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The cumulative distribution function (c.d.f.) of the gamma distribution (also
known as the incomplete gamma ratio) is :
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where T(a) = | t“—le'tdt. [The Teft side of (1) is not standard statistical
0

notation but is easier to work with in the derivations which follow]. The
upper tail area of the distribution is

Q(x,a) = fw ta'le'tdt/r(a) (x>0;0>0).
X

1 - P(x,a)

These functions are useful in computing the c.d.f.'s of the xz, noncentral xz,
and Poisson distributions. For example,

Prix?(v)<xt = P(x/2,v/2) (x>0;v>0) and

Pr{Po(1)<x}

Q(x,1+x) (x=0,1,2,...31>0).

Two recent computer algorithms for computing P(x,a) are those of Bhattacharjee
[2] and Lau [55. The former uses a series expansion or continued fraction
depending on the values of x and «a. The latter uses a single series expansion
for all x and «. In both cases the criterion for truncating the series is
that the current term is less than a specified 1imit. As will be shown, this
does not guarantee that the result will be accurate to that limit. Versions

of these algorithms have been incorporated into software packages available at
NBS [4,6,7].

In this note a modification of the Lau algorithm is presented which
efficiently computes P(x,a) to a user-specified absolute accuracy. The
algorithm makes use of the recurrence relation (see equation 6.5.21 of
Abramowitz and Stegun [1])

P(x,a) = x*e™*/r(a+1) + P(x,atl) (2)



which relates the lower tail areas of the r(a) and r{e+l) distributions. If
(2) is applied n times then
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P(x,a) = § x* 1"t X/r(ati) + P(x,a+n). (3)
i=1 _
Given X, o, and an absolute accuracy limit >0, there will be a non-negative

integer n such that P(x,a+n)<e (the proof is left to the reader). The
summation of n terms will then be an acceptable approximation to P(x,a).

An upper bound on P(x,a+n) is readily obtained by more applications of (2),
hence
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when x<a+n+l. When n becomes large enough so that the right hand side (RHS)
of (4) is <e, the series in (3) is truncated.

The above algorithm produces a sequence of gamma distributions whose lower

tail areas steadily decrease when x is fixed, thus it can be called the "lower
tajl" method. When x<a relatively few terms may be required for convergence,
but when x>>a an exceedingly large number of terms may be required. The Lau
algorithm uses the above procedure for all x except that truncation occurs

when x“+"e'x/r(a+n+1) < €. This value is considerably smaller than the RHS of
(4) when x is near (but less than) a+n+l.

The next question to consider is the feasibility of applying the reverse
procedure when x>a, that is, producing a sequence of gamma distributions whose
upper tail areas steadily decrease when x is fixed. This algorithm, called
the "upper tail" method, makes use of the recurrence relation

Qx,a) = x*te™*/r(a) + Q(x,a-1) (5)

which is easily derived from (2). If (5) is applied m times then
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provided that «-m>0. This restriction Timits the application of this
algorithm to cases where Q(x,a-M)<e where M is an integer such that 0<a-M<1.
Olver [8] gives the bound

a-M,-X

Q(x,a-m) < r(a—m)[i-max(a-m-l,o)] T 7

thus )
Qx,a-M) < XXM L%/ (qum). 8)

If the RHS of (8) is <e then the "upper tail" method can be used. Terms are
summed as in (6) until the RHS of (7) is <e for some m<M. This method, when
it can be used, is considerably faster than the "lower tail" method when > >a.
To illustrate the behavior of the two methods, the c.d.f. was computed by
both, when possible, for various combinations of x, a, and €. The results are
summarized in table 1. Note that when x=a the "upper tail" method converges a
1ittle faster.

These two algorithms have been implemented in the FORTRAN subroutine CDFGAM.
If x<0 then 0 is returned. If x>« and convergence is determined to be
possible, the "upper tail" method is used and 1-Q(x,a) is returned. Otherwise
the “lower tail" method is used and P(x,a) is returned. An exception occurs
when x is in the extreme tails of the distribution. In order to prevent
exponential underflow when computing the first term in (3) or (6), the
exponent is tested to see if it is less than a pre-set underflow limit. If it
is then P(x,a) is set to 0 or 1 as appropriate and neither method is used. An
external routine, such as Reeve[9], must be provided for computing the log of
the gamma function in double precision.

A Tisting of CDFGAM is an appendix to this note. It is invoked by
CALL CDFGAM(X,ALPHA,EPS,IFLAG,CDFX)

where the variable names are defined in the program documentation. The
returned value of CDFX is valid only if IFLAG=0 on return. In passing e
(variable name EPS) to CDFGAM the user should realize that accuracy is limited
by the number of digits carried in a single precision variable, and that
roundoff error may affect the last one or two of these digits.

For further discussion of series expansions of the incomplete gamma function
see Bouver and Bargmann [3].



Jable 1

Comparison of the number of terms required for convergence
of the gamma c.d.f. by the "lTower tail" and "upper tail"
methods [n and m respectively as in (3) and (6)%. A"t
indicates that neither method was used because x was in the
extreme tails of the distribution, and a "*" indicates that
the "upper tail" method does not produce convergence.

a =1 o =3 a =10 a = 30 a = 50

X n m n m n m n m n m

0.5 5 * 3 * 0 * - - - -

1.0 6 * 4 * 0 * - - - -

2.0 9 * 7 * 0 * 0 * - -

3.0 11 * 9 * 2 * 0 * - -

5.0 15 * 13 * 6 * 0 * - -

-y 7.0 19 * 17 * 10 * 0 * 0 *
e = 10 10.0 24 0O 22 2 15 9 0 29 0 49
15.0 31 0 29 0 22 7 2 27 0 47

20.0 39 0 37 0 30 4 10 24 0 44

30.0 52 0 50 0 43 0 23 18 3 38

40.0 66 O 64 0 57 0 3711 17 31

50.0 78 0 76 0O 69 0 49 4 29 24

60.0 91 O 89 0 82 0 62 0 42 17

80.0 - - - - 106 O 86 0 66 1
100.0 - - - - - - 110 O 90 0
a =1 a =3 a =10 a = 30 a = 50

n m n m n m n m nm

0.5 8 * 6 * 0 * - - - -

1.0 11 * 9 * 2 * - - - -

2.0 14 * 12 * 5 * 0 * —

3.0 17 * 15 * 8 * 0 * - -

5.0 22 * 20 * 13 * 0 * - -

-8 7.0 26 * 24 * 17 * 0 * 0 *
e =10 10.0 32 * 30 * 23 * 3 * 0 =*
15.0 41 =* 39 = 32 * 12 * 0 *

20.0 50 0 48 2 41 9 21 29 1 49

30.0 65 0 63 0 5 5 36 25 16 45

40.0 80 O 78 0 71 0 51 20 31 40

50.0 94 0 92 0 85 0 65 14 45 34

60.0 108 O 106 O 99 0 79 8 59 28

80.0 - - - - 126 0 106 0O 86 15
100.0 - - - - - - 132 0 112 1
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SUBROUTINE CDFGAM (X,ALPHA,EPS,IFLAG,CDFX)

CDFGAM WRITTEN BY CHARLES P. REEVE, STATISTICAL “ENGINEERING
DIVISION, NATIONAL BUREAU OF STANDARDS, GAITHERSBURG,
MD 20899

FOR: COMPUTING THE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA
DISTRIBUTION (ALSO KNOWN AS THE INCOMPLETE GAMMA RATIO) TO A
SPECIFIED ACCURACY (TRUNCATION ERROR IN THE INFINITE SERIES).
THE ALGORITHM, DESCRIBED IN REFERENCE 2, IS A MODIFICATION OF
THE ALGORITHM OF REFERENCE 1. THREE FEATURES HAVE BEEN ADDED:

1) A PRECISE METHOD OF MEETING THE TRUNCATION ACCURACY,

2) COMPUTATION OF THE UPPER TAIL AREA BY DECREMENTING ALPHA
WHEN THAT METHOD IS MORE EFFICIENT, AND

3) A CONSTANT UFLO >= THE UNDERFLOW LIMIT ON THE COMPUTER.

SUBPROGRAMS CALLED: GAMLOG (LOG OF GAMMA FUNCTION)
CURRENT VERSION COMPLETED OCTOBER 29, 1986

REFERENCES:

1) LAU, CHI-LEUNG, ‘A SIMPLE SERIES FOR THE INCOMPLETE GAMMA
INTEGRAL', ALGORITHM AS 147, APPLIED STATISTICS, VOL. 29,
NO. 1, 1980, PP. 113-114.

2) REEVE, CHARLES P., 'AN ALGORITHM FOR COMPUTING THE GAMMA C.D.F.
TO A SPECIFIED ACCURACY’, STATISTICAL ENGINEERING DIVISION
NOTE 86-2, OCTOBER 1986. '
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DEFINITION OF PASSED PARAMETERS:
* X = VALUE AT WHICH THE C.D.F IS TO BE COMPUTED (REAL)
* ALPHA = PARAMETER OF THE GAMMA FUNCTION (>0) (REAL)
* EPS = THE DESIRED ABSOLUTE ACCURACY OF THE C.D.F (->0) (REAL)
IFLAG = ERROR INDICATOR ON OUTPUT (INTEGER) INTERPRETATION:
0 -»> NO ERRORS DETECTED
1 -»> EITHER ALPHA OR EPS IS «= UFLO
2 -> NUMBER OF TERMS EVALUATED IN THE INFINITE SERIES
EXCEEDS IMAX.
CDFX = THE C.D.F. EVALUATED AT X (REAL)

* INDICATES PARAMETERS REQUIRING INPUT VALUES

LOGICAL LL
DOUBLE PRECISION DX,GAMLOG



DATA IMAX,UFLO / 5000,1.0E-100 /

CDFX = 0.0
Cc
C--- CHECK FOR VALIDITY OF ARGUMENTS ALPHA AND EPS
C

IF (ALPHA.LE.UFLO.OR.EPS.LE.UFLO) THEN

IFLAG = 1
RETURN
ENDIF
IFLAG = O
C .
C—-—- CHECK FOR SPECIAL CASE OF X
C
IF (X.LE.0.0) RETURN
C

C-—- EVALUATE THE GAMMA P.D.F. AND CHECK FOR UNDERFLOW
C
DX = DBLE(X)
PDFL = SNGL(DBLE(ALPHA-1.0)*DLOG(DX)-DX-GAMLOG (ALPHA))
IF (PDFL.LT.ALOG(UFLO)) THEN
IF (X.GE.ALPHA) CDFX = 1.0

ELSE
P = ALPHA
U = EXP(PDFL)

C
C--- DETERMINE WHETHER TO INCREMENT OR DECREMENT ALPHA (A.K.A. P)
C .

LL = .TRUE.
IF (X.GE.P) THEN
K = INT(P)

IF (P.LE.REAL(K)) K = K-1
ETA = P-REAL(K)

BL = SNGL(DBLE(ETA—I.O)*DLOG(DX)—DX—GAMLOG(ETA))
LL = BL.GT.ALOG(EPS)
ENDIF
EPSX=EPS/X
IF (LL) THEN
C
C-~—- INCREMENT P
C
DO 10 I = 0, IMAX
IF (U.LE.EPSX*(P-X)) RETURN
U = X*U/P
CDFX = CDFX+U
P = P+1.0
10 CONTINUE
IFLAG = 2
ELSE
C
C~—- DECREMENT P
C

DO 20 Jd =1, K
P =P-1.0



20
30

IF (U.LE.EPSX*(X-P)) GO TO 30
CDFX = CDFX+U

U = P*U/X
CONTINUE -
CDFX = 1.0-CDFX
ENDIF
ENDIF
RETURN

END



