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Let X1 and X2 be independent noncentral chi-squared random variables with

degrees of freedom v, and v, (both >0) and noncentrality parameters Al and Xz

(both »0) respectively. Then the random variable

= (X, v 1K,V (1)

is said to have the doubly noncentral F distribution, indicated by
Y ~ F"(vl,vz,ll,lz). This distribution has been used in the evaluation of the

power function of analysis of variance tests in which interaction or bias

effects occur, as in Scheffe” [11]. MNumerical examples of this—usage—aze
iven i n [2] and Tiku [13]. It has also been used in engineering

problems in the context of information theory as discussed in Price [8].

Exact formulas for the F" cumulative distribution function (c.d.f.) are given
in Tiku [12] and [2] using the beta c.d.f., in Tiku [14] using Laguerre

polynomials, and in [8] for special cases of vy and V. Approximationg are
given in .Johnson and Kotz [4] and Tiku [12,13] uging the central F c.d,f,, and

in Mudholkar, Chaubey, and Lin [5] using Edgeworth series expansions.

The author has been unable to find any published algorithms for computing
exgct values of the F" c.d.f. although computer programs have obviously been
used in generating published tables in [2,5,12,14].  The purpose of this note

is to present an_efficient algorithm for computing the F" c.d.f. tn.-a

specified gccuracy using exact S.

The algorithm uses the series representation in eq. (2.2) of [2] which,
unfortunately, contains typographical errors. With these corrected the c.d.f.
of Y can be re-yritten
N
(-]
F (x) = ] Z A;B.I(u,v 1 /2+1,v,/2+3) (2)
i=0 j=0

where A, = (A /2)7e /T(i+1), B, = (xz/z)Je IT(3+1), u = v x/(v x+v,),
and x30. The A.i and Bj are Poisson probabilities, and
Yoanl b-1
I(u,a,b) = f t (1-t) dt/B(a,b) is the c.d.f. of the beta distribution
0
(also called the incomplete beta ratio) where 0<u<l, a>0, b>0, and



1
B(a,b) = f £? 1(l—t)b lae. For computational purposes the two infinite
0

series must be truncated, thus (2) is re-expressed as

I" J"

where I', I", J', and J" are non-negative integers and R is the remainder. 1If
the beta c.d.f.'s are computed without error, it can easily be shown that
I" J"
choosing 1', I", J', and J" such that 2 Ai » 1-e/2 and z B. » 1-€/2 yields
i=711 j:Jl
R&e provided €>0. Therefore, € serves as an absolute error bound on FY(x).

For maximum computational efficiency, the number of terms in each sum is
minimized by indexing i and j over the largest of the Poisson probabilities
A; and Bj respectively. The final task is to compute the (I"-I'+1)(J"-J'+1)

beta c.d.f.'s and the double summation. An efficient procedure for doing this
is to compute only I(u,v1/2+1',v2/2+J*) and I(u,v1/2+I*,v2/2+J') directly,

indicated by the symbols "x" and "y" in figure 1. The remaining beta c.d.f's

are computed using the recurrence relations

I(x,a,b) = I(x,a,b+1) - x*(1-x)"/[bB(a,b) ], (4a)
I(x,a,b) = I(x,a+l,b) + xa(l—x)b/[aB(a,b)], and (4b)
I(x,a,b) = xI(x,a-1,b) + (1-x)I(x,a,b=1) (4c)

as found in Abramowitz and Stegun [1]. Subject to the restrictions J'<J*<J"
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Figure 1

Computation of the I(u,v1/2+i,v2/2+j)



and I'<I*<I", J* and I* are chosen to maximize the magnitudes of the rightmost
terms in (4a) and (4b) respectively. 1In applying each of these two recurrence
relations only one direct evaluation of B(a,b) is necessary, computed by

B(a,b) = elnr(a) + InT(b) - InT(a+b) where T(a) = f ta_le_tdt . Further
0
values are easily computed from the identities B(a+l,b) = aB(a,b)/(a+b) and

B(a,b+l) = bB(a,b)/(a+b).
In figure 1 the symbols "a'", '"b", and "c" indicate which of the recurrence
relations (4) is used in computing each beta c.d.f., with those indicated by

"e" being done last.

The above algorithm has been incorporated into the FORTRAN subroutine CDFDNF.
If x<0 then 0 is returned. External routines for computing the beta c.d.f.
and the double precision log of the gamma function are required. In the
current version of CDFNDF these routines are the subroutine CDFBET and the
function GAMLOG as described in Reeve [9,10]. Other routines which can be
substituted for CDFBET and GAMLOG are those in [3,6,7]. Far_all-practical

purposes.the absolute error criterion € will be met if the b d.f ine
ig.accurate to two or fthree digits beyond €.

The recursive method of computing the beta t.d.f.'s requires a little extra
computer programming and storage, but results in a tremendous savings in
computing time as Al and Az become large. This is illustrated in table 1

where, for selected parameter values, the CPU time for this method is compared
with that of the "brute force" approach in which each beta c.d.f. is directly
evaluated by a subroutine call. The computing time and storage also increase

as € becomes small, but are unaffected by v, and v,e The computations in

table 1 were done on the CDC Cyber 180/855 computer at NBS.

The current dimensidéh limits in CDFDNF allow values of both A, and Az up to

about 10,000 with € as small as ;Q:B, but these limits could easily be
increased by the user. The limiting factor in using CDFDNF is more likely to
be execution time than storage.

Steps were taken to eliminate underflow situations, minimize the effects of

roundoff error, and minimize storage requirements. Only those c.d.f. values

indicated by "x", "y", Ma", or "b" in figure 1 are actually stored. The

Poisson probabilities AI" oy AI" and BJ,, ceey Bj" are also stored.

If A2=0 then the doubly noncentral F reduces to the (singly) noncentral F, and
if X1=A2=0 it reduces to the central F. 1In either case, CDFDNF will run

almost as efficiently as routines designed for those specific cases.

Portions o, les in [2,5,1 roduced b .and agreed to within
roundaff error in each case.

A listing of CDFDNF is an appendix to this note. It is invoked by

CALL CDFDNF(X,DF1,DF2,ALAMB1,ALAMB2,EPS, IFLAG, CDFX)



where the arguments are defined in the program documentation. The returned
value of CDFX is valid only if IFLAG=0 on return. In passing € (variable name
EPS) to CDFDNF the user should realize that accuracy is limited by the number
of digits carried in a single precision variable, and that roundoff error may
affect the last one or two of these digits.

Table 1

Computing times on the CDC Cyber 180/855 for the
c.d.f. of F"(VI,VZ,AI,AZ) using both CDFDNF and

the "brute force'" method (described in the text),
for selected parameter values.

t‘:=10—6 CPU seconds No. beta
11}
vy v, A Ay % P{F'<x}  CDEDNF Fi;g;ﬁ s;g;:;
3 73 5 5 2.0 0.757918 <0.01 0.13 196
3 3 5 25 2.0 0.997561 <0.01 0.30 476
3 3 25 5 2.0 0.190910 <0.01 0.31 476
3 3 25 25 2.0 0.897835 <0.01 0.69 1,156
3 10 5 5 2.0 0.593795 <0.01 0.14 196
3 10 5 25 2.0 0.943093 £0.01 0.30 476
3 10 25 5 2.0 0.026209 <0.01 0.28 476
3 10 25 25 2.0 0.289601 <0.01 0.73 1,156
10 3 5 5 2.0 0.898330 <0.01 0.12 196
10 3 5 25 2.0 0.999879 <0.01 0.26 476
10 3 25 5 2.0 0.657879 <0.01 0.29 476
10 3 25 25 2.0 0.997703 <0.01 0.66 1,156
10 10 5 5 2.0 0.868071 <0.01 0.14 196
10 10 5 25 2.0 0.998234 <0.01 0.30 476
10 10 25 5 2.0 0.367101 <0.01 0.32 476
10 10 25 25 2.0 0.934321 <0.01 0.71 1,156
14 15 80 80 1.1 0.552328 0.03 2.55 3,969
14 15 400 400 1.1 0.582507 0.12 16.28 20,164
14 15 2000 2000 1.1 0.664981 0.59 108.10 101,124
14 15 10000 10000 1.1 0.825080 2.68 =800 505,521
1% I5—50p00 50000 1.1 0.981351 13.76 - 2,528,100

T required a doubling of current dimension limits
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*CDFDNF

SUBROUTINE CDFDNF (X,DF1,DF2,ALAMB1,ALAMB2,EPS, IFLAG,CDFX)

CDFDNF  WRITTEN BY CHARLES P. REEVE, STATISTICAL ENGINEERING

DIVISION, NATIONAL BUREAU OF STANDARDS, GAITHERSBURG,
MARYLAND 20889

FOR: COMPUTING THE CUMULATIVE DISTRIBUTION FUNCTION OF THE DOUBLY

NONCENTRAL F DISTRIBUTION TO A SPECIFIED ACCURACY (TRUNCATION
ERROR IN THE INFINITE SERIES REPRESENTATION GIVEN BY EQUATION
2.2 IN REFERENCE 1 BELOW). THE BETA C.D.F. ROUTINE IS CALLED
AT MOST TWO TIMES. FURTHER VALUES OF THE BETA C.D.F. ARE
OBTAINED FROM RECURRENCE RELATIONS GIVEN IN REFERENCE 2.
REFERENCE 3 GIVES A DETAILED DESCRIPTION OF THE ALGORITHM
HEREIN.

THIS PROGRAM MAY ALSO BE EFFICIENTLY USED TO COMPUTE THE
CUMULATIVE DISTRIBUTION FUNCTIONS OF THE SINGLY NONCENTRAL
AND CENTRAL F DISTRIBUTIONS BY SETTING THE APPROPRIATE
NONCENTRALITY PARAMETERS EQUAL TO ZERO.

CHECKS ARE MADE TO ASSURE THAT ALL PASSED PARAMETERS ARE
WITHIN VALID RANGES AS GIVEN BELOW. NO UPPER LIMIT IS SET
FOR THE NONCENTRALITY PARAMETERS, BUT VALUES UP TO ABOUT
19,000 CAN BE HANDLED WITH THE CURRENT DIMENSION LIMITS. THE
COMPUTED VALUE CDFX IS VALID ONLY IF IFLAG=0 ON RETURN.

NOTE: IN EQUATION 2.2 OF REFERENCE 1 THE AUTHOR HAS MISTAKENLY

REVERSED THE ARGUMENTS OF THE INCOMPLETE BETA FUNCTION.
THEY SHOULD READ [(M/2)+R,(N/2+S)] WHERE M AND N ARE THE
DEGREES OF FREEDOM ASSOCIATED WITH THE NUMERATOR AND
DENOMINATOR RESPECTIVELY OF THE F STATISTIC. TO FURTHER
CONFUSE THE ISSUE, THE AUTHOR HAS REVERSED THE USAGE OF
M AND N IN SECTION 1 OF THE PAPER.

NOTE: IN SUBROUTINE EDGEF THE DOUBLE PRECISION CONSTANT DEUFLO IS

THE EXPONENTIAL UNDERFLOW LIMIT WHOSE CURRENT VALUE IS SET
AT -69D@. ON A COMPUTER WHERE DEXP(—69D@) CAUSES UNDERFLOW
THIS LIMIT SHOULD BE CHANGED.

SUBPROGRAMS CALLED: CDFBET (BETA C.D.F.)

GAMLOG (DOUBLE PRECISION LOG OF GAMMA FUNCTION)
POISSF, EDGEF (ATTACHED)

CURRENT VERSION COMPLETED SEPTEMBER 29, 1988

REFERENCES:

1.

BULGREN, W.G., 'ON REPRESENTATIONS OF THE DOUBLY NONCENTRAL F
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MARCH 1971, VOLUME 68, NO. 333, PP. 184-186.
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DEFINITION OF PASSED PARAMETERS:

* X = VALUE (>=@) AT WHICH THE C.D.F. IS TO BE COMPUTED (REAL)
» DF1 = DEGREES OF FREEDOM (>@) IN THE NUMERATOR (REAL)

» DF2 = DEGREES OF FREEDOM (>@) IN THE DENOMINATOR (REAL)

+ ALAMB1 = THE NONCENTRALITY PARAMETER (>=0) FOR THE NUMERATOR

(REAL) [EQUAL TO ZERO FOR THE CENTRAL F DISTRIBUTION]

« ALAMB2 = THE NONCENTRALITY PARAMETER (>=0) FOR THE DENOMINATOR

(REAL) [EQUAL TO ZERO FOR THE SINGLY NONCENTRAL F AND
CENTRAL F DISTRIBUTIONS]

+« EPS = THE DESIRED ABSOLUTE ACCURACY OF THE C.D.F. (REAL)
[1 >= EPS >= 10x%(~10)]

IFLAG = ERROR INDICATOR ON OUTPUT (INTEGER) INTERPRETATION:



c @ —> NO ERRORS DETECTED
c 1,2 —> ERROR FLAGS FROM SUBROUTINE CDFBET
c 3 —> EITHER ALAMB1 OR ALAMB2 IS < @
¢ 4 —> EITHER DF1 OR DF2 IS <= @
¢ 5 —> EPS IS OUTSIDE THE RANGE [1@#x(—1@),1]
c 6 —> VECTOR DIMENSIONS ARE TOO SMALL — INCREASE NX
p :
c CDFX = THE DOUBLY NONCENTRAL F C.D.F. EVALUATED AT X (REAL)
c
¢« INDICATES PARAMETERS REQUIRING INPUT VALUES
c
c
PARAMETER (NX=1000)
DIMENSION BFI(NX),BFJ(NX),POI(NX),POJ(NX)
COFX = 0.0
c
C—— CHECK VALIDITY OF ARGUMENTS
c
IF (ALAMB1.LT.9.0.0R.ALAMB2.1LT7.0.0) THEN
IFLAG = 3
RETURN
ENDIF
IF (DF1.LE.2.0.0R.DF2.LE.@.0) THEN
IFLAG = 4
RETURN
ENDIF
IF (EPS.GT.1.0.0R.EPS.LT.1.0E~10) THEN
IFLAG = 5
RETURN
ENDIF
IFLAG = @
c
C—— SET ERROR CRITERION FOR THE BETA C.D.F. (PECULIAR TO CDFBET)
c
EPS3 = @.001+EPS
c
FA = ©.5+ALAMB1
GA = 9.5xALAMB2
FB = 0.5+DF1
GB = 0.5%DF2
YY = DF2/(DF2+DF1+X)
IF (YY.GE.1.8) RETURN
XX = 1.0-YY
IF (XX.GE.1.8) THEN
COFX = 1.0
RETURN
ENDIF
c
C—— COMPUTE POISSON PROBABILITIES IN VECTORS POI AND POJ
c
CALL POISSF (FA,EPS,IMIN,NI,POI,NX,IFLAG)
IF (IFLAG.NE.®) RETURN
FC = FB+REAL(IMIN)
CALL POISSF (GA,EPS,JMIN,NJ,POJ,NX, IFLAG)
IF (IFLAG.NE.®) RETURN
GC = GB+REAL(JMIN)
c
C— COMPUTE BETA C.D.F. BY RECURRENCE WHEN I=IMIN AND J=JMIN TD :JMAX
¢
CALL EDGEF (NJ,GC,FC,YY,XX,BFJ,CDFX,POJ,POI,EPS3, IFLAG.,1)
IF (NI.LE.1.0R.IFLAG.NE.®) RETURN
c
C—— COMPUTE BETA C.D.F. BY RECURRENCE WHEN J=JMIN AND I=IMIN TO:AMAX
c
BFI(1) = BFJ(1)
CALL EDGEF (NI,FC,GC,XX,YY,BFI,CDFX,POI,POJ,EPS3, IFEAG,2)
IF (NJ.LE.1.0R.IFLAG.NE.®) RETURN
c
C—— COMPUTE BETA C.D.F. BY RECURRENCE WHEN I>IMIN AND J>IWMIN
c

DO 20 1 = 2, NI
BFJ(1) = BFI(I)
DO 10 J = 2, NJ
BFJ(J) = XX#BFJ(J)+YY*BFJ(J=1)
CDFX = CDFX+POI{1)*POJ(J)*BFdJ{J)

10 CONTINUE
20 CONTINUE

RETURN
END



C o
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C—
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SUBROUTINE POISSF (ALAMB,EPS.L,NSPAN,V,NV,lFLAG)

COMPUTE THE POISSON(ALAMB) PROBABILITIES OVER THE RANGE [L.K]
WHERE THE TOTAL TAIL PROBABILITY IS LESS THAN EPS/2, SUM THE

PROBABILITIES IN DOUBLE PRECISION, AND SHIFT THEM TO THE
BEGINNING OF VECTOR V.

DIMENSION V(=)
DOUBLE PRECISION DAL ,DK,DLIMIT,DSUM,GAMLOG
DLIMIT = 1.0D9-2.5D9+DBLE(EPS)
K = INT(ALAMB)
L o= K+1
IF (ALAMB.EQ.2.8) THEN
PL = 1.0
ELSE
DAL = DBLE(ALAMB)
DK = DBLE(K)
PL = SNGL(DEXP(DK:DLOG(DAL)-DAL—GAMLOG(REAL(K+1))))
ENDIF
PK = ALAMBsPL/REAL(L)
NK = NV/2
NL = NK+1
DSUM = 0.9

1@ IF (PL.LT.PK) THEN

NK = NK+1
1F (NK.GT.NV) THEN
IFLAG = 6
RETURN
ENDIF
V(NK) = PK
DSUM = DSUM+DBLE(PK)
K = K+1
IF (DSUM.GE.DLIMIT) GO TO 2@
PK = ALAMBsPK/REAL(K+1)
ELSE
NL = NL-1
V(NL) = PL
DSUM = DSUM+DBLE(PL)
L= L-1
IF (DSUM.GE.DLIMIT) GO TO 20
PL = REAL(L)sPL/ALAMB
ENDIF
GO TO 10

2@ INC = NL-1

DO 3@ I = NL, NK
v(I-INC) = V(I)

30 CONTINUE

G
Cormm
Crmnm
G

NSPAN = NK-INC
RETURN
END

SUBROUTINE EDGEF (NK.FC.GC.XX.YY.BFK.CDFX,POI.POJ,EPSB.IFLAG,L)

COMPUTE THE BETA C.D.F.’S BY A RECURRENCE RELATION ALONG THE EDGES
= IMIN AND J = JMIN OF A GRID. THE CORRESPONDING COMPONENTS OF

1

THE F" C.D.F. ARE INCLUDED IN THE SUMMATION. TERMS WHICH MIGHT

CAUSE UNDERFLOW ARE SET TO ZERO.

DIMENSION BFK(=),POI(s).POJ(*)

DOUBLE PRECISION DARG,DEUFLO,GAMLOG

DATA DEUFLO / —63.0D@ / ‘

FD = FC-1.0

K = MAXG(L.MINO(NK.INT((GC—1.0)-XX/YY—FD)))
FK = FD+REAL(K)

CALL CDFBET (XX.FK.GC,EPS3.IFLAG.BFK(K))

IF (IFLAG.NE.®) RETURN

IF (L.EQ.1) BFK(K) = 1.0-BFK(K)

IF (NK.EQ.1) GO TO 40

DARG = DBLE(FK)-DLOG(DBLE(XX))+DBLE(GC)~DLOG(DBLE(YY))—
» DLOG(DBLE(FK))+GAMLOG(FK+GC)—GAMLOG(FK)-GAMLOG(GC)
1F (DARG.LT.DEUFLO) THEN

DK = 2.0
ELSE
DK = SNGL(DEXP(DARG))s*(-1.@)=sL
ENDIF

IF (K.GE.NK) GO TO 20
BFK(K+1) = BFK(K)-DK
DI = DK

KFLAG = 1

DO 1@ 1 = K+1, NK-—1



IF (KFLAG.EQ.1) THEN
DI = DI« (FD4+GCHREAL(I-1))+XX/(FO+REAL(I))
IF (DK+4DI.EQ.DK) THEN
KFLAG = @
DI = 0.0
ENDIF
ENDIF
BFK(I+1) = BFK(I)-DI
1@ CONTINUE
20 DI = DK
KFLAG = 1
DO 30 I = K-1, L, —1
IF (KFLAG.EQ.1) THEN
DI = DIx(FC+REAL(1))/((FD+GC+REAL(I))*XX)
IF (DK+DI.EQ.DK) THEN
KFLAG = ©
DI = 0.0
ENDIF
ENDIF
BFK(1)
30 CONTINUE
49 DO 50 1
CDFX
50 CONTINUE
RETURN
END

BFK(I+1)4DI

L, NK
COFX+POI (1)*POJ (1) *BFK(I)



