,280 possible messages that can be
generated. Even this number of messages is generally too
large to work with, and the number for a more realistic
profile would be much larger. Before examining a more
realistic profile below, we continue working with our toy
profile to illustrate our approach for reducing the number of
messages through various filtering techniques. Before we
proceed with filtering messages, however, we want to take
a closer look at our counting formulas.

3.1 Concept of Order
 We began our attempt at counting sub-trees by examining
the node element F1. We found that for a single
occurrence of F1 there are four sub-trees that can be
formed; we represented them as: (F1 (C1 C2 C3)), (F1 (C1
C2)), (F1 (C2 C3)), and (F1 (C2)).

We want to take another look at the sub-tree combinations
we can form at F1. We’ll simplify our representation of the
sub-trees above by adding some definitions. We will
define N1 to be exactly (F1 (C1 C2 C3)), we will define N2
to be exactly (F1 (C1 C2)), N3 to be (F1 (C2 C3)), and N4
to be (F1 (C2)). In this way, we can represent all sub-tree
combinations that can be formed by two occurrences of
F1with the first occurrence of F1 equal to N1 as:

(N1 N1), (N1 N2), (N1 N3), and (N1 N4).

We can represent all combinations where the first
occurrence of F1 is N2 as:

(N2 N1), (N2 N2), (N2 N3), and (N2 N4).

When the first occurrence is N3, we have:

(N3 N1), (N3 N2), (N3 N3), and (N3 N4).

And for N4, we have: (N4 N1), (N4 N2), (N4 N3), and (N4
N4).

We can see that we have sixteen combinations, but if order
is not significant, some of the combinations are equivalent.
If we count combinations and order is insignificant, we
only have ten combinations. To make this calculation in
general, we make use of formulas from combinatorial
mathematics. When repetitions are allowed (and order does
not matter), the expression C can be used to
represent the number of combinations for choosing r
objects from a set of n objects. The value of the expression
is given by:

' n,r()

C' n,r()= (n + r - 1)! / r!(n - 1)!

When two objects are selected from a batch of four, the
value of the expression is ten as we got above.

We can then replace Equation 4 and Equation 5 above, with
the following formulas for counting sub-tree combinations
when order does not matter. From above, we have the
number of sub-tree combinations that can be formed at E
given by:

Equation 6: = 1 +CE C ' (sE ,k)
k=M

N

∑ (node E optional, M

> 0)

When node E is required, we have:

Equation 7: = CE C ' (sE ,k)
k=M

N

∑ (node E required, M >

0) where SE is the number of sub-trees that can be formed
at node E for a single occurrence of node element E, M is a
positive integer equal to the minimum number of times the
node can repeat, and N equals the maximum number of
times that E can repeat.

If node E is optional so that the node may appear from 0 to
N times, we replace Equation 3 above for the number of
sub-tree combinations with:

Equation 8: = CE C ' (sE ,k)
k= 0

N

∑

If we apply Equation 8 at F1, we have CF1 = 1 + 4 + 10 +
20 = 35, instead of the 85 combinations we calculated
above. If we continue and calculate the number of sub-tree
combinations possible for our toy example above, we find
that there are only 5,670 combinations instead of the 65,280
that are possible when order is significant.

4 Message Filtering
 We now want to look at techniques for filtering the
message set. Rather than create messages for all possible
sub-tree combinations, we seek to find a subset of messages
that does not grow exponentially with node cardinality. We
will outline a filtering approach whereby we attempt to
maintain the structural richness of the original message set.
We do this by including all sub-trees that we identified
above, but we do not include all the sub-tree combinations
in our messages. We follow a practical approach that is
based largely on an examination of the end point values.

Leaf nodes are handled in a simple and somewhat arbitrary
manner, but a manner that will not sacrifice the structural
richness we are seeking to maintain. For optional leaf
nodes, we include two sub-trees. In one we omit the node.
In the second, we construct a sub-tree for the maximum end
point value.

For non-leaf nodes, we examine a number of cases below.
For all cases, if the minimum endpoint value is zero, we
change it to one, and work with that case instead. Once we
complete our calculations, we then add one additional sub-
tree. Since the minimum endpoint value does not have to
be zero for an optional node, we apply the same strategy for
all optional nodes.

For the cases considered below, let L equal to the lower
endpoint value and U equal to the upper end point value for
a given node. Let N equal to the number of sub-trees that
can be formed at that node.

First we consider required nodes that have only leave nodes
for children.

Case 1. L = U = N. In this case, a message with the node
element repeated U times is constructed. With each
repetition of the node, a distinct sub-tree is represented.
Since the number of sub-trees, N, that can be formed at the
node is equal to U, all sub-tree structures are encompassed
with this one message.

Case 2. L + U = N. In this case, a message with the node
element repeated U times is again constructed. A second
message with the node element repeated L times is also
constructed. A distinct sub-tree is represented for each
occurrence of the node in the two messages. Since, the
total number of sub-trees, N, is equal to the sum of L and U,
all sub-trees can be maintained with two messages.

Case 3. L + U > N. In this case, two messages are again
constructed, one with the node repeated U times and one
with it repeated L times. For the first N occurrences of the
node, a distinct sub-tree representation is included. For the
remaining N – L + U occurrences, sub-trees are arbitrarily
selected.

Case 4. L + U < N. For this case, let K be a positive
integer equal to N – (L + U), i.e., K + L + U = N, the
number of sub-trees. Then 2 +upper (K ÷ U) messages are
constructed, where upper is a function that maps its
argument to the nearest integer that is greater than or equal
to its argument. When K≤ U, this results in constructing
three messages. If K > U, then the number of times that K
divides U determines how many messages are constructed.

First two messages are constructed in the same manner as
above, one with the node repeated U (maximum) times and
the second with the node repeated L (minimum) times.
After these two messages have been constructed, there are
K sub-trees that have not been accounted for in either
message. When K≤ U, upper (K ÷ U) equals one. And
since K is less than U, and the element can be repeated up
to U times, with one additional message the remaining K
sub-trees can be accounted for. If K > U, then when U
divides K, with K / U additional messages all sub-trees can
be accounted for. If U does not divide K, then the
remainder will be the number of sub-trees that are
unaccounted for. Since this number must be less than U,
with one additional message all sub-trees can be accounted
for. Thus, 2 + upper (K + U) is the number of messages we
want in both cases.

An example of the above can be illustrated by selecting a
few arbitrary numbers. If L = 2 and U = 5 and there are 10
sub-trees so that N = 10, then K = 3. It’s clear that with the
first two messages 7 sub-trees can be accounted for and
with one additional message the remaining 3 can be
accounted for. So, 3 messages are needed, which is the
number the above formula yields. If N is 20 instead, then K
is 13. The above formula yields 5 messages in this case.
We can see that with 4 messages 17 sub-trees are accounted
for (one of the messages accounts for only 2 sub-trees) and
to account for the remaining 3 one more message is needed.

The cases examined above apply to required nodes.
Optional nodes can easily be handled by adding one to the
results obtained for required nodes to account for the empty
sub-tree.

To extend our approach to include all nodes, we proceed
from the bottom of the tree as we did above and work
upwards. Once we establish the numbers for sub-trees at
nodes near the bottom of the tree, we treat the nodes as
leave nodes and continue moving up the tree until we reach
the root of the tree. Rather than trying to elaborate the
details abstractly as we’ve done above, we’ll illustrate by
applying the technique to the toy tree we constructed in
Figure 2 above.

4.1 A Filtering Example
 Here we illustrate the technique described in the
previous section by applying the technique to the profile
tree shown in Figure 2. We begin by examining node
element F1. There are four sub-trees to account for at F1.
Using the notation introduced above, the four possibilities
are represented as follows: (F1 (C1 C2)), (F1 (C1 C2 C3)),
(F1 (C2 C3)), (F1 (C2)).

Ignoring the optional case initially, at F1, L = 1, U = 3 and
N = 4. Thus Case 2 above applies where L + U = N. In this
case, two messages are constructed. Three of the sub-trees
are accounted for with one message, and with one
additional message the remaining sub-tree is accounted for.
Ignoring the other branches of the tree for now (here, we
can use any valid configuration), we would construct one
message for the maximum endpoint containing the
following structure: (F1 (C1 C2)), (F1 (C1 C2 C3)), (F1
(C2 C3))

The second message with the node element repeated only
one time would capture the one remaining sub-tree: (F1
(C2))

Since the node element F1 is optional, another message
would be needed to account for the empty tree.

Next, we move up the tree to node S1. The node is treated
as a node with children that are all leaf nodes would be
treated. At F1, the child node is treated as a node that can
vary in one of three ways to account for the three messages
that need to be incorporated. At F2, two variations are
accounted for. So, S1 is treated as a node where six sub-
trees need to be incorporated into the messages that are to
be constructed.

Thus, L = 1, U = 2, and N = 6 at S1. This falls under Case
4 above with L + U < N. In this case K = 3, and upper (K ÷
U) = 2, so that four messages are constructed. The four
messages can be represented as follows:

(i) (S1) (S1 (F1 (C1)(C2)) (F1 (C1)(C2)(C3)) (F1 (C2)(C3)))
(ii) (S1 (F1 (C1)(C2)) (F1 (C1)(C2)(C3)) (F1 (C2)(C3)) (F2)(F2))
(iii) (S1 (F1 (C2))) (S1 (F1 (C2)) (F2))
(iv) (S1 (F2))

In the first message, the element S1 is repeated twice, the
maximum endpoint value. In the second, the minimum end
point value is used. In the third, the element is again
repeated the maximum number of times allowed. At this
point, one sub-tree is still not represented, and this structure
is handled with the forth message.

We have thus substantially reduced the number of messages
that need to be constructed for our toy tree from 65,280
(when order is significant) to only 4.

4.2 Applying the Counting and Filtering

Techniques
 We have developed a Java implementation of the above
techniques and have successfully applied them to
substantially larger profiles than the toy example we looked
at above. We have also incorporated the implementation
into our Message Maker application. This addition to
Message Maker gives it the capability to provide a count of
the total number of structurally distinct messages for any
profile, provide a message count for the various filtering
techniques, and generate the filtered message sets.

The table below shows the results of applying two filters to
a more realistic test profile. The second filter is a
modification of the one described above. The essential
difference between it and the one described above is
captured in how we handle the element node F1 in our toy
example. Rather than accounting for four sub-trees, we
only consider two, one with all optional children included
and one with only required nodes included. By applying
both filtering techniques we were able to reduce the
message set from over 8 million to less than 8 hundred; we
are investigating additional techniques that should further
reduce the message set.

Order Significant Order Insignificant
None F2 None F2 F1 F1&2

8257536 8064 5308416 5184 786432 768

Table 1: NIST Test Profile

5 Conclusions
 We have successfully formulated a technique for
identifying HL7 messages conforming to an XML profile.
The technique gives us a measurement for assessing the
scope of our testing problem. While the scope of the
problem is generally very large, through filtering
techniques, we are able to reduce it to a workable size. We
can apply filters that substantially reduce the size of the
total message set without significantly sacrificing the
structural qualities of the original set. Furthermore, we are
capable of generating HL7 encodings of the filtered
message sets.

As of yet, we have not attempted to assess the effectiveness
of our message sets in evaluating HL7 implementations. In
the next phase of our work, we plan to undertake the
development of a testing framework that will enable us to
make this assessment. We anticipate that the message sets
generated using the techniques discussed in this paper will
provide an effective set of messages for assessing the core
behavior of an HL7 implementation. To comprehensively
test an implementation, it will be necessary to also
incorporate error messages, i.e., messages that adhere to the
implementation profile in a number of ways, but violate

important aspects of the profile requirements. Also, it will
be necessary to consider content variations of the test
messages. Support for generating messages in both the
latter cases is provided by our Message Maker
implementation. With the capabilities built into Message
Maker combined with the use of the techniques described
in this paper, we anticipate the capability to generate sets of
messages that will enable thoroughly assessing the behavior
of implementations of the Hl7 standard.

6 References
[1] Software Conformance Testing & Diagnostics
Division, Information Technology Laboratory, NIST;
http://www.itl.nist.gov/div897/

[2] Health Level 7 (HL7); http://www.hl7.org

[3] HL7 Standard Version 2.4, ANSI/HL7 V2.4-20

[4] Message Maker; Developed by the National Institute of
Standards and Technology (NIST).
http://www.nist.gov/messagemaker.

[5] Message Maker User’s Guide. Version 1.4 January
2006, R.Snelick, L.Gebase, S.Henrard.
http://www.itl.nist.gov/div897/ctg/messagemaker/docs/Use
rsGuide1.4.pdf.

[6] HL7 Standard Version 2.5, ANSI/HL7 V2.5-2003. June
26, 2003. Chapter 2 Section 12 “Conformance Using
Message Profiles”, pg 43-62.

[7] Extensible Markup Language (XML) 1.0 (Third
Edition). W3C Recommendation 04 February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204

http://www.itl.nist.gov/div897/
http://www.hl7.org
http://www.nist.gov/messagemaker
http://www.itl.nist.gov/div897/ctg/messagemaker/docs/UsersGuide1.4.pdf
http://www.itl.nist.gov/div897/ctg/messagemaker/docs/UsersGuide1.4.pdf
http://www.w3.org/TR/2004/REC-xml-20040204

	1 Introduction
	2 Example Profile
	3 Counting Messages
	3.1 Concept of Order

	4 Message Filtering
	4.1 A Filtering Example
	4.2 Applying the Counting and Filtering Techniques

	5 Conclusions
	6 References

