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Let Z be a nbrmally distributed random variable with mean § and variance 1,
and X be a noncentral chi-squared random variable, independent of Z, with
degrees of freedom V>0 and noncentrality parameter A30. Then the random

Y = z2/VX/v (1)

has the doubly noncentral ¢ distribution, indicated by Y ~ t"(v,8,A). This
distribution was introduced by Robbins [14] as the distri ution of Studept's ¢t
s istic when the tions have unequal populatidn means. It was later
used by Patm [11] in testing hypotheses concerning the standardized means
of nonhomogeneous normal populations.

Krishnan [7] gives a series representation for the t" cumulative distribution
function (c.d.f.) in terms of incomplete beta functions. Alternative series

representations are given by Bulgren and Amos [2], Bulgren [3], Carey [4], and
[7]. Approximations are given by Johnson and Kotz [6] and Mulholkar and
Chaubey [8]. Numerical examples of usage are given in [3] and [77.

exact valy £t t" c.d.f. although computer programs have obviously been
used iﬁ’generating published tables in [2,3,4,7,8]. The purpose of this note
is to present an efficient algorithm for computing the t" c.d.f. to a
specified accuracy using exact formulas.

The algorithm uses the series representation in eq. (4) of [7] which can be
re-written

F (x) = ) A.B.I(u,1/2+i/2,v/2+5) /2 + Y A, ) B.(~l)i/2 (2)
P ] i . i . 1
J=0 1i=0 1=0 1=0

. . 2
where &, = (\/2)3e™ 2151y, B, = (8D ™ /2 1(i/041), o = x2/(x2w),
and x30. When x<0 the c«d.f. is computed from the relation FY(x;v,ﬁ,A) =
1 - FY(—x;v,—G,A). The Aj are Poisson probabilities, and

u
-1 -
I(u,a,b) = f e? (l—t)b 1dt/B(a,b) is the c.d.f. of the beta distribution
0
(also called the incomplete beta ratio) where 0<u<l, a>0, b>0, and

1 .
B(a,b) = f ta—l(l—t)b 1dt. The quantity (6§/y2)* in Bi is erroneously given
0



as (§ /2)1/2 in [7]. 1In the latter form the quantity would be (incorrectly)

positive when § is negative and i is an odd integer.

Each summation over i in (2) can be split into two summations over even and

odd values of i. For i=0,1,2,... let Bz = (6 /2) -5 / JT(i+]1l) and
B0 =B, = (D (8%/2) e -6* /Z/F(i+3/2). Then (2) takes the form

Fy(x) = Y 2 AJB I(u,1/2+i,v/2+j) /2

j=0 i=0
(3)
-]
) 2 A,BS S1(u,1+1,9/243) /2 + {1 - 2 B }/z
j=0 i=0 i=0
k- -]
since Aj = z B: = 1. For computational purposes the infinite series
i i=0
must be truncated, thus (3) is re-expressed as
J" I"
Fo(x) = ) ]  ABSI(u,1/2+i,v/2+3)/2
b4 1=J0 i=1! J 1
b 1=1
e
(4)
J" I" I"
+ 3§ ABOI(u,l+i,v/2+5)/2 + {1 - ] BI}/2 + R
t=T! =71 J 1 1]
1=J 1—10 1—I

where Ié, Ié, ", J', and J" are non-negative integers and R is the remainder.

If the beta c.d.f.'s are computed without error, it can easily be shown that
J" IH

choosing Ié, Ié, ", J', and J" such that 2 A. » 1-2¢e/3, z B > 1-2¢/3,
j=J! 1-1'

and Ié = max{Ié—l,O} yields R<e provided €>0. Therefore, € serves as an

absolute error bound on FY(x).

For maximum computatlonal eff1c1ency, the number of terms in each sum is
minimized by indexing j and i over the largest of the Poisson probabilities

Aj and Bi respectively. It then follows that i also indexes over the Bi which

are largest in absolute value.

The final task is to compute the (21"—Ié~1é+2)(J"—J'+l) beta c.d.f.'s and the
summations. An efficient procedure for doing this is to first compute only
I(u,1/2+I',v/2+J§) and I(u,1/2+I§,v/2+J') directly, indicated by the symbols

"x" and "y" in figure 1. The remaining beta c.d.f's are computed using the



recurrence relations

I(x,a,b) = I(x,a,b+l) - x°(1-x)"/[bB(a,b)], (5a)
I(x,a,b) = I(x,a+l,b) + x>(1-x)°/[aB(a,b)], and (5b)
I(x,a,b) = xI(x,a-1,b) + (1-x)I(x,a,b-1) (5¢)

as found in Abramowitz and Stegun [1]. Subject to the restrictions J'<J§<J"
and Ié<1§<1", J: and IZ are chosen to maximize the magnitudes of the rightmost

terms in (5a) and (5b) respectively. In applying each of these two recurrence
relations only one direct evaluation of B(a,b) is necessary, computed by

elnI‘(a) + 1nT'(b) - 1nT{a+b) a—le—t

o0
where T(a) = f t

0
values are easily computed from the identities B(a+l,b) = aB(a,b)/(a+b) and
B(a,b+l) = bB(a,b)/(a+b). In a similar fashion I(u,l+Ié,v/2+Jg) and

B(a,b) = dt . Further

I(u,1+Ig,v/2+J') are computed directly, and the same procedure is followed
with similar restrictions on Jg and Ig. These computations are illustrated in
in figure 2. The double summations in (4) are accumulated as the beta c.d.f.'s

are computed.

In figures 1 and 2 the symbols "a", "b", and "c" indicate which of the
recurrence relations (4) is used in computing each beta c.d.f., with those
indicated by "e¢'" being done last.
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The above algorithm has been incorporated into the FORTRAN subroutine CDFDNT.
External routines for computing the beta c.d.f. and the double precision log
of the gamma function are required. In the current version of CDFNDT these
routines are the subroutine CDFBET and the function GAMLOG as described in
Reeve [12,13]. Other routines which can be substituted for CDFBET and GAMLOG
are those in [5,9,10]. For all practical purposes the absolute error
criterion € will be met if the beta c.d.f. routine is accurate to two or three
digits beyond €.

The recursive method of computing the beta c.d.f.'s requires a little extra
computer programming and storage, but results in a tremendous savings in
computing time as § and A become large. The computing time and storage also
increase as € becomes small, but are unaffected by v. 1In table 1 the t"
c.d.f. is computed for selected parameter values. The computing time in CPU
seconds and the number of beta c.d.f.'s computed are included. The case
v=§=A=100 corresponds to the example in Carey [4] who defines A a bit
differently. Her single series representation of the t" c.d.f. appears well
suited for computation when 8 and/or A take opn large values. Note that CDFDNT
required only 0.76 CPU seconds in this case. Were all 98,490 beta c.d.f.
evaluations done by separate calls to the beta c.d.f. routine, the CPU time
would have been at least 100 times greater. The computations in table 1 were
done on the CDC Cyber 180/855 computer at NBS.

The current dimension limits in CDFDNT allow _values of 8 up to 100 and A up to

10,000 with € as small as 10_8, but these limits could easily be increased by
the user. The limiting factor in using CDFDNT is more likely to be execution
time than storage.

Steps were taken to eliminate underflow situations, minimize the effects of

roundoff error, and minimize storage requirements. Only those c.d.f. values

indicated by "x", "y", "a", or "b" in figures 1 and 2 are actually stored.

The Poisson probabilities AJ,, ceny AJ" and B;,, ve ey B;n are also stored as
e
0 0
are BI" cs sy BI"'
0

If A=0 then the doubly noncentral t reduces to the (singly) noncentral t, and
if §=A=0 it reduces to the central t. In either case, CDFDNT will run almost
as efficiently as routines designed for those specific cases.

Portions of tables in [2,3,4,7,8] were reproduced by CDFDNT and agreed to
within roundoff error in each case.

A listing of CDFDNT is an appendix to this note. It is invoked by
CALL CDFDNT(X,DF,DELTA,ALAMB,EPS, IFLAG, CDFX)

where the arguments are defined in the program documentation. The returned
value of CDFX is valid only if IFLAG=0 on return. In passing € (variable name
EPS) to CDFDNT the user should realize that accuracy is limited by the number
of digits carried in a single precision variable, and that roundoff error may
affect the last one or two of these digits.



Table 1

Computing times on the CDC Cyber 180/855 for the

c.d.f. of t"(v,8,A) using CDFDNT for selected

parameter values.

€=10'-6 No. beta

t CPU c.d.f.

v $ A X P{t"<x} sec values
1 1 1 0.7071 0.433771 0.01 128
1 1 100 0.0995 0.498015 0.02 1,120

1 1 10000 0.0100 0.500000 0.10 11,248

1 10 1 7.0711 0.349271 0.02 1,128

1 10 100 0.9950 0.485863 0.08 9,870

1 10 10000 0.1000 0.500000 0.67 99,123

1 100 1 70.7107 0.347264 0.11 11,256

1 100 100 9.9504 0.480221 0.66 98,490

1 100 10000 1.0000 0.500000 6.47 989,121
10 1 1 0.9535 0.490326 0.01 128
10 1 100 0.3015 0.498251 0.01 1,120
10 1 10000 0.0316 0.499892 0.10 11,248
10 10 1 9.5346 0.448390 0.02 1,128
10 10 100 3.0151 0.487089 0.08 9,870
10 10 10000 0.3161 0.500181 0.75 99,123
10 100 1 95.3463 0.441153 0.12 11,256
10 100 100 30.1511 0.480930 0.65 98,490
10 100 10000 3.1607 0.498611 6.48 989,121
100 1 1 0.9950 0.498990 0.01 128
100 1 100 0.7071 0.499248 0.01 1,120
100 1 10000 0.0995 0.499965 0.12 11,248
100 10 1 9.9504 0.490966 0.02 1,128
100 10 100 7.0711 0.493307 0.08 9,870
100 10 10000 0.9950 0.499656 0.73 99,123
100 100 1 99.5037 0.481469 0.13 11,256
100 100 100 70.7107 0.485762 0.76 98,490
100 100 10000 9.9504 0.498682 6.71 989,121

T x =8//1 + A/v rounded to four decimal places

* example in Carey [4] with large values of v, §, and A
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*CDFDNT

SUBROUTINE CDFDNT (X,DF,DELTA,ALAMB,EPS, IFLAG,CDFX)

CDFDNT  WRITTEN BY CHARLES P. REEVE, STATISTICAL ENGINEERING

DIVISION, NATIONAL BUREAU OF STANDARDS, GAITHERSBURG,
MARYLAND 20899

FOR: COMPUTING THE CUMULATIVE DISTRIBUTION FUNCTION OF THE DOUBLY

NONCENTRAL T DISTRIBUTION TO A SPECIFIED ACCURACY (TRUNCATION
ERROR IN THE INFINITE SERIES REPRESENTATION GIVEN BY EQUATION
4 IN REFERENCE 1 BELOW). WHEN X<@ THE C.D.F. IS COMPUTED

FROM CDF(X,DF,DELTA,ALAMB) = 1 — CDF(-X,DF,-DELTA,ALAMB).

THE BETA C.D.F. ROUTINE IS CALLED AT MOST FOUR TIMES. FURTHER
VALUES OF THE BETA C.D.F. ARE OBTAINED FROM RECURRENCE
RELATIONS GIVEN IN REFERENCE 2. REFERENCE 3 GIVES A DETAILED
DESCRIPTION OF THE ALGORITHM HEREIN.

THIS PROGRAM MAY ALSO BE EFFICIENTLY USED TO COMPUTE THE
CUMULATIVE DISTRIBUTION FUNCTIONS OF THE SINGLY NONCENTRAL
AND CENTRAL T DISTRIBUTIONS BY SETTING THE APPROPRIATE
NONCENTRALITY PARAMETERS EQUAL TO ZERO.

CHECKS ARE MADE TO ASSURE THAT ALL PASSED PARAMETERS ARE
WITHIN VALID RANGES AS GIVEN BELOW. NO UPPER LIMIT IS SET
FOR THE NONCENTRALITY PARAMETERS, BUT VALUES UP TO ABOUT 100
FOR DELTA AND 10,000 FOR LAMBDA CAN BE HANDLED WITH THE
CURRENT DIMENSION LIMITS. THE COMPUTED VALUE CDFX IS VALID
ONLY IF IFLAG=2 ON RETURN.

NOTE: IN SUBROUTINE EDGET THE DOUBLE PRECISION CONSTANT DEUFLO IS

THE EXPONENTIAL UNDERFLOW LIMIT WHOSE CURRENT VALUE 1S SET
AT —69D@. ON A COMPUTER WHERE DEXP(—69D@) CAUSES UNDERFLOW
THIS LIMIT SHOULD BE CHANGED.

SUBPROGRAMS CALLED: CDFBET (BETA C.D.F.)

GAMLOG (DOUBLE PRECISION LOG OF GAMMA FUNCTION)
POISST, EDGET, GRID (ATTACHED)

CURRENT VERSION COMPLETED SEPTEMBER 29, 1988

REFERENCES:

1.

KRISHNAN, MARAKATHA, ’SERIES REPRESENTATIONS OF THE DOUBLY
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OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO(‘)OOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOO(’)

DEFINITION OF PASSED PARAMETERS:

[l

* X = VALUE AT WHICH THE C.D.F. IS TO BE COMPUTED (REAL)

» DF = DEGREES OF FREEDOM (>8) IN THE DENOMINATOR (REAL)

» DELTA = THE NONCENTRALITY PARAMETER FOR THE NUMERATOR (REAL)

[EQUAL TO ZERO FOR THE CENTRAL T DISTRIBUTION]

* ALAMB = THE NONCENTRALITY PARAMETER (>=0) FOR THE DENOMINATOR

(REAL) [EQUAL TO ZERO FOR THE SINGLY NONCENTRAL T AND
CENTRAL T DISTRIBUTIONS]

* EPS = THE DESIRED ABsOLUTE ACCURACY OF THE C.D.F. (REAL)
[1 >= EPS >= 10*x(~10)]

IFLAG = ERROR INDICATOR ON OUTPUT (INTEGER)  INTERPRETATION:
@ —> NO ERRORS DETECTED
1,2 => ERROR FLAGS FROM SUBROUTINE CDFBET
—> ALAMB IS < @
> DF IS <= @
> EPS IS OUTSIDE THE RANGE [10#+(-—10),1]
—> VECTOR DIMENSIONS ARE TOO SMALL — INCREASE NX

(o 6 I SR

CDFX

THE DOUBLY NONCENTRAL T C.D.F. ‘EVALUATED AT X (REAL)




» INDICATES PARAMETERS REQUIRING INPUT VALUES

OOO0

PARAMETER (NX=1000)
DIMENSION BFI(NX),BFJ(NX),POI(NX),POJ(NX)
DOUBLE PRECISION DARG,DFA
LOGICAL LL
COFX = ©.0
c
C—— CHECK VALIDITY OF ARGUMENTS
c
IF (ALAMB.LT.9.8) THEN
IFLAG = 3
RETURN
ENDIF
IF (DF.LE.©.@) THEN
IFLAG = 4
RETURN
ENDIF
IF (EPS.GT.1.0.0R.EPS.LT.1.8E~10) THEN
IFLAG = 5
RETURN
ENDIF
IFLAG = @
c
C—— SET ERROR CRITERION FOR THE BETA C.D.F. (PECULIAR TO CDFBET)
c
EPS3 = ©.001%EPS .

c
DELSQ = DELTA*x*2
FA = ©.5+DELSQ
GA = 0.5+ALAMB
GB = 0.5+DF
YY = DF/(DF+X*X)
XX = 1.0-YY

c

C—— IF X<@ SET LL=.TRUE., REVERSE SIGN OF DELTA, AND USE THE
C—— IDENTITY DESCRIBED UP FRONT FOR COMPUTING THE C.D.F.

c
LL = X.LT.e.0
IF (XX.GE.1.0) THEN
COFX = 1.9
GO TO 50
ENDIF
SDELTA = DELTA
IF (LL) SDELTA = —DELTA
c
C—— COMPUTE POISSON PROBABILITIES IN VECTOR POI
c
CALL POISST (FA,EPS,IMIN,NI,POI,NX, IFLAG)
IF (IFLAG.NE.@) RETURN
IF (YY.GE.1.2) GO TO 10
FC = @.5+REAL(IMIN)
c
C—— COMPUTE POISSON PROBABILITIES IN VECTOR POJ
c
CALL POISST (GA,EPS,JMIN,NJ,POJ,NX, IFLAG)
IF (IFLAG.NE.®) RETURN
GC = GB+REAL(JMIN)
c

C—— SUM THE TERMS CORRESPONDING TO ’EVEN' VALUES OF INDEX I

CALL GRID (NI,NJ,FC,GC,BFI,BFJ,POI,POJ,XX,YY,EPS3,COFX, IFLAG)
IF (IFLAG.NE.®) RETURN
10 IF (DELTA.EQ.@.9) THEN
NI =0
SUM = 0.9
IF (YY.GE.1.8) GO TO 4@
ELSE

c
C— COMPUTE 'POISSON-LIKE' PROBABILITIES IN VECTOR POI
c .
K = INT(FA)
IF (IMIN.GT.®) THEN

IMIN = IMIN-1 o

NI = NI+ v 0P
ENDIF Ry -
DFA = DBLE(FA) U, S e

= (DBLE(K)+0.5D@) xDLOG(DFA)—DF A—GAMLOG (REAL(K)+1.5)



L = K—IMIN+1
POI(L) = SIGN(SNGL(DEXP(DARG)),SDELTA)
SUM = POI(L)
DO 20 I = K-1, IMIN, -1
L= L1
POI(L) = POI(L+1)*(REAL(I)+1.5)/FA
SUM = SUM+POI(L)
20 CONTINUE
L = K—IMIN+1
DO 38 I = K+1, IMIN+NI-1
L= L+1
POI(L) = POI(L—1)*FA/(REAL(1)+@.5)
SUM =" SUM+POI (L)
36 CONTINUE
IF (YY.GE.1.8) GO TO 4@
FC = 1.0+REAL{IMIN)

C—— SUM THE TERMS CORRESPONDING TO 'ODD’ VALUES OF INDEX I

CALL GRID (NI,NJ,FC,GC,BFI,BFJ,POI,POJ,XX,YY,EPS3,CDFX, IFLAG)
IF (IFLAG.NE.@) RETURN

ENDIF
c
C—— COMPUTE THE NORMAL C.D.F. AT -SDELTA
c
40 PHI = 0.5%«(1.0-SUM)
c

C—— COMPUTE THE DOUBLY NONCENTRAL T C.D.F. AT X, USING AN IDENTITY
C— IF X<0

C
CDFX = @.5%CDFX+PHI
50 IF (LL) CDFX = 1.@-CDFX
RETURN
END
C

SUBROUTINE POISST (ALAMBiEPS,L,NSPAN,V,NV,IFLAG)

Cc

C—— COMPUTE THE POISSON(ALAMB) PROBABILITIES OVER THE RANGE [L,K]
C—— WHERE THE TOTAL TAIL PROBABILITY IS LESS THAN EPS/3, SUM THE
C—— PROBABILITIES IN DOUBLE PRECISION, AND SHIFT THEM TO THE
C—— BEGINNING OF VECTOR V.

DIMENSION V(*)
DOUBLE PRECISION DAL,DK,DLIMIT,DSUM,GAMLOG
DLIMIT = 1.0D@-2.@D@+DBLE(EPS)/3.000
K = INT(ALAMB)
Lo=Kehde
IF (ALAMB.EQ.9.8) THEN
PL=1.0
ELSE
DAL = DBLE(ALAMB)
DK = DBLE(K)
PL = SNGL(DEXP(DK+DLOG(DAL)-DAL-GAMLOG(REAL(K+1))))
ENDIF
PK = ALAMB*PL/REAL(L)
NK = NV/2
NL = NK+1
DSUM = 9.9
10 IF (PL.LT.PK) THEN
NK = NK+1
IF (NK.GT.NV) THEN
IFLAG = 6
RETURN
ENDIF
V(NK) = PK
DSUM = DSUM+DBLE(PK)
K = K+1
IF (DSUM.GE.DLIMIT) GO TO 20
PK = ALAMB*PK/REAL(K+1)
ELSE
NL = NL-1
V(NL) = PL
DSUM = DSUMHDBLE(PL)
L= L1
IF (DSUM.GE.DLIMIT) GO TO 20
PL = REAL(L)*PL/ALAMB
ENDIF
GO TO 10
20 INC = NL-1
DO 30 [ = NL, NK



30

Crmen
Cmerm
C—

. C—

19
20

30
40

50

V(I-INC) = V(I)
CONTINUE
NSPAN = NK—INC
RETURN
END

SUBROUTINE EDGET (NK,FC,GC,XX,YY,BFK,CDFX,POI,POJ,EPS3,IFLAG,L)

COMPUTE THE BETA C.D.F.’S BY A RECURRENCE RELATION ALONG THE EDGES
I = IMIN AND J = JMIN OF A GRID. THE CORRESPONDING COMPONENTS OF
THE T* C.D.F. ARE INCLUDED IN THE SUMMATION. TERMS WHICH MIGHT
CAUSE UNDERFLOW ARE SET TO ZERO.

DIMENSION BFK(*),POI(#),POJ(*)

DOUBLE PRECISION DARG,DEUFLO,GAMLOG

DATA DEUFLO / —69.0D0 /

FD = FC-1.0

K = MAX@(L,MING(NK, INT((GC—1.0)*XX/YY-FD)))

FK = FD+REAL(K)

CALL CDFBET (XX,FK,GC,EPS3,IFLAG,BFK(K))

IF (IFLAG.NE.@) RETURN

IF (L.EQ.1) BFK(K) = 1.8-BFK(K)

IF (NK.EQ.1) GO TO 40

DARG = DBLE(FK)*DLOG(DBLE(XX) )+DBLE(GC)*DLOG(DBLE(YY))~
»  DLOG(DBLE(FK))+GAMLOG( FK+GC)~GAMLOG { FK )—GAMLOG (GC)
IF (DARG.LT.DEUFLO) THEN

DK = 0.0
ELSE

DK = SNGL(DEXP(DARG))*(~1.0)#*L
ENDIF

IF (K.GE.NK) GO TO 2@
BFK(K+1) = BFK(K)-DK
DI = DK
KFLAG = 1
DO 18 I = K+1, NK—1
IF (KFLAG.EQ.1) THEN
DI = DI+(FD+GC+REAL(I—1))#XX/(FD+REAL(I))
IF (DK+DI.EQ.DK) THEN

KFLAG = ©
DI = 8.0
ENDIF

ENDIF

BFK(I+1) = BFK(I)-DI
CONTINUE
DI = DK
KFLAG = 1

DO 30 I = K-1, L, -1
IF (KFLAG.EQ.1) THEN
DI = DIs(FC+REAL(I))/((FD+GC+REAL(I))*XX)
IF (DK+DI.EQ.DK) THEN
KFLAG = ©
DI = 0.0
ENDIF
ENDIF
BFK(I) = BFK(I+1)+DI
CONTINUE
DO 50 I =L, NK
CDFX = CDFX+POI (1)#*P0OJ(1)*BFK(I)
CONTINUE
RETURN
END
SUB?OUTINE GRID (NI,NJ,FC,GC,BFI,BFJ,POI,POJ,XX,YY,EPS3,CDFX, IFLAG
*
COMPUTE DOUBLE SUMMATION OF COMPONENTS OF THE T" C.D.F. OVER THE
GRID I=IMIN TO IMAX AND J=JMIN TO JMAX

DIMENSION BFI(s),BFJ(*),POI(*),POJ(*)
COMPUTE BETA C.D.F. BY RECURRENCE WHEN I=IMIN, J=JMIN TO JMAX =

CALL_EDGET (NJ,GC,FC,YY,XX,BFJ,CDFX,POJ,POL,EPS3, IFLAG,1)
IF (NI.LE.1.0R.IFLAG.NE.®) RETURN :

COMPUTE BETA C.D.F. BY RECURRENCE WHEN J=JMIN, I=IMIN TO IMAX
BFI(1) = BFJ(1)

CALL EDGET (NI,FC,GC,XX,YY,BFI,CDFX,POI,POJ,EPS3, IFLAG,2)
IF (NJ.LE.1.0R.IFLAG.NE.@) RETURN



C—— COMPUTE BETA C.D.F. BY RECURRENCE WHEN I>IMIN,
c
DO 20 I = 2, NI
BFJ(1) = BFI(I)
DO 10 J = 2, NJ
BFJ(J) = XX*BFJ(J)+YY*BFJ(J—1)
CDFX = CDFX+POI(I)*P0J(J)*BFJ(J)
1@ CONTINUE
20 CONTINUE
RETURN
END

J>JIMIN



