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1  Division Overview 
 
 
Nell Sedransk, Chief 
Statistical Engineering Division, ITL 
 
The Statistical Engineering Division (SED) of the Information Technology 
Laboratory (ITL) of the National Institute of Standards and Technology (NIST) 
conducts fundamental and applied statistical research on problems in 
metrology and collaborates on research in other Divisions of ITL, in other 
Laboratories of NIST and with NIST’s industrial partners.   
 
The research and collaboration programs of the Statistical Engineering 
Division are driven by the needs of high priority NIST research projects, by the 
requirements for a statistically sound foundation for metrology and 
measurement services that NIST provides to its customers, and by scientists’ 
and engineers’ needs for rigorously developed statistical tools for metrology. 
 
This report provides summaries of significant projects selected to indicate the 
spectrum of SED contributions to NIST and to statistical metrology in 2004.  
These presentations of multidisciplinary collaborations here are just that:  brief 
précis of intensive interactions with scientists and engineers.  References to 
research publications are provided as sources for expanded descriptions and 
technical details of projects that are often larger and more complex than can be 
captured here.  Also, descriptions of other activities of SED that cannot be 
included here can be found on the SED home page at:  
http://www.itl.nist.gov/div898/.  The e-Handbook of Statistical Methods can be 
found directly at:   http://www.nist.gov/stat.handbook/. 
 
The role of SED is integrated into research throughout NIST; SED staff 
actively collaborate with more than 90% of the scientific Divisions at NIST, on 
the Gaithersburg and Boulder campuses.  NIST prizes excellence in research; 
consequently high priority, high impact scientific research almost invariably 
calls for sophisticated expertise in multiple disciplines, including statistics.  
The most common role for SED staff is as part of an interdisciplinary research 
team, contributing to the definition of research objectives, the formulation of 
statistical strategies and the development of new statistical methodology and 
statistical computation for process characterization and the analysis of 
experimental data.  The combined statistical expertise in SED is necessarily 
extremely broad, encompassing many sub disciplines of statistics (including 
experimental design, generalized linear models, stochastic models, Bayesian 
inference, time series analysis, reliability analysis, statistical signal processing, 
image analysis, spatial statistics, quality control, exploratory data analysis, 
data mining, statistical computation and graphics, etc.).  However, the SED 
objective is always to integrate statistics fully into the research plan to 
strengthen the fundamental research design and to implement the most 
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powerful statistical tools for drawing inferences and for estimating 
uncertainties.  Success in these collaborations is largely due to the deep 
involvement of SED staff with the science itself via their scientist colleagues.  
 
For the world of internationally metrology, SED focuses on the development of 
statistical theory, methodology and practical tools for metrologists to use 
worldwide.  The prominence of statistical metrology continues to grow with 
increased attention to international intercomparisons and international 
acceptance of standards among national metrology laboratories.  Whether the 
requisite technical expertise lies in probabilistic modeling, in design of 
experiments, in theory and methodology of inference, in computationally 
intensive statistical tools or in Bayesian inference and modeling, part of the 
mission of SED is to expand the statistical methodology available to NIST 
scientists, to US industry and to metrologists worldwide.  As rapidly advancing 
technology leads to new kinds of measurement instrumentation and 
measurement processes, implementation of these depends upon advances in 
statistical metrology.    This research also contributes in a fundamental way to 
the discipline of statistics. 
  
SED supports the NIST mission through collaboration on projects that reflect 
the highest NIST priorities.  The vignettes included here are organized 
according to the principal NIST focus areas and initiatives and the special 
focus areas for SED.  In addition to primary research roles, CORE activities of 
SED also support the certification for NIST Standard Reference Materials and 
calibration services and provide statistical metrology education to NIST 
scientists and engineers.  Each year, undergraduate and graduate students join 
SED as part of a highly successful program of statistical research opportunities 
in metrology and statistics. 
  
The professional staff comprises three Groups of mathematical statisticians 
with graduate degrees, as listed in Section 2.  Two of the Groups are located in 
Gaithersburg, Maryland, and the third is in Boulder, Colorado.  Also integral to 
SED activities are Visiting Faculty appointees from several universities, Guest 
Researchers and Students who join SED to participate in research experiences. 
 
Thank you for reading.  Your comments are most welcome. 
 
Nell Sedransk, Ph.D. 
Chief, Statistical Engineering Division 
820 W. Diamond Avenue, 820/353 
Gaithersburg, Maryland  20899-8980 
 
Email:  nell.sedransk@nist.gov 
Phone:  (301)  975-2839 
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2   Staff 
 
Nell Sedransk, Ph.D. Division Chief 
 
Metrology Statistics and Computation Group 
Nien-Fan Zhang, Ph.D. Group Manager      
A. Ivelisse Avilés, Ph.D.                    
Will Guthrie, M.S.                 
Charles Hagwood, Ph.D.     
Alan Heckert, M.S.        
Walter Liggett, Ph.D.             
John Lu, Ph.D.          
Juan Soto, M.S.                    
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Jolene Splett, M.S.                                      
Sarah Streett, Ph.D. 
Dom Vecchia, Ph.D. 
 
Visiting Faculty and Guest Researchers 
Duane Boes, Ph.D. Colorado State University 
Abderahman Cheniour, ISTIL Engineer, NIST Guest Researcher 
M. Carroll Croarkin, M.S. NIST Guest Researcher 
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Adriana Horníková, Ph. D. NIST Guest Researcher 
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Administrative Staff 
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3  Fundamental Statistical Metrology  

 
 
Rapid advances in measurement science, technology and metrology 
continually present new challenges to develop appropriate statistical 
methodology.  Taking a place side by side with scientific experimentation in 
science and metrology laboratories is computational experimentation or 
virtual measurement.  Whether large scale simulations or multi-dimensional 
interpolation/extrapolation from extensive data bases, these synthetic or 
predictive measurements require extended formulations of uncertainty and 
new statistical tools. 
 
Simultaneously, the external driver of international commerce requirements 
through the multi-nation Mutual Recognition Arrangement gives urgency to 
rigorous statistical methods for metrology, especially uncertainty analysis, 
for international intercomparisons on which to base mutual international 
recognition of National Metrology Laboratories’ measurement capabilities. 
 
Research in Fundamental Statistical Metrology focuses on providing both a 
unified rigorous framework and the statistical tools for implementation.  
Currently these efforts are concentrated on Bayesian metrology and on 
analysis of intercomparisons and methods for linking several 
intercomparisons.  A major initiative in the development of a comprehensive 
statistical approach to computational experimentation for measurement 
science and metrology is just beginning.  As always, the context for 
development of statistical methodology is the collaborative research at NIST: 
the specific science and technology developments already underway and the 
vision for metrology in the future.    
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3.1  Estimating Common Vector Parameters in Interlaboratory 
Studies 
  
Andrew L. Rukhin  
Statistical Engineering Division, ITL 
 
 

 
 
 
Figure 1.  Confidence ellipsoid for the diffusivity and thermal heat in the thermal diffusivity 
example, 2 28q p= , = ,  and [0084 0277 0277 0 914]DLY = . ,− . ;− . , . . 
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Statistical modeling and analysis of interlaboratory comparisons pose several 

fundamental questions about determination of the consensus value and its 
associated uncertainty. An appropriate choice of statistical model can be difficult, 
especially when measurements are made across a range of values of a physical 
characteristic, i.e., the reference value is a curve or a multivariate vector.  
 

Data sets consisting of samples of curves occur increasingly often in applications, 

especially in interlaboratory studies known as Key Comparisons in which the key 
comparison reference value (KCRV) is to be determined. The sample curves, being 
independent realizations of an underlying stochastic process, present common features that a 
researcher wants to investigate. In many applications, these features have irregular shapes 
that cannot be adequately captured by traditional statistical models. We derive statistical 
procedures for vector KCRV evaluation (a discretized version of a possibly irregular 
underlying curve) along with estimates of the uncertainty of this value by using a model 
taken from meta-analysis methodology under the assumption of Gaussian distributions and 
equivalent qualification of all participating laboratories. A class of matrix-weighted vector 
means for the KCRV and a method of assessing the uncertainty of the resulting KCRV 
estimates are obtained. In particular, we analyzed the estimation problem of the covariance 
matrix of the KCRV, approximate confidence ellipsoids are constructed for these estimators.  
 
One of the motivating examples for this study was the Key Comparisons of accelerometers 
(CCAUV.V-K1, von Martens et al., 2002) that was organized to compare measurements of 
sinusoidal linear accelerometers over the range of frequencies from 40Hz to 5kHz. (Each 
accelerometer measured charge sensitivity at the specified frequencies and at different 
acceleration amplitudes.) Two types of accelerometers (single-ended design and back-to-back) 
were employed at each of twelve NMIs (including NIST), with the Physikalish-Technische 
Bundesanstalt, Germany serving as the coordinating laboratory. Each participating NMI 
reported its own laboratory means and the within lab sample covariance matrices (Type A 
uncertainties). The KCRV for charge sensitivity as a function of frequency is determined by 
our method. In the original study the KCRV was found separately for each type of 
accelerometer and for each specified frequency.  
 
Another example is related to the study of Pyroceram 9606, a glass ceramic material 
especially suited for high temperature applications. This material is being used for 
performance evaluation of instruments measuring thermal properties such as thermal 
conductivity, thermal diffusivity, and specific heat (heat capacity). All these characteristics 
are temperature dependent, so the reference value must be a function of temperature. 
Twenty-eight thermal conductivity experiments in different countries have been performed 
on this material, and a consensus value was needed. Indeed, the data from different 
laboratories were of widely differing quality.  We have used unpublished data on diffusivity 
and thermal heat provided by R. Zarr (NIST).  
 
In accordance with the goals discussed, we formulated the following mathematical model in 
the situation where multiple (correlated) q -dimensional measurements are made by each of 

p  laboratories.  In our model, the i -th laboratory repeats its vector measurements in  times, 

and the vector data { }ijX  for 1i … p= , ,  and 1 ij … n= , ,  follow a one-way random-effects 

MANOVA model, which may be both unbalanced and heteroscedastic, i.e.,  
 
 ij i ijX θ ε= + + ,l  
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with mutually independent ~ (0 )i qN A,l  and ~ (0 )iij qN Bε , ,  1 ij … n= , , . The vector θ  

plays the role of the common mean or the KCRV, il  is the between -laboratories effect, and 

the ε ’s are the measurement errors. The unknown q q×  matrix A  may have rank smaller 

than q  and θ  represents an unknown q -dimensional structural parameter common to all 

laboratories. The covariance matrices iB  and A  are the nuisance parameters. The goal is to 

estimate the structural parametric vector θ , and to provide a standard error for this 
estimate.  
 
The usual estimators of the laboratory means and of their covariance matrices are 

ii ij iX X nx= = /∑ , and 
1
( )( ) [( 1) ]in T

i ij i ij i i ij
S X X X X n n

=
= − − / −∑  with i iX S, ,  1i … p= , , , 

being sufficient statistics. Reduction by sufficiency to the sample means iX  and sample 

covariance matrices iS  makes this problem more specific.  

 
The maximum likelihood estimator of θ  has the form,  
 

 
1

ˆ ˆ
p

i i
i

Xθ ω
=

= ,∑  

 
where the matrix weights ˆ iω  are found as maximizers of the likelihood function. 

Unfortunately, the likelihood can have many local extrems, and iterative algorithms may 

converge to one of them. Also,  for moderate p the estimator of the variance of θ̂  obtained 
from the inverse of the Fisher information as well as statistics of the form, 

1
1( )ij

S A
− −

 
  

+ ,∑  underestimate the true variance of θ̂  even when 1q = .  

 
For this reason, alternative, simpler procedures are desired. It makes sense to employ the 
available statistics iS  to approximate the within-trials covariance matrices. Thus, we restrict 

the class of estimators to those with matrix weights of the form 
  

 1( ) ( )i i iW W Y S Y −= = + , 
 

for some non-negative definite matrix Y  so that an estimator X%  of θ  from this class has the 
following representation  
 

 
1 1

p p

Y i i i i
i i

X W W X XX ω−

= =

= = = ,∑ ∑%%  

 

with ( )1
( )

p

ii
W W Y

−
−

=
= ∑ , being a generalized inverse of 

1

p
ii

W
=∑ .  Estimators of this form 

include the analogue of one of the traditional estimators of the common vector mean 
suggested by Graybill and Deal in the case 1q = ,  
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 1 1
0

1 1

p p

i i i
i i

S S XX
− 

 − −
 
 
 = = 

= ,∑ ∑%  

 
and also the sample mean  

 
1

1 p

i
i

XX p∞
=

= .∑%  

 
We suggest two different methods of choosing the matrix Y  by extending the procedure 
suggested by DerSimonian and Laird (1986) when 1q =  and the algorithm suggested by 

Mandel and Paule (1970). We demonstrate the relationship of these estimators to the 
restricted maximum likelihood estimator and to the maximum likelihood estimator. An 
estimator of the covariance matrix of these statistics similar to the one suggested in a more 
general setting of linear models by Horn, Horn and Duncan (1975) is also put forward.  
 
The results of a Monte Carlo simulation study confirmed a good approximation of the pivotal 
ratio by an F-distribution. To illustrate the techniques, we implemented them in the 
mentioned accelerometers key comparisons study (CCAUV.V-K1) and in interlaboratory 
study of thermal diffusivity and conductivity. As in the simulation study, the Mandel-Paule 
procedure and the DerSimonian-Laird method both gave  the same answer, which practically 
coincides with the PTB solution given by von Martens et al. (2002). The figure shows the 
confidence ellipsoid for the diffusivity and thermal heat in the thermal diffusivity study.  
 
 

The suggested matrix-weighted vector means are useful for the vector KCRV estimation. The 

method of assessing the uncertainty of these estimates provides joint confidence ellipsoids for 
the parameters involved.  
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3.2  Linear Statistical Models with Type B Uncertainty: 
A Bayesian View of Annex H.5 of the Guide to the Expression of 
Uncertainty in Measurement  
 
Blaza Toman  
Statistical Engineering Division, ITL 
 
 

Annex H.5 of the Guide to the Expression of Uncertainty in Measurement  

presents a class of statistical models and analysis techniques that are commonly 
called the Analysis of Variance (ANOVA). These models are useful for accounting 
for the effects of factors that cause the measurand in an experiment to change 
over time or over experimental conditions. The proposed procedures assume that 
the observations are not subject to type B uncertainties. A natural question then 
is: Can these models be used in the presence of type B uncertainties? This article 
answers the question in the affirmative and provides a natural interpretation of 
the results. The example data from the Annex is used for an illustration. 
  
 

Annex H.5 of the Guide uses the following example to illustrate the use of ANOVA 

methods. 
 
Example : 
 A 10V Zener voltage standard is calibrated against a stable voltage reference over a two- 
week period. On each of J days during the period, K  independent repeated observations of 
the potential difference of the standard are made. Denote the observations by vjk.   The 
following table, reproduced from the Annex, contains the summarized data. 
 
 

Day Daily mean .jv  in V Daily std js  in µV 

1 10000.172 60 
2 10000.116 77 
3 10000.013 111 
4 10000.144 101 
5 10000.106 67 
6 10000.031 93 
7 10000.060 80 
8 10000.125 73 
9 10000.163 88 

10 10000.041 86 
Table 1. Summary of the voltage standard calibration 

data from Table H.9 of Annex H.5 of the Guide. 
 
 
The classical ANOVA model used in the Annex makes the assumption that the observations 
vjk are realizations of random variables Vjk which can be represented by the equation 
 
 jkjjk eV ++= αµ                       (1) 
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where µ is an unknown constant (measurand), the effects of day, jα  , j=1,…,J , are random 

variables, and the ejk are random variables representing the within-day variability. The jα  

are assumed to be independently normally distributed with mean 0 and standard deviation 

ασ and the ejk are independently normally distributed with mean 0 and standard deviation 

σ. Model (1) can also be written in a hierarchical representation as 
 

 
( )

( )

2 2

2 2

| , ~ ,

| , ~ , .

jk j j

j

V N

Nα α

θ σ θ σ

θ µ σ µ σ
            (2) 

 

The notation, 
2,| ασµθ j  represents conditioning. That is, the probability distribution of jθ , 

given µ  and 2
ασ , is normal with mean  µ  and variance 2

ασ . In this representation, the first 

(or top) level of the hierarchy accounts for the within-day variability and the second level 
accounts for the between days variability. The two representations differ only in notation, 
leading to an identical analysis. The test of significance for the day effect is an F-test of the 
hypothesis that 0=ασ . The test in essence compares the size of an estimate of ασ with the 

size of an estimate of σ . For the above data, the hypothesis test concludes that the day effect 
is statistically significant at the 5% level.  
 
The value of the experiment, that is an estimate of µ, is the grand mean ..v . The standard  

uncertainty (as defined in the Guide) based on this model is an estimate of  









+ 2

21
ασ

σ
KJ

. 

For the data given in the above table, the Annex produces the quantities value = 10000.097 V 
and uncertainty = 18 µV, giving 9 degrees of freedom for the uncertainty estimate. Note that 

when no day effect is assumed, the value is still ..v  but the uncertainty is now an estimate of 

JKσ  and for the above data this gives uncertainty = 13 µV with 49 degrees of freedom. 

 
The analysis based on this model does not take into account any sources of type B 
uncertainty and the Annex specifically states, that such uncertainties must be negligible or 
“must be of a type that can be taken into account at the end of the analysis”.  To be of such a 
type, the size of the uncertainties should be the same for various days. This is a strong 
restriction, which is likely to make the usual classical ANOVA analysis unsuitable for use in 
many applications.  A Bayesian approach for such cases is suitable, as it is fully capable of 
modeling the type B uncertainty. 
 
Under the Bayesian paradigm, parameters of the model such as µ  are given state-of-belief 

prior probability distributions  which are combined with the data in the form of the 
likelihood function via Bayes theorem to obtain a posterior distribution of the parameter. 
This distribution summarizes all knowledge about the parameter available after the data are 
collected, and if the parameter is a measurand, is used to obtain quantities such as the value  
(posterior mean), the standard uncertainty (the posterior standard deviation) and a 
probability interval. 
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The experiment given in the Example can be represented by the following Bayesian model, 
written in the hierarchical form, which allows for day effects as well as for type B 
uncertainty sources. Specifically, let for j=1,…,10,   k=1,…,5   
                            

 ),(~,| 22
jjjjjk NV σθσθ   

 ),(~,| 22
jjjjj N τδτδθ  

 ),(~,| 22
αα σµσµδ Nj                                  (3) 

 ( )cU ,0~ασ  

 ( )2,~ ωµ mN . 

 
The first level in this model accounts for within day variability as in the classical ANOVA, 

and is the likelihood function. In the Bayesian model we do not require that jj ∀= σσ as in 

the classical model, that is, different days can have different within day variability. This is a 
useful relaxation of assumptions permitted by the flexibility of the Bayesian paradigm.  The 
second level of the hierarchy accounts for the type B uncertainty. That is, there is 
uncertainty in the day means jθ  that is represented by a normal distribution with standard 

deviation equal to jτ , the size of the type B uncertainty. The form of this distribution is 

usually determined subjectively by the experimenter. The third level of the hierarchy 
accounts for the variability between days just as in model (2). The last two distributions 

represent the experimenter’s prior knowledge about µ  and ασ . Usually, such knowledge is 

very limited, a fact that in this model would be denoted by letting the value of c be large and 

by letting ∞→2ω . Such assumptions on the prior distributions allow the likelihood 
function to dominate, resulting in a posterior distribution that depends mostly on the data.  
 
Applying Bayes theorem results in posterior distributions of the various parameters of the 

model, namely for the µ, the ασ  and the jδ . Unfortunately, the integrals needed to apply 

Bayes theorem to this model are not of a form that is readily evaluated in a closed form. 
Numerical methods must be employed. The simplest procedure is to apply Markov Chain 
Monte Carlo (MCMC) methods using the free software WinBUGS.                                        
 
To illustrate the method, consider the data in Table 1, and assume that the values in the 
third column are the combined standard uncertainties instead of the simple standard 
deviations and further assume that type B uncertainty accounts for 40% of the combined 
standard uncertainty. Performing the Bayesian analysis yields an estimate for the value (the 
posterior mean of µ ) as 10000.097V with the standard uncertainty (posterior standard 
deviation of µ ) of 22µV.  
 
This result can be compared to the classical ANOVA result; that is, the value of 10000.097V 
with uncertainty of 18µV. A different comparison can be done by analyzing model (2) using 
Bayesian methods. That is, using model (3) with type B uncertainty set at 0. This produces a 
value of 10000.097V and uncertainty of 19µV. This shows that Bayesian ANOVA can give 
results very similar to those obtained with classical ANOVA when a noninformative prior 
distribution is used.  
 
As in classical ANOVA, it is possible here to test whether there is a difference in the daily 
mean voltages or whether the simpler model  
 



 15

 ),(~,| 22
jjjjjk NV σθσθ   

 ),(~,| 22
jjj N τµτµθ                           (4) 

 
fits well. Under the Bayesian paradigm, such a test can be performed using so-called 
posterior predictive p-values. Namely, it is possible to obtain a predictive distribution of the 

jV , that is, the probability distribution of the sample day average given the observed data, 

under model (3) and under model (4). Using the predictive distribution, it is now possible to 

compute ( )jjj vthanextrememoreisVPp = , the posterior predictive p-value, for each j. A 

small value of  pj indicates that for that particular j, the model is not likely to be true given 
the observed data. If majority of the pj are small then the model is not appropriate. 
Consider the results for the data given in Table 1. 
 

Day j Predictive 
p-value 
model (3) 

Predictive 
p-value 
model (4) 

1 0.143 0.012 
2 0.441 0.412 
3 0.219 0.031 
4 0.348 0.213 
5 0.488 0.491 
6 0.233 0.042 
7 0.294 0.116 
8 0.393 0.302 
9 0.261 0.091 
10 0.244 0.047 
Table 2. Predictive p-values 

 
It appears that if we take “small” to mean less than 0.05, then four out of the ten days 
appear to have significantly different means. This is a large enough number that model (4) 
should be judged not appropriate. Note that this is the same decision as is that made using 
the classical ANOVA F-test. The full model, i.e., model (3), appears to fit quite well. 
 
 

The One-way ANOVA model discussed in Annex H.5 of the Guide can be used in the 

presence of type B uncertainty. This requires state-of-knowledge probability distributions and 
is best done in a Bayesian framework. It is shown here that there are Bayesian procedures 
which are similar to the usual hypothesis testing in ANOVA models and that very similar 
numerical answers can be obtained. It is important to note, however, that the assumptions 
underlying the two methods and the interpretation of the results are quite different. The 
Bayesian methodology presented here can be easily extended to other linear models such as 
regression. 
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3.3  Bayesian Models for Key Comparison Analysis 
 
Blaza Toman 
Statistical Engineering Division, ITL 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Probability distributions of the individual laboratories’ measurands with the distribution of 
the KCRV.  
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Key Comparison experiments pose numerous challenges to the statistical 

analyst. Most importantly, Type B uncertainty must be included in the statistical 
model in a meaningful way that satisfies both the scientist and the statistician. 
Furthermore, the scientific objectives of the experiment must be reflected in the 
statistical summaries and these are generally required to conform to the 
definitions of the Guide to the Expression of Uncertainty in Measurement. This 
article summarizes a Bayesian approach to this analysis.  
 
 

Key Comparison experiments can be roughly divided into two categories, depending on 

whether they are designed to have a common measurand for all laboratories, or multiple 
measurands, with each laboratory having its own measurand. The objectives of the statistical 
analysis are different for the two categories. In single measurand experiments, a Key 
Comparison Reference Value (KCRV) and laboratory-to-laboratory comparisons generally 
have a straightforward physical interpretation. It is possible, however, that the measurand is 
unstable and changing between measurements. Thus the statistical model must be able to 
account for such changes. In multiple measurand experiments, the definition of a KCRV is 
not straightforward. The statistical model must pr ovide a meaningful interpretation of such 
a summary. 
 
The following two statistical models form the basis of a Bayesian Key Comparison analysis. 
 
Multiple Means Model 
A Key Comparison experiment is a multi-laboratory study. If we treat all laboratories ’ data 
totally independently from each other, that is, if we assume that there are no relationships 
between the measurands or the uncertainties of the various laboratories, we can proceed as 
follows. For i = 1,…,k, where k is the number of laboratories, we have 
  
 

 ),(~,| 22
iiiii NY σθσθ   

 ),(~,| 22
iiiii N τµτµθ              (1) 

 ),(~,| 22 ωωµ iii mNm  

 
Stage one in the hierarchy is used to quantify the usual sampling variability. Stage two 
represents the Type B uncertainty. Stage three gives a prior distribution on the measurand 

and possibly on 2σ . In a Key Comparison experiment, it is generally not possible to use an 

informative prior distribution on µ , so allowing ∞→2ω  leads to an approximate posterior 

distribution 
 
 

 ( )222 ,~,| iiiiii syNy +ττµ       (2) 

 
and so the posterior mean and posterior standard deviation of each laboratory are 
approximately the ISO guide recommended quantities, the value and the standard 
uncertainty. 
 
Single Mean Model 
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Suppose now that there is a common measurand.  Model (1) can be modified to reflect this 
fact:  
 

 ),(~,| 22
iiiii NY σθσθ   

 ),(~,| 22
iiiii N τµτµθ  

 ),(~,| 22 γµγµµ Ni                      (3) 

 

 ( )2,~ ωµ mN  

 ( )100,0~ Uγ . 

 
The prior distributions on the iµ  are now hierarchical, the common mean µ  being the 

measurand of the entire experiment. The quantity 2γ determines the strength of the 

relationship between the laboratories. If 2γ = 0, then all laboratories are truly measuring the 

same quantity µ . In such a case, all of the data are pooled to obtain an approximate posterior 
mean and posterior variance  
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For other values of 2γ , its size controls the pooling of the data in the estimation of the iµ . 

The larger the size, the less pooling there is. Another interesting property of this model is 

that 2γ  is essentially an additional Type B uncertainty term, one common to the 

laboratories. When the value of γ  is not specified, and a prior distribution on it is introduced 
as above, it is in fact estimable from the data. This is useful, as many sources of Type B 
uncertainty are truly random laboratory effects.  
 
Next, consider the analysis of a single measurand experiment. Because of the dual purpose of 
the Key Comparison experiment, that is estimation of the common measurand and 
estimation of lab-to-lab differences, the choice of model for the analysis is not completely 
straightforward. The problem arises from the fact that there is usually not a complete 
agreement among the scientists as to the accuracy of everyone’s Type B uncertainty 
estimates and that the form of analysis has to be agreed upon by all participants.  
 
First, consider using model (3).  In this case, the meaning of the KCRV is clear and so is its 
estimation. It is plainly an estimate of the common measurand µ and can be provided by the 
mean of the posterior distribution. The uncertainty of the KCRV is the posterior standard 
deviation of µ . The fact that this model accounts for the additional Type B uncertainty 
provided by the γ  term is an advantage for KCRV estimation as many participants do not 
fully accept their partners’ estimates of Type B uncertainty. The best method of comparison 
between the laboratories is not so clear however. The problem is that the posterior means of  
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the iµ  are likely to be quite different from the iy . Similarly, the posterior standard 

deviations of the iµ  are also likely to be different from the ISO Guide recommended values of 

22
ii s+τ . This would generally not be acceptable to the scientists in a Key Comparison 

experiment as each laboratory wants to rely solely on their own data (and their own 
estimates of Type B uncertainty) in the estimation of their iµ . Thus a compromise solution 

would be to use model (3) for KCRV estimation and model (1) for lab-to-lab comparisons. 
 
Next, consider an experiment where each laboratory has its own measurand.  In such a case, 
model (1) would be used. Laboratory-to-laboratory differences could be measured by the 
differences in the iµ . In some situations a KCRV will be requested. The question then is how 

to estimate it since it has no natural interpretation.  One possible solution is the following 
method, based on the so-called linear opinion pool, which dates back to Laplace.  In this 
method, k probability distributions ( )ip  are combined as 
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where the weights iw  add up to one. In the present application, the k laboratories posterior 

distributions for iµ  could be combined into the mixture distribution of a new random 

variable µ, 
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where ( )φ  is the normal density.  In most cases, the weights would be taken to be k
1 ,  

representing a view that the laboratories’ data are of equal quality. The mean of this 
distribution, that is, the average of the k  laboratories’ measurements, would be taken as the 
KCRV.  The standard deviation of this distribution 
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is the standard uncertainty of the KCRV. The linear opinion pool is an easily understood and 
easily performed method.  The ( )yu  can be thought to represent the total variability in the 
population of measurands of the Key Comparison.  This can be viewed as the true measure of 
uncertainty in such a Key Comparison because of the assumed equality of the laboratories in 
terms of their competence.  
 
   

Bayesian models form a flexible basis for Key Comparison experiments analysis. They allow 

sensible representation of Type B uncertainty and result in analyses that can conform to the 
requirements of the ISO Guide. 
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3.4  A Note on the Fallacy of Certain 2-Sigma and 3-Sigma Outlier 
Rejection Rules in Key and Interlaboratory Comparisons 
 
James J. Filliben   
Statistical Engineering Division, ITL 
 
Charles Guttman 
Polymers Division, MSEL 
 
Robert Kelly 
Analytical Chemistry Division, CSTL 
 
 
 

 
 

Figure 1. Representative output from a 4-laboratory Key Comparison 
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In accord with its worldwide reputation for providing state-of-the-art chemical 

measurements of broad application, the NIST Analytical Chemistry Division (ACD) 
participates in a wide variety of interlab and key comparison (KC) experiments.  
One such KC was in connection with CCQM-K35: Consultative Committee for 
Amount of Substance (Metrology in Chemistry) and K35: Low Sulfur in Fuel.  NIST 
is currently the pilot laboratory in this ongoing KC.  Bob Kelly is an active member 
of this CCQM Inorganic Working Group.  This note flowed out of data analysis 
carried out by Bob Kelly (and confirmed by SED) on such inorganic KC data. 
 
The central question that this note deals with is "When may a participating 
laboratory in a key comparison be declared an 'outlier'?"  Frequently in KCs, the 
set of participating labs is quite heterogeneous in nature.  Given that, at what 
point does a lab become so "different" that it is deemed unworthy of inclusion in 
the final analysis--especially in connection with the computation of KCRVs (Key 
Comparison Reference Values)? 
 
Declaring a laboratory an outlier is a special case of the larger  KC problem of how 
to separate participating labs into 2 categories: those that are "acceptable" and 
those that are "outliers" (relative to the acceptable group).  There is a myriad of 
statistical outlier tests that may be brought to bear to assist in this partitioning.  
This note deals with one class of such tests, and points out anomalous properties of 
the tests that would result in inappropriate KC conclusions. 
 
 

NIST is serving as the pilot laboratory for the CCQM-K35 (Low-level Sulfur in Fuel) Key 

Comparison. This KC had 4 participating laboratories.  Looking at simulated--but 
representative--mean sulfur concentrations per lab as presented in Figure 1, the question 
naturally arises as to whether laboratory 4 should be identified as an "outlier".  The corollary 
sub-question in this regard is whether laboratory 4 should be excluded from consideration 
when computing the KCRV (Key Comparison Reference Value)? This was the question that 
Bob Kelly of the Analytical Chemistry Division was faced with while doing the data analysis 
in connection with NIST's pilot laboratory role for the Low Sulfur in Fuel KC.  While dealing 
with this question, Bob uncovered some interesting characteristics of a commonly employed 
outlier-identification test, and SED’s  involvement was to verify Bob's conclusions and offer 
some additional considerations. The developed conclusions apply to KCs and Interlab 
Comparisons in general. 
 
A common outlier statistic that could be applied to the data in Figure 1 would be the 
following standardized deviation: 
 
  (y* - ybar)/s 
 
where y* is the outlying observation in question, ybar is the sample mean (of all of the data), 
and s is the sample standard deviation (of all of the data).  In the statistics community, this 
statistic is known as the Grubbs  statistic. The value of this Grubbs statistic is, of course, the 
number of sample standard deviations that the observation in question is away from the 
sample mean. 
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Let us consider a few simple outlier detection "tests/rules".  One such non-rigorous, but 
commonly employed (in some circles), outlier-detection rule is the "2s rule" (with rough 
connotations to a 5% error rate):  
 

"Conclude that y* is an outlier if y* is beyond 2 
 sample standard deviations from the sample mean." 

 
What would this rule yield for the pseudo-data (3882, 3892, 3895, 3976) at hand?   
 
The data yield the following summary statistics: 
 

y* = 3976 
ybar = 3911.25 
s = 43.523 
Grubbs = 1.48772  

 
that is, the extreme-appearing observation (3976) is 1.48772 sample standard deviations 
from the sample mean.  Applying the above decision rule of rejecting a lab only if it is beyond 
2 standard deviations would thus lead to the conclusion that y* is not an outlier.  
 
This conclusion is suspect at best.  The subsidiary question arises in the use of this statistic 
as to how big the statistic can get under any circumstances, or equivalently, what is the 
maximum number of sample standard deviations that an observation--any observation--can 
be offset from the sample mean?  Surprisingly, for small numbers of observations 
(laboratories), this maximum value is very small.  In fact, it can be shown that this 
maximum value can be computed for n = 4 observations (labs) by considering the following 
simple "worst-case" prototype data set: 0, 0, 0, 1.  This data set has the following summary 
statistics: 
 

y* = 1 
ybar = .25 
s = .50 
Grubbs = 1.5  

 
and so for 4 observations (labs), no observation (lab) will ever be more than 1.5 sample 
standard deviations from the sample mean.  Thus for a 4-lab key comparison, if the 2s rule is 
utilized, it will be impossible to ever reject a lab as an outlier. Thus, what appears 
graphically obvious in Figure 1, namely, that lab 4 is "different" from the other 3 labs, would 
be quantitatively impossible to substantiate by applying the simplistic 2s rule. 
 
What happens to the 2s rule for sample sizes other than 4?  At what sample size (if any) does 
the 2s rule make sense--that is, have some probabilistic justification?  To answer this 
question, see Figure 2, which presents the maximal value of the Grubbs statistic (or 
equivalently, the maximum number of sample standard deviations any observation can ever 
be away from the sample mean) as a function of the number of labs n.   
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Figure 2. Theoretical maximum of the standardized deviation. 

 
How was the above maximum curve determined?  It can be shown--with some elementary 
calculations similar to the previous n = 4 case--that the general form for the maximum (in 
units of sample standard deviations) deviation from the sample mean is given by 
 
   max  (y*-ybar)/s)  =  ((n-1)/n)*sqrt(n) 
 
As a tribute to the inquisitiveness of the NIST scientist, the above result was derived by Bob 
Kelly in his consideration about his KC outlier problem.  After-the-fact,  it was jointly 
thought that this result must certainly be existent somewhere in the vast statistics 
literature. Sure enough it was, with the most distant reference implicit in a Pearson paper in 
1939, and the most recent reference a Ron Shiffler Technometrics note in 1988.  Be that as it 
may, the application and implication of such a result in the modern-day context of key and 
interlaboratory comparisons is worth the intellectual revisit. 
 
The maximum curve as presented in Figure 2 is very revealing.  It shows that for key and 
interlab comparisons, the value of 2 is not even possible unless the number of labs is at least 
6, and hence, based on the 2s rule,  no key or interlab study will ever  reject any lab if the 
number of participating labs in the study is 5 or less. 
 
Similarly, if we formulate a second outlier detection rule: a 3s rule (which is even more 
"conservative" with rough connotations to a 1% error rate):  

 
"Conclude that y* is an outlier if y* is beyond 3 
sample standard deviations from the sample mean." 
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then from Figure 2, no key comparison or interlab experiment will ever reject any laboratory-
-no matter how "bad" looking--if the number of participating labs is between 1 and 10. 
 
These mathematical limits, though elementary in nature, are nonetheless not well-known, 
nor are the implications of these limits well-appreciated in the context of outlier detection in 
key and interlab comparisons.  In most KCs, the number of participating labs is very 
frequently less than 10, and is on occasion as small as 3 or 4 (as with Bob Kelly's Low Sulfur 
in Fuel problem), and so the somewhat common "rule of thumb" about using 2 (or 3) standard 
deviations as an outlier cutoff is totally misleading and entirely inappropriate. 
 
Clearly other outlier rules should be utilized.  There are a variety of such rules, but the 
simplest extension to the standardized deviation statistic at hand is to set aside the 2s and 
3s considerations and use the more rigorously derived Grubbs distribution for this same 
standardized deviation statistic. The distribution of this statistic was formally derived by 
Frank Grubbs in a series of classic papers (1950, 1969, and 1972). Given that (and noting the 
assumption of normality), one could formulate a third outlier detection rule--which has 
statistical rigor over rules 1 and 2: 
 

Conclude that y* is an outlier if y* is beyond t 
sample standard deviations from the sample mean 

 
where (for y* > ybar), t is the 95 percent point of the modified t distribution as derived by 
Grubbs.  For n = 4 labs, the critical values of the Grubbs statistic are as follows: 
 
 95% Point 1.48125 
 99% Point  1.49625 
  
and so for the original problem at hand, recalling that the value of the standardized 
deviation for the original data points  (3882, 3892, 3895, and 3976) was 1.48772, we would 
compare 1.48772 with the Grubbs critical values and conclude that lab 4 with the value 3976 
is an outlier at the 5% level, but not at the 1% level.  The tabulated Grubbs tables are of 
course fine, but they would be a bit more practically illuminating if they also presented the 
100% Point (the theoretical max) which is easily computable as shown in Figure 2.  Thus the 
above critical value for the 4-lab Grubbs statistic might be pr ofitably augmented as: 
 

  95% Point 1.48125 
   99% Point  1.49625 
 100% Point  1.50000 
 
and this would thus "calibrate" the analyst to the fact that a finite upper bound does exist (a 
useful fact all by itself), and so expecting the larger and more traditional values such as 2 
and 3 are not just a low-probability event, but rather are a zero-probability event. Table 1 
below presents such an augmented version of the Grubbs percent points for the number of 
labs n = 3 to 20. 
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Number of Labs 0% 50% 75% 90% 95% 99% 100% 

3 0 1.115355 1.144822 1.153118 1.154305 1.154685 1.154701 
4 0 1.3125 1.40625 1.4625 1.48125 1.49625 1.5 
5 0 1.440714 1.571221 1.671386 1.715037 1.763679 1.788854 
6 0 1.539087 1.690863 1.82212 1.887145 1.972817 2.041241 
7 0 1.619517 1.784803 1.938135 2.019968 2.139105 2.267787 
8 0 1.687583 1.862097 2.031651 2.126645 2.274364 2.474874 
9 0 1.746501 1.92763 2.109448 2.214809 2.386316 2.666667 
10 0 1.798399 1.984508 2.175992 2.289819 2.481723 2.84605 
11 0 1.84469 2.034635 2.233855 2.354635 2.56386 3.015114 
12 0 1.886416 2.079384 2.284915 2.411488 2.63553 3.175426 
13 0 1.924355 2.119751 2.330511 2.461981 2.698821 3.328201 
14 0 1.959105 2.156475 2.371631 2.507284 2.755256 3.474396 
15 0 1.991132 2.19013 2.409022 2.548278 2.806027 3.614784 
16 0 2.020809 2.221162 2.443258 2.585656 2.852007 3.75 
17 0 2.048441 2.249928 2.474799 2.619948 2.893973 3.88057 
18 0 2.074275 2.276721 2.504011 2.651582 2.932449 4.006938 
19 0 2.098518 2.301776 2.531184 2.680922 2.967917 4.129484 

20 0 2.121345 2.325292 2.556576 2.708231 3.000786 4.248529 
Table 1.  Percent Points of the standardized deviation statistic 

(the Grubbs statistic):  (y* - ybar) / s 
 
Note how little the difference is between the 95 % point of the statistic and the absolute 
maximum (= the 100% point) when the number of labs, n, is small (3 to 5, say).  
 
In summary, the 2s and 3s rules have severe bounds and limitations, which can easily lead to 
incorrect KC/interlab conclusions when the number of participating labs is small.  The 
Grubbs critical values are a far superior way to proceed in such cases.  
 

The problem of outlier identification in key and interlab comparisons is a serious one that 

requires thoughtful consideration.  There are many possible statistical tests and approaches 
that could (and should) be used in the determination of whether a lab is an outlier or not.  The 
most important non-consideration is the sobering fact that just because a lab is "different" 
does not make a lab wrong. Statistically speaking, it is relatively easy to test for "different"; it 
is much harder to test for "wrong".  The fact of the matter is that the "outlying" lab could be 
correct and all the "conforming" labs incorrect, or possibly all of the labs are incorrect and the 
absolute truth lies elsewhere.  Given these caveats, key and interlab comparisons still serve a 
unique and irreplaceable "cross-calibration" role in the larger scientific community.   
 
The crux of the above note deals with the less-than-obvious upper bounds on the commonly-
used outlier statistic: the standardized deviation.  This note points out the sheer impossibility 
of rejecting labs--as bad as they may be--when one uses the 2s and 3s rules and the number of 
participating labs is small.  Since a small number of participating labs is the rule rather than 
the exception in practice, this precautionary note will serve to force general key and interlab 
analyses to set aside the 2s and 3s rules, and make heavier use of more rigorous and more 
appropriate tests for outlying labs.  Such insights into the small-sample limitations and 
inappropriateness of simplistic rules have served to maintain NIST/ACD's leadership role in 
serving as pilot labs for chemistry metrology KCs in general, and for the Low Sulfur in Fuel 
KCs in particular. 
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3.5  Comments on GUM Supplement 1 
 
Nien Fan Zhang, Will Guthrie, Hung-kung Liu, John Lu, Andrew Rukhin,  
Blaza Toman, and Jack Wang 
Statistical Engineering Division, ITL 

 

NIST has been requested to review and comment on the draft of Supplement 1: 

Numerical Methods for the Propagation of Distributions (GUM Supplement 1) to 
the Guide to the Expression of Uncertainty in Measurement (GUM), prepared by 
the Joint Committee for Guides in Metrology (JCGM) of the International Bureau 
for Weights and Measures (BIPM).  
 
The supplemental guide’s intention was to generalize the law of propagation of 
uncertainty as given in the GUM to the propagation of probability distributions 
through a model of measurement with multiple input quantities and a single 
output quantity. The proposed methods of distribution propagation are based on 
Monte Carlo simulation. 
 
The Statistical Engineering Division has made the following general comments. A 
separate summary of more specific comments is also available.  
 
 
1. Overview 
 
The draft of Supplement 1 of the GUM [1] is a laudable effort to develop and describe a 
method for uncertainty propagation using probability distributions of the input variables of a 
measurement equation.  The method can be described as follows: 
 
The Supplement’s Method 
      1.   The quantity of interest is function f( ) of input quantities X1,…,XN, 
            that is  Y = f(X1,…,XN). 
 

2. It is necessary to obtain value, uncertainty and coverage interval for Y. 
 
3. Any relevant information, including any available measurements  
       1 ,...,

ii inx x , for i=1,…,N, which are realizations of random variables with means  

       X1,…,XN, is to be used to construct a distribution of the X1,…,XN.  
 

4. Monte Carlo samples, 
inibib xx ,...

1
, for i=1,…,N are generated. 

5. The ),...,( 1 jj Nbbj xxfy = , j = 1,…,M, are computed. 

6. The quantity y  is used to estimate the value. 

7. The standard deviation of the yi’s is used to estimate the uncertainty. 
8. The quantiles of the yi’s are used to estimate the coverage interval. 

 
 
The Supplement’s method differs from the GUM method in two major ways. First of all, the 
value is an estimate of the E(Y) rather than an estimate of  f(E(X1),...,E(XN)).  For example if 



 27

Y=X1/X2 then the Supplement uses ∑
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Secondly, the uncertainty of Y is computed using the entire distributions of the input 
variables in the Supplement’s method rather than just the uncertainties as in the GUM. 
 
Clearly, when the probability distributions of the input variables are correctly assigned, the 
Supplement’s method is preferable to the GUM as it uses more available information and is 
thus more exact.  
 
The problem is that it may be extremely difficult to assign the distributions of the Xs (or that 
the distributions may be totally subjective or arbitrary) and that if the distributions used in 
the Monte Carlo uncertainty analysis are not properly chosen, the statistical properties of 
this analysis are likely to be far worse than the corresponding analysis by propagation of 
uncertainty. Indeed, the latter method enjoys a certain level of robustness based on lack of 
distributional assumptions. 
 
Thus Section 4 of the Supplement is key to the entire methodology.  In our view, it needs to 
be rewritten to be much more educational.  In particular, it has to provide clear instructions 
as to how a probability distribution is to be constructed. 
  
When related measurements for a particular input variable are available, two different 
statistical paradigms, the frequentist and Bayesian approaches, can be used to obtain a 
distribution. Under the Bayesian approach, the distribution will be for the input variable 
itself, while under the frequentist approach, the distribution will be for an estimator of the 
input quantity. Sections 3 and 4 of this document address potential problems with the 
Supplement method separately from these two points of view. 

 
Since using the methodology of Supplement 1 in practice may prove to be quite challenging, 
it is our opinion that the set of examples should be expanded, possibly to contain the 
examples from the GUM.  
 
 
2.  Motivation for GUM Supplement 1 
 
The motivation for the GUM Supplement 1 as posed in the Introduction is cogent, and the 
problems addressed are important: to provide solutions when the tacit assumptions 
underlying computations presented in the GUM cannot be met.  Specific cases in point are 
when the measurement model is complicated, when the input quantities themselves have 
large uncertainties, or when a symmetric (often, Gaussian) probability distribution cannot be 
presupposed for the measurement models. 
 
The GUM Supplement 1 proposes a particular alternative; the first question is when this 
alternative is a suitable one; the second question is what improvements might be required 
and/or whether there are better practical alternatives already available.   
 
The Monte Carlo simulation that is proposed for the computation of uncertainty in all these 
cases is one approach, with a better chance for success in some cases than in others.  In each 
of these cases alternatives are available, and in every case there are caveats for the proper 
use of the Monte Carlo methods.  For Supplement 1 to be used wisely, the circumstances for 
appropriate use of Monte Carlo methods need to be articulated clearly.  A common issue for 
all cases is the critical decision about the Monte Carlo distribution – whether a 
“nonparametric bootstrap” (i.e., empirical data distribution) or a parametric bootstrap (i.e., 
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specified parameterized probability distribution) or even the prior distribution functions used 
in a Bayesian model will be selected. In every case, the Monte Carlo methods are quite 
sensitive to mis-specification, and the consequent distortions in the stated uncertainty and in 
the expanded uncertainty intervals can be surprisingly large.  
 
In the case of complicated non-linear measurement models, the need to use simulation 
depends upon the functional complexity and the relative uncertainty in the input quantities, 
and also depends on the degree of their interdependence (i.e., requiring simulation of their 
joint distribution rather than the separate marginal distributions).  When the relative 
uncertainty in inputs is fairly small (say <10%), and there is little interdependence, then 
even strongly nonlinear functions may gain little from simulation methods. The 
computational intensity issue may also be approached via approximation software – even 
quite sophisticated approximation methods can be used easily.   
 
However, when the relative uncertainty of inputs is significantly larger or when the inputs 
are themselves interrelated, the gain from simulating their joint behavior can be quite large.  
The caveat here is that a sufficiently accurate specification of the necessary joint 
distributions is usually difficult, especially when empirical data (past or present) is limited, 
and without an appropriate joint distribution the simulation method may not give reliable 
results.  A fully Bayesian approach applies naturally in this case.  
 
Perhaps the strongest motivation for using (parametric) Monte Carlo methods is when the 
inputs to the measurement model have asymmetric (non -Gaussian) distributions.  This case 
has the potential of substantial improvement of the uncertainty intervals (with coverage at 
the stated level of confidence or credibility).  The caveat here is once again the requirement 
of the correct specification of the (asymmetric) distribution(s).  A much broader class of 
distributional models needs to be entertained than are currently presented in Sec tion 4.  
Also, more rigorous procedures (e.g., distributional fitting techniques, etc.) for selection 
and/or testing of distributional assumptions are crucial.  (The need to specify joint rather 
than marginal distributions applies here as well)  In fact, if the distributions used in a Monte 
Carlo uncertainty analysis are not properly chosen, the statistical properties will likely be 
worse than the corresponding analysis by (traditional) propagation of uncertainty, which 
depends upon first and second moments only. 
 
The alternative nonparametric Monte Carlo methods (e.g., “nonparametric bootstrap”) can be 
much more attractive than parametric Monte Carlo methods, provided there is sufficient 
data to justify a resampling process.  In general, the caveat for nonparametric Monte Carlo 
methods is the requirement of an adequate (from large to very large) sample size. 
 
The Monte Carlo methods proposed here have been studied extensively and there is a rich 
literature with respect to their computation, their properties and their suitability (or 
limitation) in various circumstances; this relevant work is not reflected in the Supplement 1.    
A collection of references, both applied and theoretical is attached. 
 
 
3. Frequency-based approach to deriving probability distributions. 
  
Summary  
When related data for an input variable are available, that is when there are measurements 

1 ,...,
ii inx x , for i=1,…,N that are realizations of random variables with means X1,…,XN , the 

GUM appears to favor frequentist approaches to obtaining the uncertainty of the X1,…,XN. 
Using this statistical paradigm, an estimator (some function of the random variables whose 
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realizations are the 1 ,...,
ii inx x ) and its frequency-based distribution are used to obtain 

information about the unknown parameters X1,…,XN.  Under this paradigm, the X1,…,XN do 
not actually have a distribution.  This fact has serious consequences; for example, statistical 
confidence intervals cannot be interpreted as coverage intervals. Nevertheless, this approach 
can have the advantage of computational simplicity and may be preferable when none of the 
input variables involves Type B uncertainty. 
 
The method, as presented in the Supplement, can be viewed as a simplifies version of the 
parametric bootstrap approach for distribution estimation. The statistical literature in this 
area is vast (see [2] and [3]).  It is known that this simple approach does not behave 
satisfactorily in small sample situations and it is our view that the user of the Supplement 
should be warned about this.  A further point is that this behavior is even worse for 
multivariate cases and the requisite sample size is much larger.  The poor performance is 
evidenced by unsatisfactory coverage probability of the resulting confidence intervals of the 
X1,…,XN . (Note that these are not coverage intervals of the X1,…,XN .) The examples that 
follow illustrate these points. 
 
There are many other, more modern statistical methods for deriving distributions of 
estimators. Kernel density estimation, for example, and many other nonparametric 
estimation methods provide very flexible models when there is enough data.  The 
Supplement should consider these points and provide some references to help the user. 
 
The Supplement approach with low sample size. 
In a univariate normal case, that is when the sample observations nxx ,...,1  come from a 

normal distribution with mean X, a 95 % confidence interval for X , obtained based on the  

samples suggested by the Supplement from 2( , )N x s , is 

 

1.96
s

x
n

±  

 
where x  and s  are the sample mean and standard deviation of the observations. The width 

of the interval suggested by the Supplement is 2 1.96 s n× . The width of the exact 95 % 

interval for X  is 0.975, 12 nt s n−× , where ,tβ ν is the β  quantile of the Student's t 

distribution with ν  degrees of freedom. The width of the interval based on the Supplement is 
only 46 % of the width of the exact interval when n =3. The percentages are 71 % and 87 % 
when n =5 and n =10, respectively.  Thus, the Supplement suggested intervals based on 
small n  have insufficient coverage.  
 
The multivariate case. 
The GUM example Annex H.2 provides a good illustration of poor performance in the 
multivariate case.  The measurands of interest are the three impedance components, which 
are functions of the input variables V, I, and φ . For illustrative purposes, only one of the 

measurands,  Z = f(V,I) = V/I, is considered.  The measurements are assumed to be 
distributed as a bivariate normal with mean ( )IV ,  and covariance matrix 

2

2
V V I

V I I

σ ρσ σ

ρσ σ σ

 
 
 

. The coverage probability of the bootstrap interval for Z can be examined 
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using statistical simulation.  This probability depends on the ratios V
Vσ

, I
Iσ

, ρ , and n . 

For illustration, V= 4.999, I = 19.661, Vσ  = 0.0071764, Iσ  = 0.0211778, ρ   = -0.3553, and n 

= 5 are used as in the ISO GUM Annex H.2. Thus, the value of Z in the simulation study is 

4.999/19.661.  Independent realizations ( ),j jV I , j = 1,…,5 were generated according to their 

joint normal distribution specified above. The sample mean vector ( ),V I  and the covariance 

matrix s were calculated based on these 5 observations. The 95 % bootstrap interval for Z, 

using 10000 bootstrap samples from ( )( ), ,N V I s , was obtained. The percentage of time 

that the intervals contained 4.999/19.661 was recorded. The simulated coverage probability 
was found to be 0.8778. Using the confidence interval based on the first-order Taylor 
expansion (with correct coverage factor), the coverage probability for the same problem was 
found to be 0.9495. Even for a linear measurand such as V + I, the coverage probability for 
the nominal 95 %  interval based on Supplement was only 0.8758.  
 
This illustration shows that the proposed method can produce confidence intervals that do 
not have the expected frequentist properties even for simple cases. 
 
 
4. Belief-based approach to obtaining probability distributions.  
 
It is well accepted by users of the GUM that when no related data are available, the 
probability distributions are to be interpreted as summaries of all available knowledge about 
the input variables. It may not be as well known that it is possible to obtain probability 
distributions of the X1,…,XN directly (not through an estimator) by Bayesian statistical 
methods. This is true regardless of the types of uncertainty, Type A or Type B, that are 
present in the problem. This important point should be made clear in Section 4 of the 
Supplement.  
 
The Bayesian process of obtaining a distribution for the X1,…,XN,  when measurements 

1 ,...,
ii inx x  are available, is as follows.   

• First, a prior distribution of the X1,…,XN,  is constructed. This distribution summarizes 
all information available before the data are collected. The Maximum Entropy method, 
alluded to in the Supplement, is only one possible way of obtaining a prior distribution. 
Other possible choices are Jeffreys noninformative priors, ML-II priors, hierarchical 
priors and others. See [4] for guidance and further references.  

• Second, a likelihood function for the data must be specified.  
• Third, the posterior distribution of the X1,…,XN can be obtained using Bayes theorem. 
 
It may be argued that using the Bayesian approach for all of the input variables is the only 
way to keep a clear interpretation of the resulting coverage interval of Y.  However, even 
when applying the Supplement’s method using only belief-based  distributions, problems still 
arise from the fact that the results for Y can be quite sensitive to the choice of the 
distribution of the Xs.  
 
Thus in our view, the method in Supplement 1 should not be used without study of 
sensitivity to the choice of the input variable distributions. This means that whenever 
possible one should identify a class of possible distributions of each Xi and then perform the 
Monte Carlo with various members of this class.  Agreement of the results for Y across such 
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varied Monte Carlo samples would mean that the sensitivity to the specific distributions was 
not too great.  

 
The following example shows how the method in Supplement 1 could be applied using the 
Bayesian paradigm, as well as some possible consequences. 
 
Suppose there are measurements 1 , , nx x…  of observations of a random variable that is 

assumed to have a normal (Gaussian) distribution with expected value X and variance 2σ .  
Note that this assumption specifies the likelihood function. The measurements are: 
102.22190, 99.29446, 101.59621, 100.81106, and 98.67992.  The expected value X is thought 
to be related to the unknown value Y of the measurand by the following linear equation 
 

0

1

.
X B

Y
B
−

=  

The intercept B0 and slope B1 are input variables representing sources of uncertainty of Type 
B.   
 
First, all probability distributions are specified. For the purpose of this example, two 
different sets of distributions for the Bs with the same means and variances are used.  
 

1. B0 ~ N(0, t2), B1 ~ N(0, ? 2).   
2. B0 ~ U(-t√3, τ√3), B1 ~ U(1 – ? √3, 1 + ? √3). 
 

with  t = 0.25 or 4.00   and  ?  = 0.05 or 0.2. 
 
This is to illustrate that common values of the first two moments can be represented by very 
different probability distributions. These distributions are based purely on expert opinion. 
For the distribution of  X, a common Bayesian approach is adopted. That is, we specify a 
noninformative prior distribution on X and on σ 

( )2 2, ~1X σ σ . 

 
Next, using Bayes theorem the posterior distribution of  X , that is Student’s t 

( ))1,,(~,...,| 1
11 −−

− nsxtxxX nn , 

is obtained.  This distribution can now be used in the Monte Carlo simulation. The posterior 

mean of X is x  and the posterior variance is ( ) ( )( ) 21 3n n s− − , where  x  is the sample 

mean and s2 is the sample variance. 
  
It is useful to point out that the Supplement method could be very easily carried out using 
the free software BUGS [5] as follows: 
 

{b0 ~ dnorm(0,0.06) 
b1~dnorm(1.0,400) 
mean~dnorm(0,1. 0E-4) 
sig ~ dgamma(1.0E-4,1.0E-4) 
Y <- (mean - b0)/b1 
for(i in 1:5){ 
x[i]~dnorm(mean, sig)} 
} 
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The results of the calculations are given in the following two tables: 
 
 ( ,τ ω ) Mean        (median) Uncertainty    (95%HPD) 

(0.25, 0.05) 100.760    (100.527)   5.160      (91.342, 111.559) 
(0.25, 0.20) 105.100    (100.599) 24.494      (72.130, 164.720) 
(4.00, 0.05) 100.757    (100.514)   6.581      (88.602, 114.273) 
(4.00, 0.20) 105.098    (100.595) 24.932      (71.401, 165.682) 

Table 1. Results using the Gaussian distribution for the Bs 
 
 ( ,τ ω ) Mean          (median) Uncertainty    (95%HPD) 

(0.25, 0.05) 100.741     (100.469)   5.348     (92.277, 110.145) 
(0.25, 0.20) 104.914     (100.378) 22.378     (75.371, 150.654) 
(4.00, 0.05) 100.702     (100.449)  6.690      (88.678, 113.963) 
(4.00, 0.20) 104.914     (100.398) 22.762     (73.643, 152.171) 

Table 2. Results using the Uniform distribution for the Bs. 
 
 
For comparison, the value and uncertainty were also computed using the GUM approach.  
The GUM estimates are the same for the two sets of distributions and are given in the 
following table. 
 

(τ, ω) 
Value Uncertainty 

(0.25, 0.05) 100.521   5.121 
(0.25, 0.20) 100.521 20.128 
(4.00, 0.05) 100.521   6.493 
(4.00, 0.20) 100.521 20.520 

Table 3. The GUM results 
 
The tables show that using the distributions rather than just the moments as in the GUM 
can have quite a large effect on both the value and the uncertainty. This is especially the 
case for the slope parameter.  The value of τ  = 0.2 represents a rather extreme case but 
illustrates what can happen.  
 
Tables 1 and 2 further show that for this example, the method in Supplement 1 is not 
particularly sensitive to the choice of distributions for the offset B0. It further shows that the 
method is quite sensitive to the choice of distribution of the slope parameter. There are 
differences in the value of Y as well as the uncertainties, the difference in uncertainty being 
especially large: 9% larger for the Gaussian distribution than for the rectangular.  
 
It is further clear that the distributions of Y are quite skewed and thus the arithmetic mean 
may not be a good estimator of the value. The median may be a better estimator. 
 

These comments on the draft of Supplement 1: Numerical Methods for the Propagation of 

Distributions to the Guide to the Expression of Uncertainty in Measurement, along with the 
comments submitted by other reviewers, will help ensure that the new methods that are 
proposed in this document are metrologically sound and as clearly explained as possible. 
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3.6  Accounting for Suspected Sources of Bias  
 
Walter Liggett  
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Rolf Zeisler 
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Concentration determinations for five elements in the material to be issued as SRM 2703 
along with expanded uncertainties (multiplier 2).  Determinations from individual 
laboratories and the combined determination for the certificate are shown.  Certification is 
based on determinations shown and SRM 2702 determinations not shown.  The uncertainty 
reported by some laboratories is augmented with an imputed value for the Type B 
uncertainty. 
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In value-assignment of reference materials for chemical measurement, a NIST 

certified value is one for which NIST has accounted for all known or suspected 
sources of bias.  Certification is based on one or more chemical methods with 
sources of uncertainty that have been investigated.  Types A and B standard 
uncertainties account for the known sources of uncertainty.  Sometimes existing 
scientific understanding indicates the need for an additional standard uncertainty 
that accounts for suspected sources.  Typically, this additional uncertainty is 
assessed by complimenting the NIST determination with a second determination 
by an independent, critically-evaluated method, or by a different method realized 
in an outside collaborating laboratory.  This article describes how one might 
proceed when a determination by a different chemical method is not available.  
When the material to be certified differs little from another material already 
certified, this additional uncertainty can be assessed by borrowing from the 
previous certification.  Even better certified values and uncertainties can be 
obtained when the determination of the new material includes a simultaneous 
fresh determination of the already certified material.  This article discusses 
certification based on the use of a hierarchical Bayesian approach to weaving 
together information on the suspected sources of bias. 
 
 

Consider the determinations for Al (aluminum), especially the determination from LAB 11.  

This laboratory measured the 2703 material using neutron activation analysis and reported 
the Type A uncertainty, which accounts mostly for the Poisson variation in the counting, and 
the Type B uncertainty, which accounts for non-uniformity in the neutron flux, among other 
things.  The error bars show the two types of uncertainty combined as the square root of the 
sum of squares.  The length of the error bar is twice that for a standard uncertainty.  The two 
types of uncertainty reported are not adequate for certification of the 2703 material because 
other sources of bias are suspected.  To account for the uncertainty contributed by these 
suspected sources,  one typically uses a determination by a second, independent method.  For 
Al, a second determination by LAB 8 is shown.  However, this determination does not meet 
the requirement because LAB 8 also used neutron activation analysis.  The problem arises 
from the fact that there may be sources of bias associated with neutron activation analysis 
that are shared by LAB 8 and LAB 11.  For this reason, a combination of the determinations 
for Al by LAB 8 and LAB 11 is not a sufficient basis for certification. 
 
To comply with the NIST value-assignment criteria, we combined the determinations shown 
with determinations on SRM 2702.  This is reasonable because production of the 2703 
material involved little but sieving the 2702 material.  Neutron activation analysis and three 
other independent methods were used to measure the 2702 material as part of the SRM 2702 
certification.  These determinations made as part of the SRM 2702 certification help us 
account for suspected sources of bias in the 2703 certification.  Moreover, both LAB 8 and 
LAB 11 measured SRM 2702 at the same time that they measured the 2703 material.  These 
measurements of the 2702 material at the same time as the 2703 measurements provide a 
link between the two materials with smaller uncertainty than might otherwise be the case. 
 
In terms of the 2703 Al determinations by LAB 8 and LAB 11, we need to adjust the central 
value using the link established by the simultaneous measurement of the 2702 and 2703 
materials and adjust the uncertainty using all the 2702 determinations.  We do not actually 
estimate these adjustments.  Rather, we use a Bayesian approach to summarize all the 
determinations available.  The result for Al is labeled CERT. 
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 There are 22 elements to be summarized.  For each element, different laboratories,  perhaps 
using different methods, provide determinations of the concentration.  In this article, we 
consider an approach to summarization that is general enough to apply to all elements for 
which there are determinations.  Because the approach is general, the summaries produced 
can be compared in that they reflect what is actually known on the basis of the available 
determinations but do not reflect ad hoc choices in the summarization. 
 
There are three different types of chemical determination that enter our Bayesian approach 
to certification.  These are determinations for the 2703 material alone, determinations for the 
2702 material alone, and determinations of the two materials jointly.  For the purpose of 
presenting our approach, we model these determinations under the assumption that the 
Type A and Type B standard uncertainties are known.  In actuality, we take into account the 
fact that the Type A uncertainty is given as an estimate with stated degrees of freedom.  We 
also imputed Type B uncertainties when these were not provided as part of the 
determination.  We model a determination on the 2703 material as 
 

N A B( | , )x3
2 2 2µ σ σ σ+ + , 

 
where x3  is the determination, µ  is the measurand, σA  is the Type A standard 

uncertainty, σ B  is the Type B standard uncertainty, and σ  is the standard uncertainty for 
the suspected sources of bias.  In this expression, the quantities µ  and σ  are unknown.  We 

model a determination on the 2702 material as 
 

N A B( | , )x2
2 2 2µ δ σ σ σ+ + + , 

 
where x2  is the determination and δ  is the unknown difference in measurand between the 

2702 material and the 2703 material.  We model a joint determination as 
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Note that when interpreting the Type A and Type B uncertainties, we have reverted to the 
classical definitions of random and systematic.  Note also that we have taken the uncertainty 
due to suspected sources to be neither perfectly correlated nor uncorrelated, but to have 
correlation of ½.  This particular approach to including joint determinations in a hierarchical 
Bayesian approach raises the question of whether there is a better approach. 
 
Let the vector of determinations for a particular elem ent be Y .  In the case of Al for 
example, there are four determinations of the 2702 material and two joint determinations of 
the 2703 and 2702 materials.  Multiplying the seven corresponding densities together gives 
the likelihood f ( | , , )Y µ δ σ , where we have suppressed the known values of the Type A and 

Type B uncertainties in our notation.  This likelihood suggests maximum likelihood and 
Bayesian approaches to certification. 
 
Maximum likelihood suggests adopting an uninformative prior on µ  and maximizing 

 

f d( | , , )Y µ δ σ µ∫  
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as a way of estimating δ  and σ .  Treating these estimates as known, we could use 

f ( | , $, $)Y µ δ σ  to obtain the interval for certification. 
 
In our Bayesian approach, we adopt an uninformative prior on δ  and a uniform prior on σ  
that is non-zero only up to a multiple of the uncertainty NIST claimed in its determination 
for the 2702 material.  This prior on σ  is justified by the fact that in choosing collaborating 
laboratories, NIST chose only those whose performance is respectable in terms of the state of 
the art.  The posterior density on µ  is then proportional to  

 

f d d( | , , )Y µ δ σ δ σ∫∫ . 

 
We compute the mean and variance of the posterior distribution as the basis for the 
certification.  We could have used an informative prior on δ  to take into account the prior 
knowledge that the 2703 material is similar to the 2702 material, but we did not. 
 

The following three figures give further examples of how this works out. 
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3.7  Errors in Variables for Gas Standard Calibration 
 
Stefan Leigh, Andrew Rukhin, Alan Heckert 
Statistical Engineering Division, ITL 
 
Frank Guenther 
Analytical Chemistry Division, CSTL 
 

 
 
Relative standard deviation plots derived from actual calibration lines showing the 

occurrence of each of the three modes for regression analysis:
22
xy σσ >> , 

22
xy σσ ≈  

and
22
xy σσ << . The solid horizontal 0.1 % line represents the assumed relative standard 

deviation in X, the standard gas concentration. 
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In gas metrology at the international standards organizations level, frequent 

calibration of automated concentration measurements against carefully prepared 
and certified gas concentration standards is routine. Typically, such data have 
been analyzed using classical linear methodology: Ordinary Least Squares (OLS) 
fitting, with associated Working-Hotelling and Fieller (propagation-of-error based) 
calibration bounds. But it has been observed that often the basic assumptions of 
linear least squares are not met: most crucially, the assumption of Y variance 
dominance may be violated. This fact led the ISO Gas Analysis Working Group TC 
158 to develop and adopt a new Gas Analysis Standard (ISO 6143) based on the use 
of Errors in Variables (EiV) methodology for the analysis of gas mixture 
composition calibrations. 
 

SED/NIST noted multiple troubling features of the new standard: incorrect language is 

employed; the use of Errors in Variables (EiV) methodology, to supplant OLS, is 
recommended irrespective of the variance ordering in the data; EiV in the standard is 
implemented as an unclearly documented `black box' executable code with source code not 
made available. Finally, and most telling, no reference is made to the large body of hard 
statistical research in this area, and no reasons given for ignoring classic solutions such as 
Maximum Likelihood Estimators (MLE) for specific variance ordering scenarios. 
 
Major progress was achieved last year with a clearer understanding of what the ISO code 
computes for an EiV calibration error, which shows why it is wrong as a universal 
prescription. An important detail of the ISO algorithm is that, early on, X (abscissa, 
nonreplicated gas standard values) and Y (ordinate, replicated analytic values) are 
exchanged, and all subsequent analysis - (weighted) Orthogonal Distance Regression (ODR) 
and generation of calibration uncertainty - is performed on the role-exchanged variables. A 
fuzzy justification for this was provided: namely, that since the ODR solution must lie 
between the OLS solution for the calibration of Y on X and the OLS solution for the 
calibration of X on Y (a correct assertion), in performing ODR one can freely exchange X and 
Y, and solve the (tricky) calibration problem (inversion: Y backcasting to X) as a 
straightforward prediction problem (prediction: Y-as-X to X-as-Y). To be able to solve the EiV 
calibration problem in this way – interchange of variables and `translation' of inversion of 
uncertainty interval to prediction of uncertainty interval - would appear to demand an exact 
symmetry between X and Y, the roles and interpretation of X and Y, and the error structures 
of X and Y, symmetry that in real gas calibration settings is lacking. 
 
Pointing out errors in others' solutions does not constitute a solution to the problem. We are 
sure that: (1) careful consideration, on a case-by-case basis, of the underlying error structure 
for any given facility's calibrations is crucial. We categorically reject the notion that one 
numerical algorithm ``fits all'' cases, as BAM/ISO maintain. We are proving this through 
simulation. (2) We continue to maintain that appropriate literature-referenced MLE 
solutions for each case remains the best current approach to the problem. (3) But we must 
adapt such solutions to a heteroscedastic setting, through weighting. And (4), for each case 
we must indicate how to solve the correct calibration uncertainty problem.  
The goal is to extend a version of Fieller to each for the weighted EiV. 
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SIMULATION 
 
Representing 6143, improved algorithms and code have been issued by the National Physical 
Laboratory (NPL) of the UK. It is the NPL version that is used in our ongoing simulations. 
SED's focus is outlined above, and all code developed reflects those specific goals. In 
particular, the EiV model has been adapted to the situation where there are replicated 
measurements on the response variable, and where one of the error variances (X) is assumed 
known - conditions closely approximating real-world gas metrology. For these conditions, the 
maximum likelihood estimator and approximate confidence regions for the unknown 
parameters have been derived. Corrected/improved formulas for the calibration (backcast) 
estimation problem were developed based on those presented in Fuller (1989). 
 
Simulation of multiple homoscedastic cases has given us our first concrete look at the 
relative performances of the competing portmanteau 6143 versus case-based MLE 
estimators. We organize the homoscedastic case simulations, as is customary in EiV, 
according to ? – the ratio of Y to X variance. There are three relative dominance scenarios: 
For ? = 1, the case that should most highly favor 6143, MLE and 6143 estimates of slope are 
indeed comparable both in terms of bias and variance, which is also the case for calibration 
value and error. In the case of intercept estimates, however, MLE performance is slightly 
superior at higher noise levels.  For ? < 1, again for slope and backcast value and associated 
error, 6143 and MLE are broadly comparable. Although for intercept, MLE is incrementally 
better than 6143 both in terms of bias and standard error at all noise levels. For ? > 1, 
however, slope MLE's are bias/variance superior at higher noise levels, while intercept and 
calibration MLE's are superior across the board. These and other forthcoming results still 
beg the practical question: will the incremental improvements demonstrated by use of 
appropriate MLE or surrogate be considered substantial enough to be taken seriously by the 
gas metrology community, which is already several years into the deployment of 6143? 
Heteroscedastic simulations are currently being undertaken.  
 
Errors in Variables is a complex subject matter, even for statisticians. Identifiability and 
estimability problems are acute. Often the existing literature is not clearly exposited, tending 
to linger over arcane counterexamples rather than presenting practitioners with clear 
guidelines and procedures. We seek to lay down a clear logic for the linear calibration 
problem with specific reference to NIST Gas Metrology calibration experience. We expect 
those guidelines to be documented, with explicit reference to broadly accepted inferential 
principles such as maximum likelihood, method of moments, or Bayesian estimation. We 
seek to make clear the foundation, the implementation, the built-in assumptions, and the 
potential limitations of any methods suggested. 
 

ISO Standards play multiple direct roles in national and international commerce. Initiation 

and/or efficient adaptation of such standards by national industries translate to direct 
commercial leverage and advantage in OECD and third-world markets. NIST and the other 
world standards organizations bear direct responsibility for ensuring the technical integrity of 
such standards and for the implementation of correct and relevant statistical methodologies. 
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3.8  Use of Median and Uncertainty Evaluation for Nanoparticles 
Sizing 
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Figure 1.  Shown here are plots of kernel density estimation of particle diameters (data R3) for each of the 
five bottles examined by Dr. Yanan Liang.  The last figure is for all data. I have denoted the positions of 
estimated mean (a), median (h), and mode (m) in each graph. It is seen that median falls always between 
mean and mode.   
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Various statistical measures, such as some kind of averages, median, or mode, 

may be used to provide an overall summary of the “average” size of nanoscale 
particles, which are used in some standard reference materials that are used in 
some medical testing developed by the nanotribology group at NIST. Because the 
particle size distribution is often non-Gaussian with very long right tails, we 
recommend the use of the median since means will be strongly affected by the 
large tail values, while the mode is too strongly affected by the statistical 
algorithms used to locate the peak of the estimated density. Statistical uncertainty 
evaluation for the median will be described in this entry with the goal of 
attracting more uses of median measures in metrology studies.  

 
In nanotribology, nanoscale particles are injected into animals to test for certain reactions 

from friction. Both the dosage and the size of particles are of interest in standard material 
measurements. For particle size, we notice that there are at least three possible choices: 
mean, median, and mode. It is well known that the sample mean (average) is strongly 
influenced by a few large numbers in the right tail and so is less stable.  The mode is defined 
by the peak of a density and describes the size of the most common (abundant) types of 
particles. The density function is unknown, however, and must to be estimated by some 
smooth operation of a histogram, such as kernel smoothing (resulting in kernel density 
estimation, e.g., Silverman 1985). However, estimation of the mode is likely influenced by the 
degree of smoothness, such as the bandwidth.  The median is defined as the particle size that 
half of the population of particles is larger than and half of the population is smaller. The 
sample median is a more robust statistical measure than the mean or mode for a non-
Gaussian distribution. Thus it is more reliable and stable to use in evaluating the centers of 
different shapes of particle size distributions. 
 
The uncertainty for the sample median can be approximated by its asymptotic variance, 

which is given by ( )21/(4 )f h n⋅ , where n is the sample size and f is the density function 

evaluated at the median. One can use a kernel density estimate in place of the true density 
to obtain a fairly robust uncertainty estimate for sample median.  Alternatively, one can also 
apply the bootstrap method for the sample median. Another advantage of using the median 
instead of the mode is the existence of a rich collection of statistical tests based on ranks for 
testing homogeneity or heterogeneity (differences) in medians for particle sizes from different 
bottles or sources. For example, the Mann-Whitney -Wilcoxon test can used for comparing 
medians from two populations, and Kruskal-Wallis rank tests can be used for testing 
equality of medians from multiple populations in one-way ANOVA-type fashion. 

 
The offshoot of this metrology study is our determination that the median should be a more 

widely used measure in metrology for characterizing skewed and long-tailed particle size 
distributions. The worry over uncertainty evaluation for median is alleviated by recent 
research on the exact variance approximation and the availability of bootstrap methods and 
software.   



 44

 
3.9  Estimating Parameters that are Near the Detection Limit 
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Probability Density Functions for Purity Measurements of Solvent Red 24 Dye. 
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The verification of purity of chemicals is a prerequisite for valid calibrations as 

well as for the production of valid reference materials for calibration.  The 
calculation of the composition of the main component is straightforward, but the 
evaluation of the associated measurement uncertainty is not.  Problems arise due 
to mathematical constraints (the sum of all mass fractions cannot exceed unity) 
and due to the detection limit of the procedure used.  The detection limit of an 
analytical procedure is regarded as being the lowest concentration of the analyte 
that can be distinguished with reasonable confidence from a blank.  SRM 2037 
Solvent Red 24 dye is intended primarily for use in the calibration of 
spectrophotometric analyses for the determination of the red dyes used to mark 
off-road diesel fuel for taxation purposes.   The NIST measurement result gives the 
purity of the Red 24 Dye around 98 % with uncertainty about 5 %.  We use a 
Bayesian approach to derive an unsymmetrical uncertainty interval that lies 
within the 100 % constraint.   
 
 

A primary method of measurement is a method having the highest metrological quality, 

whose operation can be completely described and understood, and for which a complete 
uncertainty statement can be written down in terms of the SI units.  When no single primary 
measurement method proves fitness for purpose, chemical purity must be estimated by 
assembling information from different sources.  Two methods, 500 MHz Proton Nuclear 
Magnetic Resonance (NMR) and High Performance Liquid Chromatography (HPLC), were 
used in the purity determination of the Solvent Red 24 Dye for SRM 2037.  The tan and 
purple curves in the above figure are the density functions of measurement results for the 
NMR and HPLC methods for Red 24 Dye, respectively.  For each density, the mean is the 
certified purity for that method and the standard deviation is equivalent to the estimated 
standard deviation for a normal distribution. These were assigned for measurement 
repeatabilities and were combined with balance accuracy uncertainties and estimated 
instrument method uncertainties using the root-sum-of-squares method.  The green curve is 
the density function of the combined uncertainty distribution, assembling information from 
both NMR and HPLC.  Normally, an expansion factor of k = 2 is applied such that the 
expanded uncertainties express a symmetrical interval within which the true value is 
expected to fall with a level of confidence of approximately 95 %.  However, the upper limit 
for the purity of any material is bounded by 100 %.  To correct the density function, a 
Bayesian approach with a prior that distributes the purity uniformly across the constrained 
mass fraction range was used to give an unsymmetrical interval bounded by 100 % within 
which the true value is expected to fall with a credibility of 95 %.  The black curve is the 
posterior density function of the combined uncertainty distribution, corrected for the mass 
fraction upper limit of 100 %.  The resulting combined mass fraction percentage (purity) for 
the Solvent Red 24 dye is 97.95 % with a 95 % uncertainty interval between 92.26 % and 
100%. 
 

Different procedures can be used to assign uncertainties in estimating parameters that are 

near the detection limit.  Our method is attractive for two reasons.  One, it requires no special 
choice of error distributions or estimation procedures in order to avoid the problem of having 
uncertainty intervals lying beyond the constraint.  And, two, in our procedure, a 
straightforward correction is made only at the last-minute of the analysis following a 
Bayesian argument, using a non-informative prior. 
 



 46

3.10  Estimation of Poisson Intensity in the Presence of Dead Time 
 
Grace Yang 
Statistical Engineering Division, ITL 
 
John F. Widmann  
Formerly at Fire Research Division, BFRL 

   
Figure 1:  Experimental data collected with the PDI at 5mm above the nozzle and a spray 
angle of 33.4 degrees.   
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Understanding the characteristics and dynamics of a spray has numerous 

implications. Such knowledge helps to design cleaner -burning, more efficient fuel 
injections in gasoline engines. Other applications include control of hazardous 
waste incineration, spray coatings, agricultural pesticide sprays, and fire 
suppression.  
 

At NIST, a non-intrusive technique called phase Doppler interferometry (PDI) is used to 

investigate the characteristics of a methanol spray flame. The PDI, installed at a fixed 
location, measures the size and the arrival time of each droplet in the flame that reaches its 
probe volume. The purpose of our study is to use the arrival time data to estimate the 
intensity of the spray.  However, the data recorded by the PDI are incomplete due to the 
presence of dead time.  Dead time in PDI refers to the periods of inactivity of the PDI 
processor during which data are not recorded. This is illustrated by the gaps in the 
experimental data presented in Fig. 1.  These gaps occur at random throughout the recording 
period. Moreover, the duration of each gap is random and unobservable. The arrival times 
are recorded only during the observation windows and missed during dead times.  
 
Following the spray literature, we model the arrival process of droplets at the PDI by a 
homogeneous Poisson Process, {N(t); t = 0} with intensity 8, where N(t) represents the 
number of droplets that passed through the probe volume (but not necessarily recorded) in 
the time interval (0,t].  The presence of dead time renders the observed arrival times of the 
droplets an incompletely observed Poisson process.  The observed process consists of the data 
{(Nk, Ok), k = 1, 2,}, where Nk denotes the number of droplets in the kth observation interval 
and Ok denotes the total time of the kth observation interval.  Suppose m is the number of 
observation windows. We estimate the intensity 8 by 
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We show that {(Nk,  Ok), k = 1, 2,} forms a strictly stationary sequence, and the estimate is 
consistent and asymptotically normal as m tends to infinity.  
 

An analytic procedure is provided for estimating the flow rate of droplets in a spray. Large 

sample properties of the estimator are obtained under various conditions of missing data. The 
results are useful for bias correction and computation of the uncertainty of the estim ate. This 
is a joint work with J. F. Widmann, S. He and K. T. Fang. The results will be published in the   
forthcoming issue of the Journal of American Statistical Association.  Our present work only 
considered one-dimensional data.  In the pursuit of a better understanding of sprays, 
stochastic modeling of higher dimensional data that consist of both the arrival time and the 
size of each droplet is an important problem for future investigation.  
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3.11  The Effect of Recalibration and Reagent Lot Changes on the 
Performance of QC Control Charts 
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The figure shows the time series of H-ALB.  
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Daily quality control (QC) measurements of biochemical quantities were 

recorded during 4 to 5 months while methods and analyser showed no signs of 
malfunctioning. The time series of QC values was divided into subseries according 
to reagents or electrolyte diluent lot and (within diluent subseries) disposable 
electrode used. ANOVA was used to examine if the mean level changed 
significantly between subseries. The X chart and the EWMAST or EWMA chart 
were applied to each time series and each reagents and diluent subseries. We 
found that the mean levels changed significantly due to diluent lot changes, 
replacement of disposable electrodes and recalibrations following reagents lot 
changes. These changes caused spurious autocorrelation as evidenced by the 
autocorrelation function (ACF) plot. We conclude that the mean level may change 
due to recalibrations and change of electrode diluent lot that causes an excessive 
number of false alarms unless new control charts are calculated subsequent to 
these events. 
 
 

In a previous joint paper (Winkel and Zhang (2004)) we found that clinical biochemical QC 

data may be autocorrelated. As a consequence too many false alarms were generated when 
the exponentially weighted moving average (EWMA) control chart was used. When we used 
the expon entially weighted moving average chart for stationary processes (EWMAST) chart 
(Zhang (1998)), so that the magnitude of the autocorrelation was taken  into account, the 
number of false alarms was reduced considerably. However, when the EWMAST chart was 
applied over an extended period, which includes some recalibrations of the analyser (or using 
different reagents lot number), it was sometimes found that the mean level changed 
significantly even though the analyzer was in operational control. It was hypothesized that 
these shifts in the mean level may be caused by recalibrations of the analyzer. 
 
We used a well-established modern analyzer, the Dimension, as a prototype. When taking a 
possible effect of recalibrations into account, we wanted to note if the QC data were still 
autocorrelated. The dilution of each sample prior to the measurement of the concentrations 
of sodium (NA) and potassium ions (K) is calculated using an aqueous solution of electrolytes 
of known concentration (the diluent). It was recommended that the corresponding assay be 
recalibrated whenever a reagents lot is changed. Most of the colorometric assays were 
recalibrated at least once during the study due to reagents lot changes and the lot number of 
the diluent was changed in the middle of the study period. Thus, the effects of recalibrating 
the colorometric assays (the reagents lots of the immunochemical assays were not changed 
during the study period), changing electrode and changing the electrolyte diluent lot could be 
studied.  
 
The data material includes the values of daily measurements of 11 components in each of 
two types of QC material (low and high). Thus, there are 22 quantities. The time series 
including values from more than one reagents lot was divided into subseries according to the 
lot used to obtain reagents subseries. The time series of electrolyte values obtained using 
more than one diluent lot was divided into subseries according to diluent lot used to obtain 
diluent subseries and each diluent subseries was divided according to disposable electrode 
used to obtain electrode subseries.  
 

 A change in the mean level due to recalibration following a change of reagents lot and a 
change of diluent lot or disposable electrode (in the electrolyte assays) was suspected. 
Therefore, by using a one-way ANOVA it was tested if the mean level differed significantly 
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( p <0.01) between reagents subseries. In the same way, it was tested if the mean level 

changed between the diluent subseries of each electrolyte time series and if the mean level 
changed between the electrode subseries within each diluent subseries. 

 

Each time series and each individual subseries (except the electrode subseries which was too 
short) was tested to note if significant ( p <0.05) autocorrelation was present using the ACF 

plot. We found that the ACF plot, however, may falsely show significant autocorrelations due 
to a change in the mean level in an otherwise random time series. Therefore the ACF plot 
was supplemented by a non-parametric run test of randomness since the run test of 
randomness does not react as much as the ACF plot to mean level changes. 

 
Eleven of the 12 time series of colorometric quantities that comprised more than one 
reagents subseries were (as whole series) significantly autocorrelated as evidenced by the 
ACF plot. Among these 11 time series, there are two series that are significantly 
autocorrelated, as evidenced by both the ACF plot and the non-parametric run test. 
 
The non-parametric run test shows that among 12 time series only two time series are 
autocorrelated, which contradicts the results based on the ACF plot. In each of the 12 cases, 
treating the reagents lot as a factor, the one-way ANOVA showed that the mean level 
changed significantly between reagents subseries. This was interpreted to indicate that the 
observed autocorrelation based on the ACF for the whole series was spurious and was largely 
a reflection of the change in the mean level caused by the shift of the reagents lot. We 
conclude that in this case the ACF plot is not appropriate to test the significance of the 
autocorrelation when possible mean changes occurred.   
 
Of the 33 reagents subseries/series (excluding the time series that only included 
measurements using the same reagents lot) 11 were autocorrelated, seven as evidenced by 
the ACF plot alone and four as evidenced by the ACF plot as well as the non -parametric run 
test.  
 
The ACF plots showed that all four electrolyte time series (L-NA, H-NA, L-K and H-K) and 
all diluent subseries  (except those of L-K) were autocorrelated. Only in case of the L-NA 
series and the diluent subseries 1 of L-NA did the non-parametric run test show a significant 
lack of randomness. The ANOVA showed that in all diluent subseries except subseries 1 of L-
K did the mean level change significantly between electrode subseries and in all time series 
except that of L-NA did the mean level change significantly between diluent subseries. 
  
When the X charts were constructed based on the first 50 values and applied to the whole 
time series in each of 22 quantities, 153 (or 5.64%) values fell outside the control limits while 
791 (or 29.1%) fell outside the control limits when the EWMA or EWMAST charts were used. 
 
However, when the control charts based on the first 50 values of each subseries were applied 
to each subseries, only 19 out of 2714 values or 0.70% fell outside the control limits when the 
EWMA or EWMAST charts were used. Since 22 quantities are measured per day, this 
corresponds approximately to an alarm every (2714/22)/19 = 6.49 days. For the subseries 
showing a significant autocorrelation as based on the ACF, the result was 0.83% (13 out of 
1564), while it was 0.52% (6 out of 1149) for those showing no autocorrelation. For the X 
chart, 12 out of 2714 values or 0.44% fell outside the control limits. This corresponds to an 
alarm every (2713/22)/12 = 10.3 days.  For the subseries showing a significant 
autocorrelation as evidenced by the ACF plot, the result was 0.58% (9 out of 1149), and for 
those not showing a significant autocorrelation it was 0.26% (3 out of 1149). 
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One of the purposes of a control chart is to give a timely warning when something unusual is 
happening and only then. Thus, when a predictable change in the mean level is taking place, 
we do not want the control chart to give any warning. For this reason, a new control chart is 
constructed each time the QC material lot is changed because the mean level of the QC 
measurements is known to change somewhat when the lot is changed. In this study we used 
the ANOVA to demonstrate that the mean level of the QC measurements is also changing 
significantly whenever the analyzer is recalibrated or the electrolyte diluent lot is changed. 
In the majority of cases the assumption of   independence of measurements within groups 
was met. In a few cases, however, the non-parametric run test of randomness showed that 
the time series compared in the ANOVA were not random and thus the assumption of 
independence of the measurements was not met. The conclusions therefore should be 
tempered accordingly in these cases. Still it is fair to conclude that for the majority of 
quantities as measured using the analyzer  chosen by us, recalibration subsequent to a 
change of reagents lot does not prevent a significant change in the mean level to take place 
and a change of diluent lot causes the mean level of the electrolytes to change significantly. 
Furthermore, the magnitudes of these changes were such that they were counterproductive 
to the purpose of establishing an early warning system since they created a lot of false 
alarms.  
 
Our recommendation is that prior to each change of reagents (or diluent) lot for the 
measurement of the patient samples, QC measurements are made using the new lot and 
done daily for 30 – 50 days in parallel with the QC measurements made using the old lot to 
build a historical data base. This data base then could be used to construct a control chart 
that is applied when the reagents (diluent) lot is changed.  Since autocorrelation could 
change with a change of reagents lot, it is recommended that the autocorrelation structure be 
updated over time and the EWMAST chart used in place of the EWMA chart in the presence 
of a significant autocorrelation. Since the magnitude of the autocorrelation may vary over 
time, it is still an unresolved problem, though, that the test for autocorrelation has to be 
based on the most recent 50 observations while the correction is applied prospectively. We 
found that changing the disposable electrode had a significant effect on the mean. It is not 
practical though to construct a new control chart each time the electrode is changed. 
Although the electrode is being changed repeatedly and the mean level therefore is changing, 
the X chart is working well in the sense that not too many false alarms are generated.  
However, this type of warning system will miss changes in the mean level that are not 
substantially higher than that caused by changing the electrode. 
 

In summary, it is recommended to have new control charts constructed each time when the 

reagents lot is changed. The autocorrelation structure should be monitored and whether the 
EWMA or EWMAST chart is used should depend on whether autocorrelation is present or not. 
For the electrolytes it is recommended that the X chart be used and that new control charts are 
constructed each time the diluent lot is changed. 
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Generalized confidence intervals (GCI) have been used in many practical 

problems where traditional frequentist approaches do not provide useful 
solutions. In spite of the large number of successful applications of GCIs reported 
in the literature, it is surprising that there are no published results that discuss 
either small sample properties of GCIs or their asymptotic behavior. We show that, 
under reasonable assumptions, GCIs have asymptotically correct frequentist 
coverage. This result provides a frequentist justification for GCIs. 
 
 

Tsui and Weerahandi (1989) introduced the concept of generalized P-values and 

generalized test variables which are useful for developing hypothesis tests in situations 
where traditional frequentist approaches do not provide useful solutions. Subsequently, 
Weerahandi (1993) introduced the concept of a generalized pivotal quantity (GPQ) for a 
scalar parameter θ, using which one can construct an interval estimator for θ in situations 
where standard pivotal quantity-based approaches may not be applicable. He referred to 
such intervals as generalized confidence intervals. Since then, several GCIs have been 
constructed in many practical problems. These intervals do not always have exact frequentist 
coverage. Nevertheless, results of simulation studies reported in the literature appear to 
support the claim that coverage probabilities of GCIs are sufficiently close to their stated 
value that they are in fact useful procedures in practical problems. In spite of the large 
number of successful applications of GCIs reported in the literature, it is surprising that 
there are no published results that discuss either small sample properties of GCIs or their 
asymptotic behavior. 
 
A simple test case for the application of GCIs is the Gaussian two-sample problem with 
heterogeneous variances where one is interested in a confidence interval for the difference of 
the two means. This is the well-known Behrens-Fisher problem for which Behrens had 
proposed a solution in 1929 and later, in 1935, Fisher gave a justification for it based on the 
fiducial argument.  More recently, Weerahandi (1993) derived a GPQ for the difference 
between the two means and remarked that the resulting interval coincided with the fiducial 
solution. 
 
In this work we have identified an important subclass of GPQs, which we call Fiducial 
Generalized Pivotal Quantities (FGPQ) for reasons to be discussed shortly. We also provide 
some general methods for constructing FGPQs for large classes of problems. Nearly every 
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published GCI can be obtained using FGPQs. More importantly, and perhaps of greater 
interest to practitioners, we also show that, under reasonable assumptions, GCIs based 
on FGPQs have asymptotically correct frequentist coverage. This result provides a 
frequentist justification for GCIs (and also for generalized tests, although our focus here is 
confidence intervals) when the generalized pivotal quantity is chosen appropriately.  
Additionally, we provide a number of examples to illustrate these results. 
 
The reason that we chose the name FGPQ is that generalized confidence intervals based on 
FGPQs are, in fact, obtainable using the fiducial argument of R. A. Fisher within a suitably 
chosen framework such as the pivotal quantity approach of Barnard, structural inference of 
Fraser, and functional-model basis for fiducial inference discussed by Dawid and Stone 
(1982).  We establish the connection between FGPQs and fiducial distributions by showing 
that, given a fiducial distribution for a parameter, there is a systematic procedure for 
constructing a FGPQ whose distribution is the same as the fiducial distribution.  As a 
byproduct, this connection of FGPQs with fiducial inference leads to a frequentist 
justification for fiducial inference in many settings. In fact, FGPQs provide a natural 
framework for associating a distribution with a parameter. 
 
 

The main result of our work is a theorem to the effect that, under fairly general conditions, 

GCIs obtained from FGPQs have correct asymptotic coverage. We consider some familiar 
examples and illustrate the application of the theorem. We then turn our attention to some 
general methods for constructing FGPQs.  First we describe a simple recipe for constructing 
FGPQs and discuss the scope of application of this recipe. The procedure is illustrated with 
some examples of GPQs previously not discussed in the literature. We show that these GPQs 
(actually FGPQs) satisfy the conditions of the main theorem so that the resulting GCIs are 
guaranteed to have the correct frequentist coverage asymptotically.  We also introduce two 
additional methods for constructing FGPQs that extend the range of problems for which GCIs 
can be developed. The application of these methods is illustrated with new confidence 
intervals for some well-known problems. We discuss connections between GPQs and fiducial 
inference and touch upon non-uniqueness issues associated with GCIs and fiducial intervals. 
This work has been submitted to JASA. 
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Figure:  Box plots for the benzoylecgonine concentrations based on measurement results for 
Level 3.  
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The NIST Standard Reference Material (SRM) 1508a is used for validating 

methods for the determination of benzoylecgonine (cocaine metabolite) in human 
urine. The SRM was produced in 1993.  Currently, the SRM has been re-measured 
and is going to be recertified. There are three benzoylecgonine nominal 
concentration values (called levels) for this SRM.  For each level, the data consist 
of the measurement results obtained from three distinct analytical methods at 
NIST in different years, i.e., methods GC-MS and LC-TMS in 1993, GC-MS and LC-
EMS in 1997, and LC-EMS in 2004. The sample sizes of the measurements for these 
methods are different. 

 
 

The recertification is based on the combination of the measurement results from these 

methods for these years. For statistical analysis, we treated each method/year as one 
individual method. Therefore, for each level we have results from five measurement 
methods. In this study, we considered several different statistical models and corresponding 
estimators for the certified value and its uncertainty. 
First, for a given level we assume a simple model with equal mean: 

ijij eX += µ      (1) 

where ijX  is the jth measurement readout based on the thi method ( p,...,2,1i =  and 

in,...,2,1j = ) and µ  is the mean value of the concentration of benzoylecgonine. The ije ’s are 

the random errors with
2var[ ]ij ie σ=  for the ith method. In this case, a weighted mean, in 

particular the Graybill-Deal estimator, can be used to obtain the certified value, with 

weights based on the reciprocals of the 2
iσ ’s, or their estimators. However, based on the data 

for some levels, the means corresponding to the measurement methods are significantly 
different. Thus, the model may not be appropriate and it was our understanding that the 
uncertainties of the certified values seem too small in those cases.  
 
Another model we considered is the random effects model  

ijiij eX ++= αµ     (2) 

where iα  is the random effect of the ith method with [ ] 0iE α =  and [ ] 2var ασα =i , and ije  is 

the random error with 
2var[ ]ij ie σ= . The model in (2) is similar to the model in (1) except 

that it includes an additional variance component modeling the between subset variability. 
Note that the means of the ijX  are the same for different measurement methods, as is also 

true for the model in (1).  Several estimators were used, including MLE, the Kenward-Rogers 
estimator, and the Mandel-Paule’s estimator, yielding similar results. However, we found 
that the resultant confidence intervals for the mean are sometimes too wide and therefore 
are not suitable. 
 
Lastly, we considered a Bayesian approach [1] to estimate the consensus mean from the 
results of multiple methods. The model assumes that the mean values and variances of the 
subsets are not necessarily the same. That is, for each level 

ijiij eX += µ      (3) 
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where iµ  is the true value of the measurand determined by the ith method. In general, a 

weighted mean as the estimator of the consensus mean and the corresponding uncertainty 
are given in Proposition 3 in [1], treating the unweighted mean as a special case.  For 
illustration, in the figure above, the blue and red solid lines represent the consensus means 
obtained by unweighted and weighted mean estimators, respectively, based on the Bayesian 
approach. The blue and red dotted lines mark the 2-sigma coverage intervals for the 
consensus mean, using the unweighted and weighted mean estimators, respectively. Since 
the Bayesian approach accommodates the differences among the means as well as the 
variances, it is more flexible and yielded satisfactory results. 
 

We conclude that since the Bayesian method provided convincing results, the estimated 

consensus means and their uncertainties are used for the certificate of this SRM. 
 
Reference 
[1] H. Liu and N. Zhang (2001), Bayesian approach to combining results from multiple 
methods, Proceedings of the Section on Bayesian Statistical Science, American Statistical 
Association.  
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4  Statistics for Systems 
 
 
Research at NIST is heavily engaged with complex systems: natural physical 
systems, engineering systems for instrumentation and measurement, and 
computational systems for simulation and visualization.  The roles of 
statistics are several:  modeling to mimic and understand natural system 
behavior, data analysis to characterize engineering system properties and 
software development to govern system performance, and verification and 
validation of computational systems.  Each of these tasks requires immersion 
in the science or engineering of the system itself as part of a multi-
disciplinary team approach with the common goal of bringing to bear deep 
understanding of the system from scientifically diverse points of view.    
 
Long-term collaboration on the study of ultra-cold subatomic particles has 
resulted in integration of stochastic elements and random behavior into 
mathematical models of particle behavior and to the delineation of the critical 
experiments to test the particle theory.  Internal software, embedded in high-
precision instruments for self-calibration, and painstaking analysis and 
decomposition of noise for high-speed electronics have led to a new waveform 
paradigm now being explored and developed.  An overwhelming challenge to 
combine four massive computational engines in sequence to simulate the 
complex failure process of the World Trade Center collapse must draw on 
classical experimental design strategies to organize the simulation 
experiment to test various theories of the initial failure mode and the causal 
sequence of structural failure.  Statistics for Systems is not defined in terms 
of types of models; rather it is the complete integration of statistics and 
probability into the science and engineering. 
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4.1  Statistics for Geochemical Surveys 
 
James Yen 
Statistical Engineering Division, ITL 
 
Andrew Grosz 
United States Geological Survey 
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The figure on the left depicts the underlying geological formations that make up Florida’s 
landmass.   The figure on the right divides Florida into regions of different land utilization or 
land cover. 
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SED and the United States Geological Survey (USGS) have initiated an effort to 

apply modern statistical methods and expertise towards analyzing outstanding 
issues in geology and geochemistry that have arisen from USGS studies. 
 

The U.S. Geological Survey is compiling a treasure trove of geochemical data based on 

thousands of samples taken throughout the United States.  These data will include 
measurements from previous studies, surveys that are ongoing, and re-analyses of existing 
past samples.  The relative quantities of a list of minerals have been measured by several 
analytical methods such as neutron activation analysis and hydride atomic absorption.  In 
addition, the data may include various sample and site attributes, such as description of the 
vegetation around the sample site, and whether it was taken from soil sample or from stream 
sediments. We wish to explore how the different mineral concentrations associate with each 
other and with various attribute variables. 
 
As an example, excessively high ground concentrations of arsenic can be harmful to human 
health.  It will be useful to estimate baseline arsenic levels in order to determine which areas 
are suitable for remediation.  An area’s mineral concentration levels are intimately related to 
its geologic origins.  For example, is the land part of an ancient seabed, or do the 
predominant rock formations have a volcanic origin?  The first picture on the previous page 
shows the division of the state of Florida into different geologic regions; more exactly, it 
shows the samples where information about the underlying geologic formations is available.  
The classifications are nominal.  The thick band in the Florida panhandle is a graphical 
artifact resulting from a stand-alone, high-density study in the Tallahassee area.  
 
There can also be anthropomorphic reasons for elevated arsenic levels.  For instance, 
agricultural areas may contain a residue from repeated applications of pesticides.  The 
picture on the right depicts the sample locations in Florida where land use/land cover 
information is available.  As with the other picture, this figure has nominal classification 
classes and the thick band in the Tallahassee area.  We wish to employ multivariate spatial 
techniques that will disentangle the different environmental and geologic effects related to 
the concentration level of metals like arsenic. 
 
There are a host of other questions that bear investigation.  For instance, some groups of 
metals tend to occur in tandem, indicating the need for compositional methods involving log-
ratios.  Also, many observations of mineral levels are below the threshold of detection; how 
do we best incorporate those points into our analysis?  Finally, there are questions on how 
best to depict the data involving multiple minerals into maps and how to calculate and 
incorporate uncertainties into maps. 
 

Future work may include possible joint research efforts with the U.S. Army, DARPA, and 

the metals industry, with the objective of locating within the United States more viable 
sources of titanium, a metal for which the critical military and industrial demand greatly 
exceeds the current supply. On the statistical front, we hope that this work leads to advances 
in data mining techniques for spatial multivariate data that are applicable to myriad 
problems other than metals mining.  A long-term goal is development of a metrology of 
mapping that associates appropriate uncertainties with maps.  
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4.2  Charpy Impact Machine Verification Program 
 
Jolene Splett and Jack Wang  
Statistical Engineering Division, ITL 
 
Chris McCowan and Tom Siewert 
Materials Reliability Division, MSEL 
 

     (a) 

     (b) 
 

     (c) 
 
Figure 1.  (a)  Deviations of customer average from reference value versus customer range for 
the low energy level.  Plots (b) and (c) show normalized deviations of customer average from 
reference value versus customer range for high and super-high energy levels, respectively.  
Horizontal reference lines represent current ASTM E-23 verification limits; vertical reference 
lines represent proposed limits to the customer range. 



 61

The Charpy impact test is one of the most common tests used to quantify the 

breaking strength of materials. The test is implemented by striking a small, 
rectangular metal specimen with a large pendulum and recording the energy 
absorbed by the specimen as it breaks.  
 

NIST administers a program to verify the performance of Charpy impact machines by 

selling specimens with certified breaking strength. The verification program works as 
follows. NIST obtains a pilot lot of 75 Charpy specimens from a supplier and then measures 
the breaking strength of the specimens using three master machines. If the measurements 
meet certain criteria, then the rest of the specimens are machined and sent to NIST. An 
additional 15 specimens are selected at random from the lot and broken. If the breaking 
strength of the additional specimens is in agreement with the pilot lot, then the lot is 
certified as a reference material by NIST. Customers test sets of five specimens and then 
return the broken specimens and observed values to NIST for analysis.  The data are stored 
in a database for future reference. 
 
The Charpy verification program is conducted in accordance with ASTM Standard E-23. 
However, the verification limits stated in E-23 are somewhat arbitrary and there is no limit 
to variation.  We analyzed historical data comprised of customer measurements and 
summarized the results in the paper, “Analysis of Charpy Impact Verification Data:  1993-
2003.”  The goal of the paper was to provide evidence that the current verification limits were 
performing well and to propose a limit to variation.  Since the true breaking strength of a 
verification specimen is unknown, it is impossible to evaluate the absolute performance of 
Charpy machines.  We can, however, evaluate machines relative to each other.  Thus, we 
recommended that the range of customer data be less than the 95th percentile of the ranges 
observed for the historical customer data. 
 
The development of an international Charpy verification program is very desirable given the 
current global economy.  A three-year international study to compare reference machines 
and verification specimens over time was completed in the spring of 2004.  The data were 
analyzed by SED staff and the results documented in the paper “International Comparison of 
Impact Reference Materials (2004).”  The paper was a joint effort by study participants at 
four national measurement laboratories.  We found that verification specimens appeared to 
be stable over the three-year test period, and that the Charpy machines under test were 
significantly different from each other, especially at low energy levels.   
 
The two papers, co-authored by SED staff, were presented at the Second Symposium on 
Pendulum Impact Machines:  Procedures and Specimens held on November 10, 2004 in 
Washington D.C.  The purpose of the symposium, sponsored by ASTM Committee E28 on 
Mechanical Testing and its Subcommittee E28.07 on impact testing, was to discuss issues 
pertaining to Charpy impact machines and address practical problems faced by those who 
perform impact tests and those who develop the standards.   
 

Accurately determining the breaking strength of metals is critical in the construction of 

bridges, buildings, and pressure structures. In FY2001, about 1000 customers participated in 
the Charpy impact machine verification program.  The work completed in the past year will 
hopefully help change verification limits specified in ASTM E-23 and initiate discussion on 
the development of an international Charpy verification program. 
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4.3  Robust Separation of Background and Target Signals in Radar 
Cross Section Measurements 
 
C. M. Wang 
Statistical Engineering Division, ITL 
 
L. A. Muth 
Electromagnetic Technology Division, EEEL 
 

 
 
 

 
 
 

 
The top shows the Arrow III artifact target mounted on a pylon (top) to obtain phase-
dependent RCS measurements to separate the target and background signals, primarily at 
VHF and UHF. The bottom shows a 69-inch diameter offset calibration cylinder to be 
mounted on a rotator on a pylon. When the cylinder is rotated, the phase of the received 
signal varies. By separating the cylinder and background contributions, calibration accuracy 
can be improved. 
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The complex electric field data includes RFI signals (top) that can degrade the determination 
of the background signal when measuring the Arrow III artifact. The RFI and other outliers 
(x) are identified (bottom) using the LMS criterion. A more accurate background signal is 
then determined using the ODR procedure. 
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Coherent measurements of radar cross section (RCS) on a target moving along 

the system line-of-sight in free space will trace a circle on a plane.  The presence of 
additional complex background signals (including stationary clutter, target 
support and averaged target-mount interactions), which do not depend on target 
position, will translate the origin of the circle to some point on the plane. The 
presence of outliers (mostly due to rf interference) can introduce significant errors 
in the determination of the radius and center of the circle. We have implemented a 
combination of a robust and efficient algorithm to eliminate or reduce the 
influence of outliers, and then to separate the target and background signals.  
Concurrently, the influence of noise is also reduced. Thus, we can obtain both a 
target-independent estimate of the background and a background-free estimate of 
the RCS of calibration artifacts. 
 

The RCS of a target is, by definition, the squared amplitude of the electric field scattered 

by a target located at infinity when illuminated by a plane wave. In practice, the reflected 
electric field is measured monostatically or bistatically at a large distance d  between the 
target and the transmitting and receiving antennae, such that π2>>kd , where k  is the 
transmitted wavenumber. The measured signal S  is the resultant of a theoretical electric 
field scattered by the target, plus fields that originate from the measurement environment, 
and distortions due to noise, drift, unknown instrumentation pr oblems and rf interference 
(RFI).  The measured complex electric field S  can thus be written as 
 

odnIberebrS ii +++++= βθβθ ),,,(  

 
where r  and θ  are the amplitude and phase, respectively, of the reflected electric-field 
signal from the target (which could possibly include in-phase error signals), b  and β  are the 

amplitude and phase of the electric field originating from the environment (mostly clutter, 
but could also include calibration and instrumentation effects), I  is the target-mount 
interaction, n  is noise, d  is drift, and o  represents the outliers (e.g., rf interference that 
inevitably shows up in real data). The first term in the equation describes a circle centered 
on the origin as θ  varies from 0 to π2 , and the second term is a constant that moves the 
center of the theoretical circle. Obviously, if we can determine and remove the background 
signal b  from the data, the measurement error can be significantly reduced.  
 
The orthogonal distance regression (ODR) can be appropriately used to obtain the 
parameters of phase-dependent RCS data, since both components have measurement errors. 
The ODR, however, lacks robustness in the sense that even a single outlier can significantly 
degrade the accuracy of the estimated parameters. As has been pointed out, our 
measurements (and all RCS measurements) are usually subject to a large number of outliers. 
We use a least median of squares (LMS) criterion as an outlier -identification tool in RCS 
measurements.  Once the contamination by outliers has been reduced, we apply ODR to the 
filtered data to obtain estimates of the parameters r  and b . 
 
To develop an LMS-based outlier detection routine for RCS measurements, we use the 
parametric equation 
 

0122 =++++ cyBxAyAx  
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where 0≠A , to represent a circle (assuming that the circle does not pass through the 

origin).  Given a set of circle data { }niyx ii ,,1),,( …= , the LMS estimate of parameters A , 

B , and C  is obtained using  
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Residuals obtained from the LMS fit are reliable indicators of outliers.  Specifically, we use 
the following steps to identify outliers for RCS data. First, obtain parameter estimates 

,~,~,~ CBA  together with a corresponding error scale estimate σ̂ . Secondly, compute the 

associated absolute standardized pseudo-residual given by  
 

,ˆ/)1
~~~~

( 22 σ++++= iiiii yCxByAxAR  

 
and remove a point from the data if its residual value iR  is larger than a threshold, such as 2 

or 3. 
 
 

We applied the LMS criterion to data obtained using the Arrow III artifact target to 

determine the background response. We also used a rotating offset cylinder to improve 
calibration accuracy.  In measurements on low-observable targets, the subtraction of the 
background signal from the measurement and calibration significantly improves the 
measurement accuracy.  This technique is especially useful for sub-wavelength translations at 
VHF and UHF frequencies, where spectral techniques are not applicable because the available 
arc of data is limited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 66

4.4  Harmonic Phase Standards Drift 
 
Dom Vecchia and Jolene Splett 
Statistical Engineering Division, ITL 
 
Jeff Jargon and Don DeGroot 
Electromagnetics Division,EEEL  
 
 
 

(A) 
 
 

(B) 
 

 
Figure 1.  (A) Phase angles of the fifth harmonic of the 20 GHz harmonic phase standard 
along with the estimated curve using the double-exponential decay model.  (B) Residuals 
from the fitted curve. 



 67

Radio-frequency (RF) measurements are applied extensively in the deployment 

of commercial wireless communication systems.  They are crucial to all stages of 
system development, from device modelling to circuit design and system 
performance characterization.  NIST develops and supports general methods for 
characterizing nonlinear components, circuits, or systems used in digital wireless 
communications, and transfers these methods through interactions with industrial 
research and development laboratories. 
 

Nonlinear vector network analyzers (NVNAs) are instruments capable of characterizing 

nonlinear devices under large-signal operating conditions, which are typical in wireless 
communications. To do this, complex travelling waves are measured at the ports of a device 
both at the stimulus frequency (or frequencies) and at other frequencies that are part of the 
response, including harmonics and intermodulation products created by the nonlinearity of 
the device, in conjunction with impedance mismatches between the system and the device. 
The calibration of a commercial NVNA consists of three steps: a relative calibration, an 
amplitude calibration that makes use of a power meter standard, and a phase distortion 
calibration that makes use of a harmonic phase standard. All are performed on a frequency 
grid related to the source tones and the anticipated nonlinear response of the device. 

 
The commercial harmonic phase standard (HPS), the main components of which are a power 
amplifier and a step recovery diode, is driven at a fundam ental frequency and produces a 
harmonic series output signal. The HPS, which is used as a transfer standard, is 
characterized by calibration on an independent measurement system in order to “know” the 
phase relationship of each harmonic of the HPS output signal to the fundamental frequency. 
In a previous study of typical commercial HPSs, we reported the discovery of considerable 
drift in time of “known” phase angles, with realistic waiting time to stability that was much 
longer than the warm-up time of 120 seconds set by the manufacturer’s control software. 

 
This year we developed an empirical model for the warm-up drift of an HPS, which enables 
us to predict the warm-up time required to produce stable phase-angle values on a future 
measurement occasion.  We found that two first-order exponential decay terms produced 
excellent representations of drift data collected to date in repeated calibration runs on the 
HPS device.   The two decay terms can reasonably be associated with the power amplifier 
and step recovery diode of the HPS. 
 
Based on the nonlinear decay model, large-sample uncertainties for the measurement “error” 
function in time can be applied to produce suitable statistical intervals for a waiting time 
appropriate to the tolerance requirements specified by the operator.  A paper entitled 
“Modeling Warm-Up Drift in Commercial Harmonic Phase Standards,” by Jeff Jargon, 
Jolene Splett, Dom Vecchia, and Don DeGroot was presented at the Conference on Precision 
Electromagnetic Measurements in London, UK, on June 27 - July 2, 2004, and is being 
revised for the IEEE Transactions on Instrumentation and Measurement. 
 

As wireless networks are pushed beyond the limits of linear network analysis, large signal 

descriptions are required to characterize nonlinear components, circuits, and systems.  
NVNAs are the instruments used to make the necessary measurements on various nonlinear 
devices used in digital wireless communications.  Statistical intervals for predicting waiting 
times to stability of drifting NVNA calibration standards will ensure the improved accuracy 
of NVNA measurements.   
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Los Alamos National Laboratory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Magnet trap for confining ultracold neutrons.  A rendering of the magnet coils and 
form is shown at the top.  The two graphs depict the magnitude of the magnetic field as a 
function of r (along z=0) and z (along x=0).  The two contour plots show the two-dimensional 
field profiles in the x-y plane (at z=0) and in the x -z plane (at y=0).  The dashed lines denote 
the physical walls of the trap. 
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Along with other experimental data, the mean lifetime of the neutron allows one 

to test the consistency of the standard model of electroweak interactions.  Further, 
the mean lifetime of the neutron is an important parameter in astrophysical 
theories.  Statistical contributions include:  birth-death stochastic models of 
neutron trapping process; likelihood models and estimation algorithms; optimal 
data collection strategies; methods for optimal redesign of apparatus; methods to 
account for background; and stochastic modeling of marginally trapped neutrons. 
 
 

In 1999, a team of researchers from Harvard University, Los Alamos National Laboratory, 

University of Berlin, and NIST succeeded in producing and confining polarized Ultra Cold 
Neutrons (UCN) in a magnetic trap.  In addition to the neutron lifetime experiment 
described here and other fundamental physics experiments, ultracold neutrons (UCN) have 
great potential in other major areas of research including neutron reflectometry and Quasi-
Elastic neutron scattering.  Neutron reflectometry is a technique which probes the 
composition and ordering of materials at surfaces and interfaces.  Quasi-elastic scattering is 
a general term given to scattering events in which the energy change of the neutron is very 
small compared with the neutron's kinetic energy.  Among the interesting cases for study 
using quasi-elastic scattering are large biological molecules and polymers.  UCN offer a very 
interesting probe for the study of the dynamics of large molecules.    
 
Data from the first generation neutron lifetime experiment using UCN yielded a neutron 
lifetime estimate of 660 s. The 68 percent confidence interval for this estimate is (490 s, 950 
s) [1-3].  Along with other experimental data, the mean lifetime of the neutron allows one to 
test the consistency of the standard model of electroweak interactions.  Further, the mean 
lifetime of the neutron is an important parameter in astrophysical theories.  Although this 
proof-of-principle result is not as precise as the currently accepted value (885.7 s with a 1-
sigma uncertainty of 0.8 s), a planned second generation experiment should yield a neutron 
lifetime more precise than the current value.  Furthermore, systematic errors should be 
much lower than in other kinds of neutron lifetime experiments. 
 
At the NIST Center for Neutron Research, ultracold neutrons are produced by inelastic 
scattering of cold neutrons from a reactor in superfluid 4He.  By creation of a single phonon 
in the superfluid, a cold neutron with wavelength near 0.89 nm can be scattered to a state of 
near rest.  (The mean wavelength of a thermal ensemble of neutrons at 12 K is 0.89 nm (8.9 
? ).)  Very low energy neutrons are trapped in a potential field formed by the interaction of 
the neutron magnetic moment and a spatially varying magnetic field.  The corresponding 
temperature of the trapped neutrons is less than 1 mK.  When the trapped neutrons decay, 
they produce energetic charged particles that generate scintillations in the liquid helium. 
The scintillations are detectable with nearly 100 percent efficiency. 
 
 
Statistical Analysis 
 
Statistical contributions fall in two general areas. We have developed stochastic models for 
the experimental data as well as estimation procedures based on either binned data or 
arrival time data.  Based on our stochastic models, we have studied a variety of strategies for 
estimation of the neutron lifetime. A primary consideration is how to efficiently estimate 
mean neutron lifetime with neutron decay data that are confounded with background noises.  
For instance, in one approach, we fit a model to the data from the primary experiment in 
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which neutron decay signals are contaminated by background [4,5]. In another strategy, two 
separate experiments are performed. One experiment measures pure background signals (to 
be called the background-only experiment) and the other is the primary experiment of 
measuring neutron decays that contain unavoidable background signals.  Neutron decay 
data are corrected for background with observations from the background-only experiment 
before the data are used for mean lifetime estimation.  In yet another strategy, we estimate 
the mean neutron lifetime using the joint likelihood with the data from the primary 
experiment and the background-only experiment [7]. 
 
The primary experiment is composed of two stages of durations fT  and dT , respectively.  In 

the first stage, neutrons are generated and trapped magnetically, and in the second stage 
neutron decay signals as well as background noises are recorded.  According to our birth-
death stochastic model of the trapping process [4, 5], the expected number of trapped 
neutrons is ))/(exp1( τλτ fT−− , where λ  is the rate at which neutrons enter the trap, and 

τ  is the mean lifetime of the neutron.  We developed a method to determine the optimal 

choice of the fill time fT  and the time spent observing decay events, dT .  The optimal values, 

found by simulations, minimize the asymptotic standard error of the lifetime estimate.  For 
the case where a two-parameter exponential model is fit to background-corrected data, we 
determined the optimal ratio of “background-only” measurements to primary measurements 
for various models of the background as well as optimal values of fT  and dT  [6].  For the 

case where a more complex model is fit to joint likelihood using realizations of the 
background-only measurement and the primary measurement, we determined fT , dT , and 

R  [7]. 
 
Based on our statistical analysis, a second generation version of the original experimental 
apparatus was redesigned so as to minimize the uncertainty associated with the lifetime 
estimate. In this study, candidate designs produced different background signals and 
different neutron intensities.   
 
During the last year, SED staff focused on modeling the complex behavior of marginally 
trapped neutrons [9].  These neutrons have sufficient energy to escape the trap, but do not do 
so immediately.  The decay of such marginally trapped neutrons can introduce systematic 
error into the lifetime estimate. Hence, they must be purged from the trap by varying the 
trapping potential in time.   
 
 

Along with other experimental data, the mean lifetime of the neutron allows one to test the 

consistency of the standard model of electroweak interactions.  Further, the mean lifetime of 
the neutron is an important parameter in astrophysical theories.   
 
For more information, visit: http://www.doylegroup.harvard.edu/neutron/neutron.html. 
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Human Resources Management Division, DACFO 
 
Joe Kau 
Applications System Division, DACFO 
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The NIST Authorization Act for Fiscal Year 1987 established the NIST Personnel 

Management Demonstration Project to demonstrate an alternative personnel 
management system.  It is now referred to as the NIST Alternative Personnel 
Management System (APMS).  One of the key concepts of the APMS is pay for 
performance.  The current NIST performance appraisal uses a 2-level rating 
system, a 100-point scoring system, and performance ranking within peer groups. 
 
. 

In recent years, the NIST Employee Survey and the Research Advisory Committee's Report 

to the Director have all identified a need for improvement to the NIST's current pay-for-
performance system (PPS).  The two major areas of concern are difficulties in understanding 
the method of scoring and determining pay increases, and the payout variations among 
employees with the same score within an OU or between OU's.  To address these concerns, 
various proposals have been developed by the People Council, some OU directors, and the 
NIST Director. 
 
SED, in collaboration with members of the People Council and the Office of Human 
Resources Management, analyzed graphically the 2001 and 2002 performance data to 
demonstrate the changes these different proposed systems will have on the current system, 
and to determine whether the intended improvements will be achieved by each proposed 
system.  After several presentations to the Senior Management Board, a final proposal was 
selected that proposes four major changes to the current PPS: 

 
(1) replace scoring and ranking with six performance levels; 
(2) link performance pay increases to the six performance levels; 
(3) convert pay increases to bonuses for pay-capped high performers; and 
(4) place annual cost-of-living increase at risk for low performers. 

 
We then performed a large-scale simulation study on the selected system when applied to 2 
labs and 1 extramural OU using the 2003 performance data.  Our simulation results clearly 
show a narrowing of the within OU dispersion in pay increases granted to employees.  These 
results were summarized in the February 2004 staff briefings on the proposed changes to the 
pay-for-performance system.   
 
Presently, SED is collaborating with staff of the Applications System Division in developing 
new PPS software to support different NIST user groups and their payroll management 
tasks. 
 
 

The new PPS has been approved and will be implemented with the 2005 rating period. 
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4.7  Estimating Clock Error Uncertainty 
 
Sarah Streett 
Statistical Engineering Division, ITL 
 
Karen Kafadar 
Guest researcher, Statistical Engineering Division, ITL 
 
Tom Parker 
Time and Frequency Division, PL 

Clock error uncertainty as a function of the length of the reporting or calibration interval 
corresponding to a single continuous run time of the fountain.  The dashed (solid) line 
represents a dead time (run time) period in the middle of the report interval.    
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The highly accurate cesium fountain, NIST-F1, is the current frequency standard 

at NIST.  However, this primary standard can only be run intermittently, 
necessitating the use of a very stable, though inaccurate, secondary standard.  In 
order to achieve an uninterrupted time measurement, the output from the 
secondary standard must be calibrated to the primary, after which model-based 
predictions are used for the frequency during the “dead time” intervals.  The 
complicated noise models used for these time standards create challenges in 
estimating the resulting clock error uncertainty. 
 
 

NIST-F1 provides the time standard through its measurements of the resonance 

frequency of cesium atoms.  The resulting measurements have an uncertainty of less than 1 
part in 10-15.  Due to the fountain’s restrictive operating standards, it may be scheduled to 
operate for a period of only 20-30 days. It is during this time period that a secondary 
standard is calibrated to the fountain.  The secondary standard actually consists of a group of 
5 hydrogen masers and 4 commercial cesium oscillators.  The hydrogen masers are very 
stable yet highly inaccurate and subject to frequency drifts.  The commercial cesium 
standards are more stable in the long term but extremely noisy.  Both are inferior to the 
fountain, yet can be operated on an almost continuous basis.  To calibrate the secondary 
standards, the output of one of the hydrogen masers is compared with the fountain.  The 
remaining secondary standards are then calibrated to the hydrogen maser using paired 
phase calculations.  The final measurements from the secondary standards are based on an 
ensemble average of all 9 oscillators. 
 
Although the fountain has scheduled operating periods, various factors can result in either 
erroneous measurements or periods of in-operation.  These time intervals, together with the 
fountain’s scheduled downtime, result in what are typically referred to as dead time 
intervals.  As a result of dead time, it is necessary to have a model that provides accurate 
measurements of the phase deviations based on the output from the secondary standards.  
Because these standards run almost continuously, a great deal is known about the nature of 
the noise that affects their associated phase measurements.  The typical noise model 
employed for these standards is a power-law model.  A power -law model has a spectral 

density function given by ∑ α
α fh , where hα is the intensity coefficient for the noise 

category.  In the models used for the phase deviations, α ranges over the integers from -2 to 
2.  The complexity of the model for the phase deviations increases the difficulty of obtaining 
accurate measures of clock error uncertainty. 
 
 

Our initial goal for this project is to provide a means for calculating the uncertainty in the 

phase deviations over a given time interval with periods of dead time interspersed.  Currently 
methods exist for only the most simplistic cases.  The second goal is to derive an improved 
statistical model for the phase deviations of the secondary standards.  The resulting model 
must incorporate the different types of observed noise as well as accurately reflecting the 
underlying physical mechanisms of the clocks.  
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4.8  Statistics for Computational Measurements      
 

Nien Fan Zhang, Charles Hagwood, Hung-kung Liu, Blaza Toman, James Yen 
Statistical Engineering Division, ITL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: The NIST Unmanned Ground Vehicle with sensor-centric navigation 
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Because of advances in computing power, measurements at NIST that were once 

too expensive or physically impractical are now being generated on the computer. 
These computer-generated measurements are being used instead of experimental 
laboratory measurements in nanotechnology, computational chemistry, intelligent 
control of mobile systems, and research of building structural failures.  Computer-
generated measurements are the outputs of well-defined mathematical models 
based on theoretical principles and simulation algorithms. We call these 
measurements computational or virtual measurements. 

 

A computational measurement is only as good as its accuracy. Therefor e, statistical 

oversight of virtual technology is essential for advancing this technology. Since most of these 
measurements are outside the realm of data-driven statistical methods, they present new 
challenges to statisticians. Statistical modeling and simulation are critical for obtaining 
accurate computational measurements. Advanced statistical methodologies are also needed 
to validate the corresponding computational measurements. More importantly, when 
computational measurements are used, the assessment of uncertainty for these 
computational measurements is vital to the measurement process. In 2004, a team of SED 
staff won a multi-year ITL competence award to address these issues with major emphasis 
on uncertainty for computational measurements. The Computation Measurements team this 
year has developed collaborations with individuals in the laboratories, CSTL, MEL, BFRL, 
and EEEL. 

In CSTL, computational measurements are being used in quantum and kinetic chemistry.    
An algorithm, which uses quantum mechanics to compute Schrodinger’s equation to 
determine the ground state, provides a computational measurement because no experimental 
data are used in the calculations. This generates substantial cost savings because 
experimentally measuring the heat required for the formation of certain molecules costs tens 
of thousands of dollars, whereas a computational measurement could be run on one’s laptop 
computer for a few hundred dollars.  
     
NIST’s Manufacturing Engineering Laboratory, in collaboration with the U.S. Army, is 
developing software systems that control autonomous vehicles, i.e., vehicles that function 
without being manned or are remotely controlled.  Such vehicles would make their decisions 
by incorporating information from an array of sensors. Testing and training unmanned 
vehicles physically requires a testing course and is very expensive.  MEL engineers have 
created a “virtual world” that recreates a piece of the world as inputs and outputs for the 
vehicle sensors.  This enables virtual testing of the vehicle’s control algorithm, which does 
not know or care that its input sensory information is simulated rather than real.  

 
In BFRL, physical tests of concrete formation are replaced by computer models in which the 
ingredients that make up concrete, such as cement paste, rock and sand, are modeled by 
spheres, ellipsoids, voids, and other shapes contained in a virtual matrix.  Incorporating the 
pertinent principles of chemistry and physics into the model yields virtual measurements 
about concrete properties  (mechanical, elastic, rheological, porosity). 
 

The proposed work has the real potential to impact e-Metrology. At NIST, computational or 

virtual measurements have been advocated and used in many areas and in many 
laboratories. However, there has been no systematic statistical research on how to validate 
computational measurements and assess the corresponding uncertainties.  
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4.9  Failure of Complex Systems and Verification/Validation of 
Computational Models 
 
James J. Filliben   
Statistical Engineering Division, ITL 
 
Jeffrey Fong   
Mathematical and Computational Sciences Division, ITL 
 
Emil Simiu 
Materials and Construction Research Division, BFRL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1. Verification and Validation of Virtual/Computational Systems 
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NIST's Building and Fire Research Laboratory (BFRL) provides state-of-the-art 

expertise in the characterization and modeling of structures.  To that end, over the 
past decade there has been an increasing BFRL commitment toward the 
development and construction of computational models to serve as cyberspace 
surrogates for a variety of building component response characteristics.  Long-
standing classic BFRL examples of such computational models include FDS (the 
Fire Dynamics Simulator), CONTAM (the multi-zone indoor air quality and 
ventilation analysis simulator), and VCCTL (the Virtual Cement and Concrete 
Testing Laboratory).  A more recent BFRL activity in this regard is the multi-stage 
finite element analysis (FEA) coding that was done in connection with the World 
Trade Center (WTC) collapse: 1) plane impact damage & fuel spillage; 2) fire 
spread; 3) thermal propagation through insulation from gaseous to steel and 
concrete; and 4) structural deformation/collapse.   
 
Some of the above problems involve failure/collapse of systems.  These types of  
problems fall under the general venue of an ongoing joint BFRL/ITL 5-year 
Competence Project: Failure of Complex Systems.  All of the above problems 
involve the construction of computational models to either emulate a physical 
reality that we can observe, or to predict a reality that we cannot observe (due to 
economic or physical constraints).  The quality assessment of these computational 
models falls under the general purview of V&V (verification and validation); that 
is, does the computational "black box" match the math (verification), and does the 
computational "black box" match reality (validation)?   

 
These two areas: failure of complex systems and V&V are not identical, but are 
similar enough in goals, issues, and methodology that we report on them herein as 
a single article. 

The Complex Systems Failure Analysis 5-Year Competence Project is a BFRL/ITL effort 

involving staff members fr om the BFRL/Fire Research Division (Howard Baum and Kuldeep 
Prasad), BFRL/Materials and Construction Research Division (Emil Simiu, Theresa 
McAllister, Dat Dutthinh, and Long Phan), ITL/Mathematical and Computational Sciences 
Division (Jeffrey Fong and Geoffrey McFadden), and ITL/Statistical Engineering Division 
(James Filliben). 
 
This project is in its second year.  Accomplishments in its first year focus primarily on one of 
the most visible "failures of a complex system" in modern times: The World Trade Center 
collapse.  Although complex systems of all scientific types (e.g., physical, chemical, electronic, 
networks, biological, etc.) can fail, this project focuses primarily upon structural failures 
(where failure modes usually stem from material inhomogeneity, plastification, instabilities, 
fractures, fatigue, thermal weakening, excess loading, etc.) of building elements.  In general, 
such structural failures can be of the following four types (see Figure 2):  wind-structural 
engineering failures, fire-structural engineering failures, collision -structural engineering 
failures, and multi-mode structural engineering failures 
 
1. Wind-structural engineering failures  include, for example, the manifestation of energy 
transfer by deflection, pressure, and stress  build-up in buildings induced by wind loads (e.g., 
hurricanes).  Such wind-induced responses commonly result in non-linear failure 
mechanisms.  
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2. Fire-structural engineering failures  include the heat transfer and subsequent failure 
of steel and concrete building components due to such components being in a temperature 
domain beyond their design specs.  Several challenges present themselves in this fire-
structural engineering area: for a given 1) building geometry, 2) fuel load, 3) office load, and 
4) environmental condition, how does the fire spread and what is the thermo-spatial response 
at various points in time?  How do the gaseous thermal conditions propagate through 
fireproofing to affect substrate (steel, concrete) temperatures?  How do such substrate 
materials respond (deflection, deformation, collapse) in the presence of elevated 
temperatures?  Fire-structural engineering played a major role in the analysis of the World 
Trade Center collapse.  In each of the above three WTC cases (fire spread, thermal 
propagation, and structural deformation), the lack of WTC on-site data resulted in 
computational modeling becoming the critical tool in the engineering analysis.  For the fire 
spread, BFRL's FDS (Fire Dynamics Simulator) was used to simulate fire spread across and 
between the one acre of space on a single WTC floor.  For the thermal propagation, FEA code 
was written to simulate resulting substrate temperatures under various fireproofing 
conditions.  For thermal deformation, FEA code was used to simulate steel/concrete 
deflection/failure  at elevated temperatures. 
 

Fluid-Structure Interaction (Wind)
172

 

Impact Damage to the North Face of WTC 1

FEMA 403, Figure 2-16

 
Figure 2. Engineering Failure Types: Wind/Structural (upper left), Fire/Structural (upper 
right), Collision/Structural (lower left), Multi-Mode Structural (lower right). 
 
3. Collision-structural engineering failures include instantaneous energy-transfer 
deformation and failure of structural components due to a catastrophic impact event 
(external impact or internal explosion) in a structure.  In this case, Homeland Security 
examples abound; for example, the impact of a projectile on a nuclear reactor, or the impact 
of the planes on the WTC buildings.  Another example of collision/structural engineering 
would include the simulated car crashes that automotive companies worldwide carry out to 
assess vehicle/occupant safety.  For this latter case, the existent data is a combination of 
physical crash tests and simulated FEA computational crash tests.  For the first two 
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examples, there is no (nuclear reactor) or little (WTC) physical data, and so heavy reliance is 
placed on FEA computational models.  Constructing these models is difficult and time-
consuming in itself; calibrating these computational models is yet another challenge; 
verifying and validating these computational models is an even more complicated challenge 
(from which we need to draw on principles and techniques from V&V as a discipline to 
provide structure and guidance). 
 
4. Multi-mode structural engineering failures  include all cases in which the final failure 
is contingent on two or more of the three above-described engineering failure types.  The 
most striking example of this is the WTC collapse in which the wind-structural engineering 
failure was negligible, but the fire-structural and collision -structural engineering failure 
modes were significant, and very complicated.  Being able to do reliable characterization and 
prediction is the ultimate goal of the Failure of Complex Systems Competence Project.  A 
necessary prerequisite for this ultimate goal is to first achieve a high level of 
characterization and prediction expertise in each of the three components (wind, fire, 
collision) which are the fundamental building blocks of multi-mode structural engineering 
failure.  
 
Note that of the above four general structural failure types, the Failure of Complex Systems 
Competence Project will formally focus in its remaining 3.5 years on structural failures of 
type 1 (wind-induced), type 2 (fire-induced), and type 4 (complex combinations of wind and 
fire).  After immediate completion of the WTC study, the type 3 failures (collision -induced 
structural failures) will receive relatively less attention in the Competence Project. 
  
Approach:  It is clear that progress in improved characterization/ prediction of structural 
failures is intrinsically tied in with the quality of the underlying computational models.  In 
an arena where "reality failure data" is limited (e.g., WTC) or non-existent (e.g., nuclear 
reactor projectile strike), the NIST scientist/engineer is increasingly becoming more 
dependent on conclusions drawn from our cyberspace representation of reality.  This places 
enormous demands on the construction of such computational models, their calibration, their 
verification, and their validation. 
 
All four of the above must be rigorously and successfully executed before the BFRL/NIST 
scientist/engineer can confidently declare fidelity to observed reality, and can confidently 
predict beyond observed reality. How is this done? 
 
To answer this question, we refer to Figure 1, which is a representation of the 3-step process 
commonly carried out in constructing computational models: 
1. Reality: this is observed (e.g., cantilever beam deflection & failure), partially observed 

(e.g., WTC) , or not observed at all (e.g., nuclear reactor projectile); 
2. Mathematics: upon observing/imagining reality, the scientist/engineer/expert forms a 

concept of the failure process, and after considerable work forms a mathematical 
description and solution based on that concept; 

3. Computational: if a mathematical solution is reached, the mathematics is converted into 
a computational solution--most commonly with the help of large-scale software platforms 
such as FEA (finite element analysis) or FDS (fire dynamics simulator). 

 
The above (Figure 1) trichotomy serves as the generic framework for how computational 
modeling is done.  This framework has had the benefit of 10+ years of extensive non -NIST 
interdisciplinary collaboration (AIAA and ASME), spearheaded primarily by Bill Oberkampf 
and colleagues at Sandia.  In addition to the  reality/mathematics/computational triangle, 
such historic collaboration over the last decade has resulted in a standardization of terms, 
the two most important of which are: 
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1.Verification: the computational solution matches the  mathematics. 
 2. Validation: the computational solution matches reality. 
 
Such terms are now universally agreed on across both structural mechanics and fluid 
mechanics arenas, as well as in DOD/military agencies.  The question that remains is the 
general and the detailed roadmap as to how to carry out a rigorous V&V for a specific project. 
 
NIST V&V Competence-Building: The catalyst for NIST attention to formal V&V was the 
WTC collapse with its extensive dependence on computational models (FDS and FEA).  The 
question arose as to how one goes about rigorously (that is, acceptable from a scientific, 
engineering, and statistical point of view) ascertaining the validity of such computational 
models. To rapidly bring NIST/ITL up to speed in regard to existing V&V methods, Jeffrey 
Fong and Jim Filliben have done an intensive V&V immersion over the last 6 months.  
 
 In addition to attending to the extensive existent V&V literature,  Fong and Filliben 
attended a DMSO (Defense Modeling and Simulation Office) conference headed by Simone 
Youngblood (who is the driving force behind DOD's V&V efforts).  Fong & Filliben also 
attended and participated in a DOD-sponsored workshop: Foundations '04: A Workshop for 
VV&A (Verification, Validation, & Accreditation) in the 21st Century (Tempe, AZ, October 
13-15). Immediately prior to that conference, they visited Southwest Research Institute (San 
Antonio) to learn of the V&V work of Ben Thacker (author of NESSUS: a probabilistic 
analysis tool for improving safety and reliability of complex systems) and Chris Freitas 
(whose fellow staff member showed them the SWRI on-site test results for the Columbia 
foam impact disaster). Immediately after the conference, Fong and Filliben visited Lawrence 
Livermore to give a talk and learn of Livermore's V&V work.  Finally, on November 8-9, 
2004, Jeffrey Fong's herculean efforts resulted in a NIST-DOD Workshop here in 
Gaithersburg: Verification and Validation of Computer Models for Design and Performance 
Evaluation of High-Consequence Engineering Systems--this workshop had an excellent 
representative attendance across government, DOD, and industry. 
 
Role of NIST in V&V: The NIST workshop served as a catalyst to force the issue and focus 
on what NIST/SED/MACD should be doing in regard to the national V&V effort.  There is a 
near-consensus opinion from the main players of the outside V&V community that they are 
looking to NIST to draw on its historic legacy, expertise, and excellence in standards to 
provide relevant V&V benchmarks to serve as references in the assessment of computational 
models. Ongoing SED/MACD efforts are currently being carried within NIST to determine 
the optimal nature, extent, (and funding) of such V&V benchmarking.  
 
V&V Benchmarks: The first step in such NIST work will probably be with verification (as 
opposed to validation).  The verification problem (which answers the question: Does the 
computational solution match the mathematics solution?) is inherently the easier of the two 
problems, and in itself does offer excellent insight as to the quality of the computational 
model. If NIST embraces this benchmark role, what benchmarks should NIST construct that 
would be best for the at-large V&V community?  That is a question that yields different 
answers from different experts.  At this time, Jeffrey Fong is leaning heavily toward the 
exploration of the "simple" cantilever --its deflection, its oscillation, its strain, its failure, etc.)  
The cantilever is an elemental structural engineering component.  There is much to suggest 
that it would be a natural starting place for a suite of foundational benchmarks for 
verification purposes--and then for validation purposes.  
 
The cantilever is an elemental component in the physical world at many levels: 
1. Macro: At the macro (1 meter) level, how good is the FEA code in predicting deflections, 

deformations, and failure for WTC structural components?  A necessary (but not 
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sufficient) step in the verification of such FEA code is the assessment of accuracy as 
compared to known mathematical solutions for a meter-sized steel cantilever.  

2. Micro: At the micro (10-6 meter) level, Dario et al. point out the feasibility of MEMS (Micro 
Electro Mechanical Systems) and bioMEMS-based miniaturized sensors (including 
cantilevers) fabricated out of inorganic or organic materials to measure force and position 
for prostheses optimization. Other authors (e.g., Scherer) point out how the cilia of the 
human ear are in essence micro-cantilevers.  Can computational models be constructed to 
serve as surrogates for predicting the frequency response properties of the cilia?  How 
good are these computational models relative to the mathematical solutions? 

 3.  Nano: At the nano (10-9 meter) level, a recent Science magazine article points out that  
the speed of the current Pentium 4 and Pentium 5 chips, and the future Pentium 6 chips 
depends directly on gate sizes which in turn are directly related to nano-cantilevers of 
the 50 nanometer to 10 nanometer range.  Do the computational model predictions for 
these nano-cantilevers agree with the mathematics solutions? 

 4. Ato: At the ato (10-18 meter) level, Craighead at Cornell points out that tiny cantilevers 
can be used as weighing devices to measure viruses and other biological structures. Can 
these ato-cantilevers be computationally modeled?  Do they agree with the mathematical 
models? 
 

Although good arguments have been presented from the outside that NIST 's benchmark 
efforts should be directed to artifacts other than the cantilever, there are opposing 
arguments (and the above scopes of application) that suggest that the cantilever may in fact 
be a good place for NIST to start.  This is a matter of ongoing in-house discussion.  
 
Benchmarks vs. Methodology: Other possible NIST contributions would include 
metrology-based statistical methodology for carrying out V&V; this is of course of 
considerable internal importance to NIST as reflected in Fong, Filliben, Sedransk, and 
Guthrie talks at the Gaithersburg V&V conference, but (as discussed earlier) the non -NIST 
V&V community consensus was that such methodology is of secondary importance to them at 
the moment, with the overriding priority being the actual selection and construction of 
relevant V&V benchmarks  that the larger V&V community would use immediately for code 
assessment and comparison. Such benchmarks would of course be a critical component in a 
larger NIST/ITL computational modeling testbed, which arguably could be a high-priority 
future ITL  capability/competence.  In this context, appropriate statistical methodology will 
in fact be demonstrated by example in the construction, processing, and analysis of the 
resulting benchmarks.   
 
Statistical Methodology : Although not an immediate deliverable, the issue of statistical 
methodology must nevertheless be in place for the successful construction and verification of 
benchmarks.  It is our view that statistical contributions for V&V fall into the following three 
general areas: 
 
1. Unifying Approach: This posits that for all V&V problems-- regardless of how 

different--a simple 5-step problem/ design/data/analysis/conclusion approach  (as shown 
in Figure 3) serves well as a general, unifying framework for systematically addressing 
such problems. 

2. Problem Classification:  Just because an engineer is dealing with computational 
models does not necessarily mean they are doing only V&V.  V&V is essentially a 
pairwise operation in which computational models are compared to mathematical models 
and to reality. Other operations (e.g., sensitivity analysis) are non-pairwise but are also 
of value in examining, characterizing, and gaining insight into the workings (and 
dominant factors) of a  computational model.  As it turns out, regardless of the 
engineering problem, we identify nine generic problems/activities (sensitivity analysis, 



 84

optimization, modeling, comparing, predicting, error analysis, calibration, verification, 
and validation) and encourage engineering specificity to choose/prioritize among them 
because different activities dictate different experiment designs, different statistical 
analyses, and different conclusion deliverables.   

3. Experiment Design Importance:  Although the above 5-step general approach 
involves both experiment design and statistical analysis, the former is very commonly 
under-appreciated and misunderstood by scientists/engineers when dealing with 
computational models..  The execution of high-quality computational models for realistic 
engineering systems is frequently time-consuming (days, even weeks) and complicated 
(involving many factors); hence this points out--just like with physical experiments--that 
computational experiments also have a need for statistically optimal designs:  designs 
which are both efficient (in cost and time) and yet potent (in being able to generate valid 
scientific/engineering conclusions).  

Figure 3.  5-Step General Problem Solving Approach 
 

Many methodological details (both design and analysis) remain to be worked out.  Again, 
statistical methodology is not seen by the larger V&V community as an end in itself.  This 
implies that the exposition of such methodology will not be an overt end in itself, but rather 
will flow naturally from its application to the quality benchmarks. 
 
e-Guide to the Design of Computational Experiments: On the other hand, a valuable 
overt forum for the demonstration and application of statistical methodology-- especially 
design methodology--to V&V and System Failure benchmarks is the planned e-Guide to the 
Design of Computational  Experiments. This e-Guide will  draw on metrology/methodology 
expertise from past SED/ITL  WEB-projects (e.g., the NIST /Sematech e-Handbook of Stat 
Methods at http://www.itl.nist.gov/div898/handbook/; and the joint BFRL/FHWA/ITL 
discipline-specific project COST (Concrete Optimization Software Tool)--a concrete 
experiment design/analysis system at http://ciks.cbt.nist.gov/cost/).  The e-Guide will go 
beyond both of the above products by 1) implementing significant enhancements 2) with 
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greater interactive features and 3) with improved capabilities resulting from the recent 
improved understanding of the characteristics of computational experimentation.  
 
Although analytic capabilities will of course be an important part of the e-Guide, the primary 
novel aspect of the proposed e-Guide is its focus on the much-neglected and little-appreciated 
design of computational experiments. Even more than the subsequent data analysis, the 
validity (and the domain of validity) of output from computational models depends critically 
on the ex ecuted experiment design.  The e-Guide will provide both the framework and the 
specifics for optimal-information-content experiment designs to apply to each specific 
computational model.  To do this, the e-Guide will first provide the unifying and simplifying 
high-level structure alluded to earlier--from problem-formulation, through design, through 
data collection, through analysis, through conclusion-formulation--that will be appropriate 
for all computational experiments. A second novel feature is the expert elicitation 
methodology whereby the e-Guide will—derived from experiment design principles and 
techniques--intelligently elicit from the scientist/engineer the specifics of the computational 
system at hand:  system output(s), factors under study, admissible domain regions, 
scientific/engineering experiment objectives, etc. 

 
Thirdly, within the limits of these computational specifics and time/cost constraints--the 
optimal experiment design (Orthogonal, Taguchi, Latin Hypercube, or other) will then be 
automatically constructed. Finally and most importantly, the e-Guide will be able to be used 
for computational systems at the component level up through the global level, and for 
computational experimentation problems of varied sizes and types, e.g., validation, 
sensitivity analysis,, optimization, uncertainty analysis, etc. 
 
The e-Guide will benefit computational modelers at all levels: developer, user, and decision-
maker.  
1. In the near-term, the e-Guide's structure and optimal designs will serve a critical role in 

NIST V&V benchmark and Failure characterization; 
2. in the intermediate term, the e-Guide will be a necessary component in a NIST 

configurable testbed for computational experimentation; 
3. in the long-term, the e-Guide will lay a sound foundation for accurate (and efficient) 

quantification of high-consequence complex system validation, verification, and reliability. 
 
Regarding funding for the e-Guide, a request has been submitted as an ATP/ITL Proposal, 
with operational  completion in 2.5 years.  The outcome is pending. 

Both the formal Failure of Complex Systems Competence Project and the yet-to-be-

formalized Verification/Validation of Computational Models Project reflect directly on the 
significant growth within NIST of computational experimentation. Progress in the production 
of V&V/Failure benchmarks and the development and application of associated methodology 
will yield immediate benefits (rigor, savings in cost/time, model-adequacy assessment, and 
accurate engineering predictions).  These benefits will accrue not only for the leading-edge 
BFRL wind, fire and structural engineering problems addressed in the Failure of Complex 
Systems Competence Project, but also for the multitude of computational modeling projects 
throughout NIST (involving standards, measurement services, event modeling, and other 
leading-edge scientific/engineering modeling--especially in biotechnology, nanotechnology, 
and defense/safety arenas where reality is difficult--if not impossible--to observe).  
Dissemination of concomitant methodology via the e-Guide will share these methodologies 
(and the benchmarks behind the methodology) to the computational modeling community 
beyond NIST. 
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4.10  Time-Base Corrections in Waveform Calibrations 
 
C. M. Wang 
Statistical Engineering Division, ITL 
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Optoelectronics Division, EEEL 
 
D. F. Williams 
Electromagnetic Technology Division, EEEL  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated eye mask test of a long random bit 
sequence transmitted by a fiber optic transceiver. 
The forbidden region in the pass/fail test is shown 
in the hashed region surrounded by a 10 % guard 
band. Although the simulated transceiver meets 
specifications, the time-base errors in the 
oscilloscope measurement (top) cause the 
transceiver to fail the test as some samples fall in 
the guard band. The bottom graph shows the effect 
of correcting the oscilloscope errors, clearly passing 
the transceiver that would otherwise have been 
rejected. 
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We develop a method of correcting both random and systematic time-base 

errors using measurements of two quadrature sinusoids made simultaneously with 
a waveform of interest. The new time base is estimated from the sinusoids using a 
weighted error-in-variables regression approach that accounts for relative 
contributions of additive noise and timing error. 
 

A waveform is a representation of a signal that varies with time.  The most familiar 

waveform is the sine wave.  Waveform measurements are required throughout the optical 
communications, computer, wireless communications, radar, and remote sensing industries.  
Waveform measurements are used to verify signal fidelity and standard compliance for the 
design and qualification of systems and components.  High-speed sampling oscilloscopes are 
often used for displaying waveforms.  Sampling oscilloscopes, however, suffer from several 
nonideal properties that must be characterized and compensated for.  One of these effects is 
the timing error.  At the ith sample, the timing error is the sum of a deterministic time-base 
distortion (TBD) ih  and a random jitter iτ .  Thus the ith sample of the waveform of interest 

g, as a function of time, is given by 

iiiii hTgy ετ +++= )(  

where si TiT )1( −=  is the target time of each sample, sT  is the target tim e interval between 

samples, and iε is random additive noise.  We assume the jitter and additive noise are 

independent zero-mean random variables with standard deviations τσ  and εσ . 

 
The TBD and jitter cause errors in the time in a waveform at which samples are acquired. 
These imperfections have tangible manufacturing costs.  For example, the oscilloscope is 
often used for eye mask tests.  Eye mask testing, shown in the accompanying figure, is a 
common pass/fail test for communications components. The eye diagram is obtained by 
plotting a long random bit sequence transmitted by a fiber optic transceiver as a series of 
short repetitive waveforms.  The hashed region in the figure is the forbidden region for the 
pass/fail test. This region is surrounded by a 10 % guard band. Although the simulated 
transceiver meets specifications, the frequency response and timing errors in the oscilloscope 
measurement cause the transceiver to fail the test as some samples fall in the guard band. In 
a recent survey, a leading manufacturer of 10 Gbits/s Ethernet transceivers claims that it 
rejects 10 % of these components due to oscilloscope measurement inaccuracies. 
 
The problem of estimating the TBD has been studied by many authors. Recent work has 
used a nonlinear least-squares approach that fits multiple measured sinusoids with multiple 
phases and frequencies to a distorted sinusoid model.  This approach performs well at 
discontinuities in the TBD and allows simultaneous estimation of the harmonic distortion in 
the measured sinusoids. The distorted sinusoidal model, with harmonics number hn , is given 

by 

[ ] ij

n

k
ijjjkijjjkjij

h

tkftkfy επγπβα +++= ∑
=1

)2(sin)2(cos , 

where jf  is the fundamental frequency of the jth measured waveform ijy  at the ith nominal 

time, ijiiij hTt τ++= .  The values of jα , jkβ , jkγ , and ih  can be estimated by using a 

weighted least-squares approach. To obtain a solution using this approach, we typically 
measure a set of sinusoidal waveforms at two or three different frequencies. Each set 
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includes two sinusoids that are approximately in quadrature at each frequency. Hence each 
set can have up to four or six waveforms. 
 
The problem of estimating jitter and correcting for its effects has also been addressed by 
many authors. The typical approach is to obtain the signal variance of independent, repeated 
measurements and use the approximate model  

222 ))(()(var τε σσ ii tgy ′+≈  

 
to solve for τσ . Here )( itg′  is the derivative of the ideal signal evaluated at iii hTt += . It is 

usually assumed that, on average, the jitter acts as a low-pass filter so that the average 
signal is the convolution of the ideal signal )( itg  and the probability density function )(⋅p  of 

the jitter: 

∫ −= τττ dptgtg ii )()())((E . 

 
The effects of the jitter can then be removed by deconvolution.  This approach, however, has 
the following problems: 
 

1. measurements must be repeated to find the mean and variance, 
2. estimates of the jitter variance from the approximate model are generally biased, 
3. )(⋅p  must be known and be the same over the entire measured waveform, 

4. the averaging process removes some of the inherent bandwidth of the measured 
signal, making the deconvolution subjective, 

5. deconvolution is an “ill-posed” problem, so that in the presence of noise there is no 
unique solution. 

 
Generally, it is desirable to avoid deconvolution, particularly in cases where the jitter is 
large, varies over the measurement time window, or has a non-Gaussian probability density. 
 
In the present work, we are interested in the total time-base error, i.e., the sum of the TBD 
and jitter. We use data at the different frequencies to estimate the parameters of the 
distorted reference sinusoids and the new time base ( ih  and ijτ ) simultaneously. Our 

approach is to apply the so-called errors-in-variables or orthogonal distance regression to the 
distorted sinusoidal model. We take advantage of the parallel design of many equivalent-
time sampling oscilloscopes. A result of the parallel architecture is that any jitter on the 
time-base delay generator is common to the sampling time of all the samplers in the 
oscilloscope mainframe.  Consequently, we can generate reference sinusoids and the signal of 
interest simultaneously, estimate the time-base error from the sinusoidal signals, and then 
apply the estimate to the signal of interest and compensate for timing errors in its 
measurement.   
 

We simultaneously estimate the systematic and random time-base errors of measured 

sinusoidal reference signals. Using the parallel sampling scheme, it allows us to use this 
estimate to correct the time-base errors in a simultaneously measured waveform by a factor of 
10, effectively replacing the time base of the oscilloscope with a time base provided by the 
measured sinusoids. This allows us to correct the timing errors that might be present with 
long waveforms or large jitter, and lowers the noise floor significantly in most measurements 
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5  High-D Statistics and Informatics 
 
 
The challenges in nanoscience, in bioscience, in measurement science and in 
information science are posed in high-dimensional terms. Data take the form 
of spectra and hyperspectra, of images either still or moving, and of 3–
dimensional reconstructions.  Obstacles to inference take many forms: 
exceeding computational limits, massive databases of inhomogeneous quality, 
multiple measurement scales (from nano to micro to meso to macro), and 
massive databases. 
 
Consequently, the Statistical Engineering Division is increasingly in demand 
to provide sound statistical analysis for high-dimensional, multi-scale 
problems and statistical inferences from massive databases with quantifiable 
uncertainties. Along with participation in multidisciplinary research projects, 
the Statistical Engineering Division is also building new competence and 
developing new methodology for high-dimensional statistical metrology. As 
the problems explode in ambition and complexity, Bayesian statistics offers a 
natural paradigm for embedding and continually revising information.   
      
Specific technological developments also drive the development of new 
statistical methods.  Mass spectrometers are everywhere in the Science 
Laboratories at NIST and elsewhere; microsensor arrays for trace 
contaminant detection systems and microarrays for gene expression are 
almost as ubiquitous.  The development of more generally applicable 
statistical metrology for High-D Statistics and Informatics will follow from 
the insight in defining and answering specific scientific questions.   
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5.1  Variation Linked to Sample Preparation in Protein Mass 
Spectrometry 
 
Walter S. Liggett  
Statistical Engineering Division, ITL 
 
Peter E. Barker  
Biotechnology Division, CSTL 
 
O. John Semmes  
Eastern Virginia Medical School 
 
Lisa H. Cazares  
Eastern Virginia Medical School 
 

Figure 1. Mean intensity spectrum after baseline correction for each of the 17 intervals                          
that are compared by functional CCA. 
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Background: Protein mass spectrometry when viewed as a measurement 

procedure presents performance issues that require identification of sources of 
measurement variation.   
 
Methods: Sources of variation are identified through statistical analysis of 
repeated measurements of a human serum standard.  Surface-enhanced laser 
desorption/ionization (SELDI) time-of-flight (TOF) mass spectrometry provided 88 
spectra from 11 protein chips, each with 8 spots.  The parts of these spectra in the 
mass-to-charge (m/z) interval (3300, 30700) are considered.  The statistical 
approach involves functional canonical correlation analysis (CCA) applied to 
disjoint sections of the mass spectra for the purpose of finding long-distance 
correlation structure.  Before this analysis, the spectra are normalized to remove 
spectrum-to-spectrum variation common to the entire interval.  Examination of 
the relation between the CCA scores and the spectra at each m/z shows the 
spectral peaks responsible for high canonical correlation.  
 
Results: We show that after normalization, the heights of some pairs of spectral 
peaks are correlated but others are not.  Of the 17 spectral sections considered, we 
choose the seven pairs with highest canonical correlation for examination.  Some 
pairs correspond to the singly- and doubly-charged ionization of the same protein.  
Other pairs in the seven may point to proteins with chemical similarities. 
 
Conclusions: It seems likely that sources of variation in the sample preparation 
step are responsible for high correlations between proteins separated widely in 
m/z.  Non-uniformity in the crystallization on the protein chip surface is a well-
known source of long-distance correlation, but normalization should remove its 
effect.  Thus, the remaining high correlations suggest other sources of variation in 
sample preparation. 
 

A statistical approach to finding long-distance correlation in replicate mass spectra 

provides insight into sources of variation in the measurement procedure.  The approach is 
functional canonical correlation analysis (CCA).  The insight is into the sample preparation 
step of protein mass spectrometry. 
 
The immediate purpose of our investigation is improvement of the measurement procedure.  
Insights into sources of variation should lead to proposals for reducing the effects of these 
sources.  Our data are a batch of functions, specifically surface enhanced laser 
desorption/ionization time of flight (SELDI-TOF) mass spectra.  The functions are all 
measurements of the same material, a human serum standard, not of different materials as 
in a case-control study.  Thus, the variation in the batch of functions arises from the 
measurement procedure, and characterizing this variation is a step toward improving the 
measurement procedure. 
 
The ultimate goal is development of biomarkers based on the measurement procedure.  
Improvement in the measurement procedure should help in reaching this goal.  Formulation 
of biomarkers involves, in addition, case-control studies based on data drawn from the 
different classes that the biomarker is to distinguish.  Statistical approaches to case-control 
studies differ from the approach in this paper. 
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Between two widely separated values of m/z, there might be strong correlation in the 
replicate-to-replicate spectral variation.  It seems likely that such correlation is caused by 
the sources of variation that lie in the sample preparation step rather than in subsequent 
use of the mass spectrometer itself.  In the case of SELDI-TOF mass spectrometry, the 
sample preparation step consists of applying the specimen as a coating on a protein chip with 
a surface that selectively binds to some proteins in the specimen but not to others.  The 
unbound proteins are washed off, and the remaining proteins are co-crystallized with a 
matrix and introduced into the mass spectrometer.  This sample preparation procedure 
contains at least one source of variation that can cause correlation between proteins with 
widely separated m/z values.  One source is the non-uniformity of the crystallization, which 
has a scaling effect that is routinely eliminated from the spectra by normalization.   Because 
of the possibility of other sources, characterization of long-distance correlation is important 
in assessing replicate spectral measurements. 
 
 To meet this need, we propose a method based on functional CCA applied to spectral 
segments from disjoint m/z intervals.  CCA differs from inspection of point-by-point 
correlation maps in that CCA determines for each interval in a pair the combination of 
spectral intensities that gives the highest correlation for the pair.  Data analysis for mass 
spectra usually begins with spectral peaks considered as the predetermined features of 
interest.  In contrast, CCA constructs a weight function that defines a feature for each 
interval in the pair.  These features are determined from the data rather than on the basis of 
predetermined peak shapes.  Thus, CCA takes into account variation in peak shape due, for 
example, to instrument overload or common modifications of proteins.  In this way, CCA 
exposes the full complexity of the long-distance correlation. 
 
The spectra obtained from the Ciphergen system require further preprocessing despite the 
preprocessing already applied.  In ideal terms, one might imagine an observed spectrum to 
be a superposition of peaks of various sizes.  Different peaks would correspond to different 
proteins or a protein with different charges.  Each peak would be centered at the m/z for the 
protein and charge, and the area under the peak would be proportional to the concentration 
of the protein in the spot from which the proteins were desorbed.  That a spectrum obtained 
from the Ciphergen system does not conform to this model exactly can be remedied in part 
with further preprocessing.  Because the observed spectra are not properly aligned with each 
other, we register the spectra.  Because the spectra have an additive baseline, we make an 
adjustment to remove it.  Because the constant of proportionality that relates the areas 
under the peaks to the concentrations at the spot on the protein chip varies from spectrum to 
spectrum, we normalize the spectra.  These preprocessing steps have typically been applied 
to the analysis of SELDI-TOF mass spectra.  A preprocessing step that we not apply is a 
square root or cube root transformation of the spectral intensities. 
 
Lack of horizontal alignment among spectra is an issue because functional CCA is based on 
scores each defined by the integral of a weight function times the spectrum.  The weight 
function is intended to emphasize or de-emphasize certain portions of each spectrum; for 
instance, the portion containing a spectral peak.  Emphasis will not be applied to proper 
portions of a spectrum if the spectrum is not properly aligned.  Spectral registration in this 
work is the same as the registration discussed in a previous paper.  We represent the spectra 
after registration by a spline composed of fifth-order polynomials between the knots and 
having a continuous fourth derivative at every point.  We denote registered spectra by 
y u i Ni ( ), , ...,= 1 , where the independent variable u  is the mass-to-charge ratio.  To obtain 

y ui ( ) , we interpolate spectrum i  as originally observed with a cubic spline and evaluate this 

spline at δ γi iu+ .  A previous paper discusses estimation of δ γi i i N, , , ...,= 1 .  We have 
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checked to see if this shift and scale form for the registration is valid beyond the interval 
previously considered and found no contradictory evidence. 
 
We would like to apply functional CCA to functions consisting of the superposition of 
contributions from individual proteins as discussed above.  Let these functions be denoted by 
ϕi u( ) .  We assume that we in fact observe 

 
y u u ui i i i( ) ( ) ( )= +β ϕ α , 

 
where α i u( )  is the slowly varying baseline and βi  is a scale factor that does not depend on 

u .  Because we do not want the baseline α i u( )  to influence the CCA results, we remove 

α i u( )  from y ui ( ) .  Moreover, because spectrum-to-spectrum variation in the scale factor βi  

can be expected, we want to distinguish this variation from other more interesting types of 
variation.  For this reason, we reduce the dependence on βi .  Our approach to these 

preprocessing steps does not provide estimates of ϕi u( )  but does provide modified spectra 

appropriate for functional CCA. 
 
We do baseline correction separately for each of the intervals we use in our functional CCA.  

We denote these intervals by [ ]L Uj j, .  The baseline-corrected spectra are given by 

 

y u y u
U L

y s dsi i
j j

i
L

U

j

j

B ( ) ( ) ( )= −
− ∫
1

. 

 
Underlying this correction is the assumption that α i u( )  is essentially constant over 

[ ]L Uj j, , which implies that y uiB ( )  does not depend on α i u( ) .  It is easy to show that 

y uiB ( )  is proportional to βi , a fact that is important in the normalization step described 

below. 
 

The mean of y uiB ( )  over i  is shown in Figure 1.  The 17 intervals [ ]L Uj j,  are indicated.  

We note that the baseline-corrected spectra y uiB ( )  are not always positive and are generally 

discontinuous from interval to interval.  We account for this in our application of functional 
CCA.  We also note that the y-axis scales for the three panels differ by a factor of 100. 
 
Our normalization is based on y uB( ) , the mean of y uiB ( )  over i .  If the deviations of the 

individual spectra are small relative to their mean, then instead of dividing by an estimate of 
βi , we can normalize by subtracting a quantity proportional to y uB( ) .  We normalize by 

computing the spectral deviations 
 

x u y u b y ui i i( ) ( ) ( )= −B B , 

 
where the estimate of bi  is given by 

 

b y s y s ds y s dsi i= ∫ ∫B B B( ) ( ) ( )2 . 
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The integrals that define bi  are over the union of all the intervals [ ]L Uj j, .  Note that the 

spectral deviations x ui( )  are not only normalized but also centered at the mean y uB( ) .  

Normalized spectra with the centering removed are given by x u y ui ( ) ( )+ B . 

 
An elementary look at the spectra after preprocessing is given in Figure 2.  This figure shows 
relations among three peaks, the largest peaks in intervals 7, 8, and 9.  Horizontally, this 
figure shows spectral deviations x ui( )  at the interval 8 peak, and vertically it shows the 

spectral deviations at the interval 7 peak and the interval 9 peak.  We see that the deviations 
are uncorrelated for intervals 7 and 8, but correlated for intervals 8 and 9.  Generalizing, we 
see that after normalization, some pairs of peaks are uncorrelated and others are correlated.  
This suggests the complexity of the correlation structure in which we are interested. 
 

Figure 2. For the largest peaks in intervals 7 - 9, peak height scatter plots showing differing 
degrees of correlation. 
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We examine only the leading canonical correlation between disjoint intervals, although there 
are subsequent canonical correlations that one could consider.  Central to functional CCA is 
the idea of a linear combination of the spectral values in an interval.  Such a combination can 
be called a feature of the spectrum.  For interval j , a weight function ξj s( )  specified for 

L s Uj j≤ ≤  defines such a combination.  Evaluation of this combination for a spectral 

deviation x ui( )  is given by 

 

ξ j i
L

U

s x s ds
j

j

( ) ( )∫ , 

 
which is the score for spectral deviation i .  Corresponding to a weight function, we have a set 
of scores, one for each spectrum. 
 
The leading canonical correlation in functional CCA can be specified in terms of two weight 
functions, ξj s( )  and ξk s( ) , with scores that have maximum correlation subject to penalties 

on the smoothness of the weight functions.  Were these weight functions given, then 
moments could be computed 
 

s
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The leading canonical correlation coefficient for intervals j  and k  is the value of sjk  

obtained by maximizing over the weight functions subject to 
 

{ }s D dsjj j j
L

U

j

j

+ =∫λ ξ2
2

1  

 
and 
 

{ }s D dskk k k
L

U

k

k

+ =∫λ ξ2 2
1, 

 

where the symbol D2  denotes second derivative.  The two constraints not only limit the sizes 
of the weight functions but also impose smoothness on the weight functions.  The second 
terms in the two constraints limit the sizes of the second derivatives of the weight functions.  
Positive values for these terms, that is, for λ j  and λk , are necessary if functional CCA is to 

give reasonable results.  Increasing the sizes of λ j  and λk  increases the smoothness of the 

weight functions. 
 
The baseline correction causes a problem in the use of this definition to compute the leading 
canonical correlation.  The problem is that the constraints on the weight functions are not 
satisfied for the constant weight function.  The reason is that the x ui( )  are orthogonal to the 
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constant weight function and consequently s sjj kk= = 0  for this weight function.  We solve 

this problem by adding a small randomly chosen constant to each x ui( )  in each interval.  

Thus, for the constant weight function, sjk  remains 0 while sjj  and skk  do not, and the 

weight functions for the leading canonical correlation have mean close to 0. 
 
To gain insight into variation in the measurement procedure, we examine pairs of intervals 
with high canonical correlation.  The leading canonical correlation coefficient for each 
interval pair is shown in Figure 3.  Note that this figure is symmetric because the correlation 
does not depend on the order of the intervals.  Moreover, the values on the diagonal are 1.  
This figure directs our attention to seven interval pairs: (4—9), (5—6), (8—9), (9—10), (9—
16), (9—17), and (16—17).  As shown in the next section, the high canonical correlations 
associated with these pairs seem to have scientific explanations.  Although other pairs also 
provide interesting insights, we will not discuss them. 
 

Figure 3. Leading canonical correlation coefficient for all pairs of intervals.  Pairs with 
highest correlation are of greatest interest. 
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In trying to understand the overall pattern in Figure 3, one might start with the notion that 
high canonical correlation generally does not occur without distinct spectral peaks in both 
intervals.  Figure 3 shows that the correlation is low for intervals 11 to 15.  Figure 1 shows 
that these intervals contain only minor spectral peaks.  It is interesting that interval 7 shows 
only low correlation despite its spectral peak.  This corresponds to the lack of peak -height 
correlation shown in Figure 2.  Interval 7 provides evidence that our normalization is 
effective in removing variation that affects all peaks proportionally.  We note that the 
smallest canonical correlation coefficient in Figure 3 is larger than 0.6.  The reason is that 
CCA always gives a positive coefficient because the algorithm is based on maximization. 
 

 
 
Figure 4. CCA results for intervals 4 (bottom) and 9 (top).  High R2 and high mean spectrum 
indicate highly correlated spectral peaks (e. g., m/z = 6950 and m/z = 13900).  R2 for spectra 
regressed on scores shows m/z values responsible for high canonical correlation.  The weight 
functions convert spectra into scores. 
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To answer the question of why a pair of intervals has a high leading canonical correlation 
coefficient, we attempt to identify the parts of the intervals primarily responsible.  As shown 
in Figure 4, we display for each interval, the mean spectrum, the weight function, and the 

R2  values for the spectra at each point in m/z regressed on the CCA scores.  The R2  value at 
a particular m/z is the fraction of the variation  of the spectra explained by the scores.  The 
mean spectrum shows locations of spectral peaks in the interval.  The weight function shows 
how the parts of the interval contribute to the scores for that interval.  The scores underlie 

the canonical correlation coefficient that we want to explain.  The R2  values show how the 
spectra in various parts of the interval are related to the scores.  Of initial interest in Figure 

4 are m/z values for which the mean spectrum and the R2  values are both high.  High mean 

spectrum indicates high protein concentration, and high R2  indicates a close relation to the 
scores that lead to the high canonical correlation coefficient. 
 
Figure 4 provides the basis for examining the canonical correlation between intervals 4 

(bottom) and 9 (top).  High mean spectrum and high R2  occurs for interval 4 at m/z = 6950 
and for interval 9 at m/z = 13900.  Apparently, these points correspond to the doubly- and 
singly-charged versions of the same protein.  In mass spectrometry, evidence of peaks 
corresponding to differing amounts of charge is not unusual.  More than this, Figure 4 
indicates that the measurement-to-measurement spectral variations at these two m/z values 
are closely related.  Identification of the underlying source of variation is an interesting 
question.  That these variations occur despite the normalization suggests that this source of 
variation affects at least one but not all of the proteins in the specimen. 
 

The R2  curve for interval 9 (top) deserves further discussion.  Variation of the spectral 
deviations x ui( )  in this interval is dominated by a single component with the form f ui1 1η ( ) .  

Because of the baseline correction applied, the integral of η1( )u  over the interval must be 

close to 0.  For this reason, the baseline correction spreads the variation of the spectral peaks 

near m/z = 14000 over the entire interval.  Thus, the R2  curve is high throughout the 
interval except where η1( )u  is nearly 0.  This accounts for the two places above m/z = 13500 

where the R2  curve dips nearly to 0.  The dip below m/z = 13500 may be due in part to 

variation in the small peak evident in the mean spectrum.  In contrast, the R2  curve for 
interval 4 (bottom) seems to be affected by the generally uncorrelated variation in several 
peaks. 
 
The weight functions shown in Figure 4 are not easily interpreted.  The main reason is that 
the measurement-to-measurement variation in the spectral deviations x ui( )  is correlated 

from one m/z value to another.  We force the weight functions to integrate to 0 over the 
interval because the spectral deviations x ui( )  do.  Moreover, the weight functions are 

computed subject to a smoothness penalty.  It is hard to understand how the algorithm meets 
these requirements when the spectrum-to-spectrum correlation is high.     
 
This paper identifies correlation evident in replicate mass spectral measurements with the 
idea that such correlation points to sources of variation in the measurement procedure.  One 
source of variation that leads to correlation is the well-known effect of nonuniform 
crystallization on the surface of the protein chip.  We normalize the spectra to remove this 
effect and look for remaining correlation that points to sources of variation that affect some 
proteins proportionally more than others.  We found two proteins, each of which varies 
enough after normalization that the correlation between the singly- and doubly-charged 
versions is obvious.  We found pairs and groups of proteins with correlation after 
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normalization that suggests a common source of variation.  In both of these cases, the 
sources of variation seem to be in the sample preparation step.  Finally, we found that the 
two pr oteins with the highest intensity have correlation in their peak distortion.  This 
suggests that some source of variation, perhaps the nonuniform crystallization, sometimes 
causes the amount of material in the spectrometer to be so large that the detector is 
overloaded, thereby distorting the peak. 
   

Sources of variation in the SELDI-TOF mass spectrometry procedure lead to spectral 

variation that is complicated in that neither the form of the variation nor the mechanism 
responsible for the variation is easily modeled.  This has implications for the use of this 
procedure to obtain comparable measurements over time or from different laboratories.  
Because of the complexity of the form of the variation, detecting important differences in the 
execution of the measurement procedure is difficult.  Similarly, because of the complexity of 
the mechanism, maintaining control of the sources of variation is difficult.  These difficulties 
suggest that the most fruitful approach to measurement variation in SELDI-TOF mass 
spectrometry might be an effort to reduce the effects of sources of variation. 
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5.2  High-dimensional Analysis of Variance with Application to 
Polymer Mass Spectrometry 
 
Z.Q. John Lu 
Statistical Engineering Division, ITL 
 
Charles M. Guttman 
Polymers Division, MSEL  
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Figure 1. Measured molecular distribution curves from MALDI-TOF mass spectrometry.  Eight sampling 
areas from a bottle of polymer material have been taken and there are three samples taken from each area. 
The curves for the three replicated samples taken from the same area are labeled by the same color and 
symbols  (labeled 1,2,…,8).   
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Many high throughput measurements produce data that should be regarded as 
high-dimensional since the number of measured variables often outnumbers the 
number of samples or measurements. Examples may include MALDI-TOF mass 
spectrometry data in synthetic polymers, microarray gene expression, chemical 
spectra, spectral imaging, particle size distribution, etc.  In all of these problems, 
there are great needs to extend statistical methods to problems of high-
dimensional data in the experimental setup of statistical design.  This summary 
describes some newly developed statistical methodology for the variability of high-
dimensional data from designed experiments, such as one-way ANOVA data. The 
proposed high-dimensional analysis of variance (HANOVA) utilizes extensively the 
singular value decomposition as a structure discovery method, in analysis of both 
overall and between-setting variability of high -dimensional measurements.   
 

As an example, we consider again the example of molecular mass distribution data from  MALDI-TOF  

mass spectrometry experiments. Such data output of MALDI-TOF mass spectrometry can be put in the 
bivariate form of  

(1)                                              {( , ), 1,..., ; 1,..., }ij ijx y i m j r= = ,  

from the simple design of measuring at m settings with r replications. Here we always use 
m=8, r=3 in our analyzed data and the ijx ’s are the measured mass (m/z) vector based on the 

time-of-flight principle using a known reference sample and ijy is the normalized intensity 

vector (corresponding to the sorted mass over charge values).  Since each element in the 
vector ijy  is proportional to the number of ions of the measured mass of one type of 

molecules, the normalized intensity represents the composition or molecular mass (weight) 
distribution of molecules of different masses (lengths) in the sample, at the ith setting and 
jth replication. Though there are calibration errors associated with mass identification, this 
step is fairly well understood and the uncertainty is mostly negligible. The errors in intensity 
measurements, due to the intrinsic Poisson errors in the ions counting process, will be the 
main object of the analysis of variance.  
 
Because the errors in xij due to mass resolution are negligible, for simplicity we may create 
mass spectral data with balanced support. That is, we want to find a common set of mass-to-
charge values 11,..., srx x  on which the intensity values yij’s are measured or interpolated. We 

regard this as an important part of the data normalization /preprocessing step, in that this 
will allow us to ignore xij and to treat yij as multivariate data vectors, just as in multivariate 
data analysis. One can then define the data matrix as:  
(2)                                             11 1 21 2 1( ,..., ; ,..., ;...; ,..., ) 'r r m mrX y y y y y y= , 

which have n=mr rows and p=number of resolved mass-to-charge values from mass 
spectrometer. 
 
 We may define the setting means as  

1

1
, 1,2,..., .

r

i ij
j

y y i m
r =

= =∑  

 

The overall mean is defined as 
1 1 1

1 1
.

m r m

ij i
i j i

y y y
mr m= = =

= =∑∑ ∑   
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Define two versions of (column) mean-sweeped X:  

 11 1 1 1 1( ,..., ;...; ,..., ) ,T
w r m m mr mX y y y y y y y y= − − − −  

                   1 1( ,..., ;...; ,..., ) .T
b r rX y y y y y y y y= − − − −  

Then   
(3)                                    c w bX X X= + . 

 
 
      
One can also prove the following ANOVA-type identity.  

                             ( ) ( )
1 1

m r TT
a c c ij i ij

i j

W X X y y y y
= =

= = − −∑∑    

                                   ( ) ( ) ( ) ( )
1 1 1

m r mT T
ij i ij i i i

i j i

y y y y r y y y y
= = =

= − − + − −∑∑ ∑  

 (4)                             0 .T T
w w b b bX X X X W W= + +@   

Thus, one may produce an ANOVA table.  

 

Table 1. Analysis of variance table for functional data 
 

Source of 
variation 
(covariance) 

Sum of cross products (dispersion 
matrix) 

Degree of 
freedom 

Mean 
square 

Expected value of mean 
square 

Between-
Settings 
 
 
 
Within- 
Settings 

( ) ( )
1

( )
m

T
i i b

i

r y y y y w
=

− −∑ @  

 

( ) ( ) 0
1 1

( )
m r T

ij i ij i
i j

y y y y w
= =

− −∑∑ @
 

   m-1 
 
 
m(r-1) 

Sb 
 
 
 
Sw 

( )( )1

/( 1)

Tm r i ii

m

µ µ µ µ∑+ − −=

−

Σ

 
 
Σ  

Total about 
the grand 
average 

( )( )
1 1

( )
m r T

ij i ij a
i j

y y y y w
= =

− −∑∑ @
 

 
mr-1 

 
 

 

However, arrangement of data as in Table 1 is not enough, for much more data reduction is 
needed in order to comprehend the variability in the dispersion matrices Sb  and Sw, both of 
which are high-dimensional and may be singular due to the small sample size (n=8*3=24)  
and high-dimensionality of measurements (p=81).  

Note that we may write X as given in (2) to consist of a sum of a signal matrix M (the mean 
structure) consisting of rows given by i 1 i p=(f(x),. . . ,f(x )) T

iµ and a noise matrix E (the 
variability component) consisting of rows ije , i.e., 
 
(5)                                                        X = M + E. 
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If there is no change in the spectral curve in each setting iµ , the rows of the signal matrix M 

should be the same, so M should have rank one.  If there are changes in the spectral curves 
between the settings, the rank of the signal matrix is at least two. In general, the rank of the 
signal matrix M determines how many different spectral structures are contained, and we 
may write 
 
(6)                                                    M Cβ= , 

where β  is a p d× matrix, representing the unknown underlying basis of spectral curves, 

and C  is a n d× matrix, representing the design matrix relating the n mr=  experiments to 
the unknown spectral curves of interest. The statistical problem is to recover the hidden 
structure or test on the hidden dimensionality d, which is much smaller than p or n, based on 
observed data matrix X.  
 
In order to overcome the curse of dimensionality problem, we propose a singular value 
decomposition applied to both the overall deviation matrix (Xc) and the between-setting or 
within-setting deviation matrices Xb and Xw.  Table 2 shows the results of this singular value 
decomposition applied to the data from Figure 1. Here we have shown only the first 10 
leading singular values.  From the last column of Table 2, it appears that there are probably 
two or three significant singular values from the between-setting variations (compare row 2 
and row 3).  
 

Table 2. Analysis of  singular values  for functional data 
 

Source of 
variation  

Leading 10 singular values of 
the deviation matrix (Xw, Xb,  Xc) 

Degree of 
freedom 

Normalized singular values:  
or square roots of leading 
eigenvalues from the mean 
dispersion matrix (Sb, Sw, Sa) 

0.077, 0.018, 0.007, 0.005, 
0.005, 0.004, 0.003, 0.000 

 
   8-1=7 

0.029, 0.007, 0.003, 0.002, 
0.002, 0.001, 0.001 

Between-
Settings 
 
 
Within 
settings 

0.022, 0.008, 0.007, 0.006, 
0.005, 0.005, 0.005, 0.004, 
0.004,  0.004 

 
8(3-1)=16 

0.005, 0.002, 0.001, 0.001, 
0.001, 0.001, 0.001, 0.001, 
0.001, 0.001 

Total about 
the grand 
average 

0.077, 0.027, 0.009, 0.007, 
0.007, 0.006, 0.006, 0.005, 
0.005,   0.005 

 
8(3)-1=23 

0.019, 0.007, 0.002, 0.002, 
0.002, 0.001, 0.001, 0.001, 
0.001, 0.001 
 

 
In summary, for high-dimensional data analysis, p is often larger than the sample size n. 
When this occurs, many standard tests from multivariate data analysis, such as MANOVA, 
do not apply directly. We argue that this curse of dimensionality problem can be overcome by 
examining the nature of the dimensionality in high-dimensional data using methods such as 
the singular value decomposition. A statistical paper to document the statistical methodology 
of high-dimensional analysis of variance is being written to address some of the statistical 
significance-testing issues.  
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5.3  Feasibility Study for the Development of a Motion Imagery Quality 
Metric 
 
Ana Ivelisse Aviles,  
Statistical Engineering Division, ITL 
 
Charles Fenimore and John Roberts 
Information Access Division, ITL 
 
John Irvine, David Cannon, Steven Israel, Larry Simon, James Miller 
Science Applications International Corporation (SAIC) 
 
Paul Tighe 
Booz, Allen, and Hamilton 
 
Richard Behrens 
Mitre Corporation 
 
Charles Watts and Michelle Brennan 
Moriarty and Associates 

 

 
Format for Capturing Paired Comparison Quality Ratings. 
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The National Imagery Interpretability Rating Scale (NIIRS) is an approach 

embraced by the Intelligence Community for still imagery.  Each NIIRS level 
indicates the types of exploitation tasks an image can support based on the expert 
judgments of experienced analysts.  Development of a NIIRS for a specific imaging 
modality rests on a perception-based approach.  Accurate methods for predicting 
NIIRS from the sensor parameters and image acquisition conditions have been 
developed empirically and substantially increase the utility of NIIRS. 
 
The motion imagery community would benefit from the availability of standard 
measures for assessing image interpretability.  NIIRS has served as a community 
standard for still imagery, but no comparable scale exists for motion imagery.  
Several considerations unique to motion imagery indicate that the standard 
methodology employed in the past for NIIRS development may not be applicable 
or, at a minimum, require modifications.  Traditional methods for NIIRS 
development rely on a close linkage between perceived image quality, as captured 
by specific image interpretation tasks, and the sensor parameters associated with 
image acquisition.  The dynamic nature of motion imagery suggests that this type 
of linkage may not exist or may be modulated by other factors.  The goal of this 
study was to understand the interplay of motion and perceived image quality.  The 
findings of this study provide a first step in developing a quality metric motion 
imagery. 
 

In exploring avenues for development of a quality metric for motion imagery, a clearer 

understanding of the factors that affect the perceived quality of motion imagery is needed.  If 
perceived quality is highly dependent on scene content (such as target motion), then 
predicting image quality from the sensor and acquisition parameters is not possible.  
Although scene complexity does not appear to be a major factor affecting perceived quality of 
still imagery, it could be important for motion imagery.  In particular, an interaction between 
target motion and scene complexity has been hypothesized for motion imagery.  Another area 
of concern is the effect of the motion of the sensor platform, since change in camera position 
affects obscuration, masking, and perception of three-dimensional information.   
 
The study was conducted to understand the effects of specific factors on perceived image 
interpretability for motion imagery.  These factors are: 

1. Target motion: Other studies indicate that moving targets exhibit greater salience 
that can enhance target detection and recognition 

2. Camera motion: The parallax effect and changing viewing geometry assist the 
analyst, particularly when viewing partially occluded targets 

3. Scene complexity: It has been hypothesized that both target and camera motion 
exhibit greater effects on perceived interpretability when the scenes are more 
complex. 

 
Imagery 
The image matrix was populated with existing holdings at the National Geospatial-
Intelligence Agency’s Persistent Surveillance Office (NGA/IXA) and spec ial collections by the 
National Institute of Standards and Technology (NIST).  The imagery used in this evaluation 
was High Definition Television (HDTV) data collected from a 720x1280 progressive scan 
camera system.  While the ultimate development of a motion imagery quality metric must 
embrace a range of camera systems and imaging conditions, this effort focuses on 
understanding specific effects related to perceived image quality.  Consequently, the 
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relatively limited range of image conditions effectively controls for a number of factors that 
might otherwise confound the effects of interest in this study.  The image set was well 
characterized in terms of target motion, camera motion, and scene complexity.  Each clip was 
rated from 1 (low) to 5 (high) with respect to each of these factors.  The ratings are 
subjective, based on the following definitions: 

• Target Motion: The targets (usually vehicle or people in the scene) are moving with 
respect to the background and/or the raster 

• Camera Motion: The camera is moving with respect to the background 
• Scene Complexity: High complexity scenes include diverse clutter, multiple 

independent motions, higher spatial frequency information, target confusers, partial 
obscuration, or other features that make it difficult for an observer to detect and 
track the targets 

 
Table 1. Characteristics Represented in Each GSD Bin 

Target 
Motion 

Scene 
Complexity 

Camera 
Motion 

Low Low Low 
Low High Low 
High Low Low 
High High Low 
High High High 

 

In addition, the ground sample distance (GSD) was estimated via mensuration of known 
objects in the scene and, where possible, validated by comparison to metadata.  From a full 
database of several hundred motion imagery clips, a set of 35 clips was selected for the 
evaluation.  These clips were grouped into bins of similar GSD, where each grouping spanned 
five combinations of conditions (Table 1).  The unbalanced design arose from the limitations 
of the available imagery. From each clip, a high-quality still image was generated using 5 
consecutive frames (using a super -resolution technique).  Thus, the full set of imagery 
consisted of 35 video clips of approximately 5 seconds in length and 35 corresponding still 
images. 
 
Approach 
The general approach was a small, focused evaluation that addresses the fundamental issues 
related to the development of a measure of interpretability for motion imagery.  Imagery 
analysts were asked to provide NIIRS ratings and perform pairwise comparisons for a set of 
35 motion imagery clips.  For each pairwise comparison, the analyst was asked to indicate 
the relative image interpretability for the two clips using a ratio scale.  In addition, analysts 
were asked to rate each video clip and corresponding still images using the current Visible 
NIIRS.   
 
Analysis of these ratings allowed us to examine a number of critical issues: 

1. Relationships between perceived image quality and target motion. 
2. Relationships between perceived image quality and scene complexity. 
3. Interactions between scene complexity and target motion that could affect perceived 

image quality. 
4. Relationships between perceived image quality and camera motion. 
5. Relationships between perceived image quality for motion imagery and the Visible 

NIIRS. 
6. Consistency of the perceived relative quality levels across analysts. 
7. Internal consistencies of the ratings from each analyst. 
8. Relationships between perceived image quality and sensor/acquisition parameters. 
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Evaluation Design and Execution 
Twelve image analysts (IAs) participated in the evaluation.  All of the analysts had 
experience with operational exploitation of imagery and were NIIRS certified.  Experience 
levels spanned a range from junior analysts to exceedingly experienced ones.  Following the 
initial introduction, each IA worked through the evaluation at his/her own pace, taking 
breaks as needed.  All imagery was viewed on calibrated monitors under controlled lighting 
conditions.  To facilitate display of motion imagery for paired comparisons, the set-up used 
two PCs, each with a high-end color monitor. All responses were recorded in hardcopy.  At 
the end of the evaluation, each IA completed an exit questionnaire to provide subjective 
feedback.  The four steps in the evaluation were: 
 

Step 1: Visible NIIRS ratings of still images that were extracted from each motion 
imagery clip 
Step 2: Visible NIIRS ratings of the motion imagery clips 
Step 3: Paired comparisons of the motion imagery clip to a single frame from the clip 
sequence 
Step 4: Paired comparisons between various pairs of motion imagery clips. 

 
Results of the Evaluation 
Throughout the evaluation, target motion has a significant effect on perceived image quality, 
in terms of both NIIRS ratings and paired comparisons.  Motion imagery clips in which the 
targets are moving are consistently rated higher.  This result is not surprising, since motion 
increases target salience.  It is interesting to note, however, that the effects due to camera 
motion were not statistically significant and there are only weak indications of an interaction 
effect involving target motion and scene complexity.  
 
Steps 1 and 2 of the evaluation demonstrate that trained IAs are capable of providing 
consistent NIIRS ratings for motion imagery.  On average, the NIIRS ratings for the motion 
imagery clips are slightly (about 0.25 NIIRS units) higher than for the corresponding still 
image (Figure 1a).  Both the NIIRS ratings and the paired comparisons indicate that image 
interpretability is inversely related to log10(GSD).  While the relationship is linear, the slope 
is much lower than expected (Figure 1b).  Historically, a doubling or halving of GSD produces 
a one NIIRS unit shift.  These ratings exhibit about a half NIIRS unit shift when GSD varies 
by a factor of two.  This flatter relationship may be due to changes in the image associated 
with softcopy display or because the color imagery provides better target contrast than for 
panchromatic imagery.    
 
Visible NIIRS ratings for the motion imagery clips are slightly, but statistically significantly, 
higher than for the corresponding NIIRS ratings of still images.  The paired comparisons 
suggest that the perceived interpretability of motion imagery is considerably higher than for 
still images, but the Visible NIIRS is not sensitive to all the factors influencing the perceived 
interpretability of motion imagery.  Figure 2 illustrates this point.  On the left side, the bars 
represent the values of t-statistics to test for significant differences between motion imagery 
and still imagery.  The blue bars are computed from the NIIRS ratings, i.e., the t-statistic 
arises from the paired test of NIIRS ratings for still images versus NIIRS ratings for the 
corresponding video clips.  The red bars are the t-statistics computed from the paired 
comparisons of stills to video clips (step 3) and test for a significant difference from zero.  
Note that the red bars show a much stronger difference, indicating the motion imagery has 
much higher interpretability than the corresponding still frames.   
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Figure 1. (a) The Graph on the Left Depicts the NIIRS Ratings for the Motion Imagery Clips 
Compared to the Visible NIIRS Ratings for the Corresponding Still Images; (b) The Graph on 
the Right Shows the Relationship Between the NIIRS Rating of the Motions Imagery Clip 
and the Estimated GSD for the Same Clip 
 
 

 
Figure 2.  (a) The t-statistics for Testing a Difference Due to Motion and (b) Raw Ratings 
from the Paired Comparisons of Motion Imagery Clips to Still Images 
 
Conclusions and Future Directions 
This study indicates that target motion is a significant and consistent factor affecting image 
quality.  One of the implications of this finding is that traditional NIIRS development 
methods will not translate effectively into the motion imagery domain.  The study also raises 
questions about other factors that influence image interpretability.  To address these issues, 
we propose a series of small, focused evaluations, each intended to answer a single basic 
question about interpretability (Table 2) for FY2005.  Finally, the analysis of the NIIRS 
ratings and the paired comparisons indicate that Visible NIIRS does not capture the full 
range of factors inherent in the perceived quality of motion imagery.  A new scale, therefore, 
is needed to address the quality and interpretability aspects of motion imagery.  
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Table 2. Proposed Focused Evaluations for Investigation of Motion Image Quality 
Evaluation Questions Addressed by Evaluation 
Frame rate study How does image interpretability vary with frame rate? 
Color study Assess interactions between color and motion  
Resolution & viewing 
geometry 

How do low grazing angles affect relationship between 
interpretability and GSD? 

Criteria satisfaction Can IAs consistently rate criteria relative to MI markers? How 
does target motion affect criteria ratings? Are motion-sensitive 
tasks rated differently? 

 
 
Currently, no NIIRS or similar quality metric exists for motion imagery.  If a Motion 
Imagery NIIRS (MI NIIRS) or similar quality metric were developed, it would be a useful 
tool for a number of applications: 
 
§ Sensor and System Requirements: By expressing the requirements for new 

Intelligence, Surveillance, and Reconnaissance (ISR) systems in terms of NIIRS, the 
system performance can be related directly to fulfillment of specific military 
missions.  Design and trade studies can be performed. 

§ Tasking and Collection Management: By linking sensor parameters to MI NIIRS 
through an Image Quality Equation, collection managers can assess how best to task 
imaging assets to satisfy critical needs. 

§ Evaluation of Image Processing and Image Compression:  An MI NIIRS would 
quantify the benefits from image processing to enhance the imagery.  Conversely, an 
MI NIIRS can quantify the loss associated with image compression or other 
modifications to the image chain.  This could be a significant concern since the 
capability to acquire digital motion imagery is likely to exceed the communications 
capacity in many tactical settings.  

  
 

This study has started to explore the implications for development of a “NIIRS-like” scale for 

motion imagery.  A significant finding of the study is that traditional NIIRS development 
methods will not translate effectively into the motion imagery domain.  A series of small, 
focused evaluations, each intended to answer a single basic question about interpretability, 
has been proposed for the next year.  
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5.4  Video Quality Assessment for MPEG and ATSC 
 
Alan Heckert, Stefan Leigh 
Statistical Engineering Division, ITL 
 
Charles Fenimore 
Information Access Division, ITL 

 
Performance of algorithms by resolution and bit-rate for the three labs 
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The Motion Imagery Quality Project of the Information Access Division and SED 

have collaborated in designing and analyzing tests intended to quantify video 
quality. Two rounds of subjective video quality tests for the assessment of the 
compression efficiency of a new generation of video codecs have been undertaken. 
These tests examine emerging open standards from the Motion Pictures Experts 
Group (MPEG) and the Society of Motion Picture and Television Engineers 
(SMPTE). 

The gold standard in video picture quality testing is the use of human assessors for 

subjective ratings of video clips. While there are well-established approaches for many 
aspects of such tests, it has not been uncommon for the industry to analyze resulting data in 
questionable or inappropriate ways. 
 
At MPEG, NIST was one of four leaders in Verification Testing for the new Advanced Video 
Codec (AVC). The subjective tests showed the new technology delivers a 50% gain in 
efficiency compared to the older MPEG-2. The report of this collaboration is being used by 
the industry to guide investment decisions in AVC and competing technology. Because the 
results were very positive for AVC, there is AVC product on the market today. In that 
collaboration a year ago, IAD and SED provided an analysis of the data and compared our 
results to those of collaborators using methods developed over time within the video picture 
testing community itself. 
 
In the Advanced Television Standards committee (ATSC) we have continued this effort by 
analyzing another round of tests comparing AVC with new technology from SMPTE, the 
Video Codec 1 (VC-1). Collaboration with the Communications Research Center (CRC) of 
Canada was undertaken to compare the performance of these two codecs. We have reported 
to the ATSC Test Chair that we are able to determine the significance of the differences 
between the two codecs. The report came in for substantial criticism from one of the new 
codec proponents. 
 
ANALYSIS:  Data consisted of matched opinion scores obtained from 20-30 human subjects, 
each at 3 participating laboratories (CRC, Sarnoff, Dolby), using clips compressed by 3 
algorithms (AVC, VC-1 “old”, and VC-1 “new”) at 4 distinct resolutions and 6 different bit 
rates. All paired scores represented the same subject rating the identical clip untreated (no 
compression) and treated. Ratings were scored as integers between 0 and 100. All analyses 
were performed on raw differences or differences of means: reference clip minus test (treated) 
clip result. Analyses consisted of graphical organization of summarized and non-summarized 
data, representing f(Reference-Test) against resolution and/or bit rate, segregated into 
different plot panels for Lab, clip, or aggregated Lab or clip.  Most visuals directly contrast 
the performances of the algorithms being compared (AVC versus VC-1). (See Figures.) The 
graphics largely support the superiority of the existing MPEG algorithm over the 
developmental SMPTE one, although areas of crossover in performance are potentially rich 
in information for the designers of the algorithms. For formal support of trends observed in 
the visuals, nonparametric tests of slippage between score clusters or means were employed 
on a level-by-level basis. We eschewed a one-size-fits-all linear modeling (ANOVA) approach 
as sweeping under the rug many interesting frame-specific patterns visible in the data. 

The introduction and adoption of statistical tools that are new to the television and motion 

picture industry is a slow process that requires extensive ongoing cross-fertilization. We expect 
to continue these kinds of efforts within MPEG and to document our experiences in a suitable 
(IEEE) journal. 
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5.5  Cryogenic Detection of Weakly Interacting Particles 
 
K. J.  Coakley  
Statistical Engineering Division, ITL 
 
D. N. McKinsey 
Yale University 

 
 
 
 

Figure 1.  Diagram of the proposed CLEAN experiment. 
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In the proposed experiment CLEAN (Cryogenic Low Energy Astrophysics with 

Noble gases), the low energy spectrum of solar neutrinos, supernova neutrinos and 
other weakly interacting particles would be detected.  Statistical efforts include 
development of event reconstruction algorithms, background discrimination, and 
experimental planning. 
 
 

The study of neutrinos plays a prominent role in astrophysics and particle physics.  

Though they are emitted in vast numbers by stars and can easily be made in modern particle 
accelerators, neutrinos are difficult to detect because they have no charge and only interact 
through the weak force (which explains radioactive decay and related phenomenon).  Recent 
experiments demonstrate that solar neutrinos oscillate between different mass states as they 
travel from the Sun to Earth. The CLEAN instrument should provide invaluable data for 
rigorously testing competing theories of the neutrino and of the Sun.  CLEAN should be 
sensitive to weakly interacting massive particles (WIMPS).  Astrophysical evidence on a 
variety of distance scales clearly shows that a large fraction of the mass of the universe 
cannot be accounted. This matter is dark because it does not appear to emit or absorb any 
electromagnetic radiation. The existence of WIMPS is a very plausible explanation of this 
dark matter.  Data from CLEAN should improve theoretical understanding of the supernova 
collapse mechanism. 
 
In CLEAN, the unwanted background signal can be orders of magnitude more intense than 
the signal of interest.  Thus, we need powerful statistical methods for background 
discrimination.  Low energy neutrinos would be detected based on scintillation light 
produced by neutrino-electron scattering, or neutrino-WIMP scattering, in a large cryostat 
filled with liquid neon.  Such events of interest would occur uniformly throughout the 
cryostat.  For a spherical cryostat geometry, the probability distribution function (pdf) for the 

radial location r  of an event of interest would be proportional to 2r .  On average, the 
number of scintillation photons produced by an event would be proportional to the energy 
deposited by the neutrino.  The scintillation photons Rayleigh scatter as they propagate in 
the neon.  Thus, the scintillation photons do not travel in straight line trajectories.  Further, 
in our detection model, each scintillation photon is shifted to lower energy and re-emitted by 
detectors before ultimate detection.  The background signal is mainly due to gamma rays, 
i.e., photons, produced by radioactive decay of isotopes found in the materials from which the 
outer spherical walls and photomultiplier tubes are constructed.  As these backgrou nd 
gamma rays propagate inward, they deposit energy when they Compton scatter or are 
absorbed.  Like events of interest, background gammas produce scintillation light.  Due to 
attenuation, the probability that a gamma penetrates an inner fiducial volume occupying a 

fraction p  of the total detection volume (defined by Rpr 3/1< ) decreases as p  decreases.  

Because of the attenuation of background gamma rays, the instrument is said to be self-
shielding.  Thus, if one can accurately estimate the radial position of an event, one can 
potentially discriminate background events from events of interest with high confidence.   
 
Current and future statistical work includes:  stochastic modeling of scattering and transport 
of gamma ray and scintillation photons, statistical planning, development and testing of 
statistical background discrimination methods, development of empirical models for 
calibration of statistical estimates of event location, development of sampling schemes for 
training data for calibration, energy spectrum estimation, quantification of detector 
efficiency and false detection rate,  and uncertainty analysis. 
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We estimate the location of an ionizing radiation event that produces multiple photons 
within a spherical detection volume of radius R  based on count data recorded by detectors 
mounted on the boundary of this detection volume, using a calibrated spatial Maximum 
Likelihood method.  The scattering length for the photons is Sλ .  The detectors cover 

approximately 75 % of the total area of the detection volume boundary.  In the “shift” 
detection model, photons are absorbed and isotropically re-emitted by the detectors.  In the 
“no-shift” detection model, photons are not re-emitted.  CASE A:  ∞=Sλ  and “shift” 

detection model.  CASE B:  RS 1.0=λ  and “no-shift” detection model.  CASE C:  RS 1.0=λ   

and “shift” detection model.  For each plot, we show the 0.1 quantile of the estimate (dashed 

horizontal line), 
3/1/ pRrp =  where 1.0=p  (solid horizontal line), and the line of equality 

corresponding to a perfect estimate. 
 
 
Presentations 
 
D.N. McKinsey and K.J. Coakley, “CLEAN”, Mini-Symposium on Underground Science, 
April 2002 Meeting of the American Physical Society, Albuquerque, NM. 
 
K.J. Coakley and D.N. McKinsey, “Event Location Estimation and Background 
Discrimination in a Proposed Low Energy Neutrino Experiment,” poster session, April 2002 
Meeting of the American Physical Society, Albuquerque, NM. 
 
Daniel McKinsey, Walter Lippincott, James Nikkel, Andrew Hime, Mark Boulay, Jeff 
Lidgard, Kevin Coakley, and Edward Kearns, “Neutrino and WIMP detection with CLEAN”, 
April 2004 Meeting of the American Physical Society, Denver, CO. 
 
K. J. Coakley, "Classification Problems in Neutrino Physics" 2004 Meeting of the 
International Federation of Classification Societies.  Chicago, IL. July 15-18, 2004. 
 
 
Publications 
 
C.J. Horowitz, K.J. Coakley, and D.N. McKinsey, “Supernova Observation via Neutrino-
Nucleus Elastic Scattering in the CLEAN Detector,” Physical Review D, 68(2), 23005, 2003. 
 
K.J. Coakley and D.N. McKinsey, “Spatial Methods for Event Reconstruction in CLEAN,” 
Nuclear Instruments and Methods in Physics Research A, 522, pp. 504-520, 2004. 
 
D.N. McKinsey and K.J. Coakley, “Neutrino Detection in CLEAN,” to appear in Astroparticle 
Physics. 
 
 

The CLEAN instrument has high scientific potential because of its low energy sensitivity.  

Further, development of measurement technology related to CLEAN (particularly noble gas 
purification, low-background light detection, the use of light detectors at low temperature, and 
statistical methods for background discrimination) should have a broad impact in nuclear 
and particle physics as well as the detection of fast neutrons in homeland security 
applications. 
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Figure 2.   For three cases, we display the 0.1 quantile of the estimate (dashed horizontal 

line), 
3/1/ pRrp =  where 1.0=p  (solid horizontal line), and the line of equality 

corresponding to a perfect estimate (diagonal line). 
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5.6  Functional Data Analysis Methods for Remote Sensing 
 
Kevin Coakley and Jolene Splett 
Statistical Engineering Division, ITL 
 
David Walker 
Electromagnetics Division, EEEL 
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Figure 1.  Residuals, ULU PPP /)ˆ( α− , before and after power meter linearization, where α̂  

was determined by least squares. 
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Microwave radiometers are critical components of satellite remote sensing 

measurement systems that provide information about the earth's oceans, land 
masses, atmosphere and near-space environment.  In many microwave 
radiometers, the brightness temperature of a scene is inferred from the observed 
voltage of a tunnel diode detector.  Typically, linear calibration models are used to 
estimate the power and hence the brightness temperature from the observed 
voltage of the tunnel diode.  Since the voltage-power transfer function of a tunnel 
diode is nonlinear, this linear approach introduces systematic error.  Thus, 
quantification of systematic calibration errors is critical in order to evaluate the 
accuracy of next generation remote sensing systems, including the Advanced 
Technology Microwave Sounder (ATMS) on the National Polar-orbiting 
Operational Environmental Satellite System (NPOESS).  The NPOESS program is 
managed by the tri-agency Integrated Program Office (IPO), employing personnel 
from the Department of Commerce (DoC), Department of Defense (DoD) and the 
National Aeronautics and Space Administration (NASA). 
 
 

Analysis is complicated by the fact that power meters are nonlinear.  In collaboration with 

the Electromagnetics Division of NIST, SED staff developed functional data analysis 
methods to:  (1) linearize power measurements; (2) model an observed voltage-power curve; 
and (3) quantify systematic calibration errors associated with using a linear calibration 
method.  We anticipate that future efforts will focus on development of nonlinear calibration 
models so as to reduce systematic calibration errors. 
 

In a calibration experiment, we measured many pairs of powers ),( UL PP .  Due to the 

additive bias and nonlinearities in the power meter, the observed ratio for the ith pair  
)(/)( iPiP LU differed, on average, from the true power ratio )73.1(≈truer .  Based on measured 

power mP  (either LP  or UP ) we predicted true power P  as 
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The model parameters formed a seven dimensional vector ),,,,,,( 543210 aaaaaa∆ ; 0P  is 

a reference power and S  is a scale factor.  We set 0P  to the maximum measured power in a 

calibration data set.  We modeled the additive bias as the product 0P∆  where ∆  is a 

dimensionless model parameter to be determined.  We estimated the model parameters by 
minimizing 
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i
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where 
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We determined S  by requiring that the maximum predicted power, )( 0Pf , equal  

)1(0 ∆−P .  Figure 1 displays fractional residuals before and after power meter linearization. 

 
We modeled the measured voltage-power transfer function as a cubic B-spline where the 
number of knots was selected by cross-validation.  Based on measurement of  )(PV , our 

linear interpolation model to predict power P  is 
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where ,),(),( 121 PPVPV  and 2P  are measured in a calibration experiment.  We simulated 
noise-free realizations of the voltage-power transfer function according to our regression 
spline model.  For particular values of P  we show the fractional systematic calibration error  

PPP /)ˆ( −  in Figure 2.  The dashed curve represents values of power where we took 

calibration data.  The approximate ± 1 standard error bands were estimated using a 
nonparametric bootstrap resampling scheme. 
 
 

We developed functional data analysis methods to linearize power meter measurements 

and estimate systematic calibration errors in next generation remote sensing systems that 
utilize tunnel diode detectors in microwave radiometers.  The results of this study were 
documented in the paper, “Nonlinear Modeling of Tunnel Diode Detectors,” and appeared in 
proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium held 
September 20-24, 2004 in Anchorage, Alaska. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 119

 
 

-5

0

5

10

4 6 8 10 12 14 1 6 18 20 22 24 2 6 2 8

Average spline fit
1-σ  confidence bands

Z
L
= 50 Ω

Power (µW )

Te
m

pe
ra

tu
re

 E
rr

or
 (

K
)

 
 
 
 
 

 
 
Figure 2.  Estimate of systematic error associated with linear interpolation method based on 
spline model fit for voltage versus power curve. 
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5.7  Three Dimensional Chemical Imaging at the Nanoscale 
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John Bonevich  
Metallurgy Division, PTL  
 
Judith Devaney, John G. Hagedorn, William L. George  
Mathematical and Computational Sciences Division, ITL 
 
 
 

  
 
 
 
First Figure: Dark-field STEM image of a sample with overlays showing the area where 
hyperspectral data were acquired (inner red square) 
 
Second Figure:  A picture/plot of a typical spectrum from the dataset (i.e., a random pixel's 
x-ray data.) 
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A quantitative understanding of the distribution of chemical species in three 

dimensions, including the internal structure and surfaces of micro- and nanoscale 
systems, is critical to the development of successful commercial products in 
nanotechnology.  Current nanoscale-chemical 3D measurement tools are in their 
infancy and must overcome critical measurement barriers to be practical. This 
project will develop measurement approaches to attain three-dimensional 
chemical images at nanoscale resolution. These approaches will be broadly 
applicable to nanoscale technologies from microelectronics to pharmaceuticals 
and subcellular biomedical applications.  
 

As one part of this wide-ranging project, the use of Bayesian approaches to determine 

structure and composition will be explored and developed.  Potential areas of application 
include the use of Markov Random Field models of voxels for estimating 3D structure, 
Bayesian methods for picking likely 3D structures based on 2D images, and prior knowledge 
of composition (without structure).  Spatial identification of atomic and molecular 
composition based on measurement of electron diffraction, X-ray spectra and electron energy-
loss spectra may also be amenable to Bayesian methods.   Lastly, adaptive design with the 
aim of obtaining accurate descriptions of the distribution of chemical species using a reduced 
number of measurements is a possibility.  The Bayesian part of this project will build on 
basic 2D and 3D tomographic imaging techniques, knowledge of the dynamics of electron 
beams and their interactions with materials, multivariate statistical analysis of multiple 
spectra data, Bayesian decision theory and Bayesian computation. 
 
It is widely known that image reconstruction techniques are computationally intensive. 
These techniques require considerable workspace and often force algorithm designers and 
software developers to improve their design and implementation. To address these matters, 
we have compiled strategies that should manage these issues. They include: 

• a study of programming language constructs in Fortran 90 that may be exploited to 
improve upon the Fortran 77 implementation 

• the use of profiling tools to identify the critical components (bottlenecks) in the 
algorithm; such information is useful in algorithm component redesign and lead to a 
more efficient implementation 

• a study of the computer architecture for the target platform (a Sun Sparc 60 
workstation with a single processor) 

• a study of Fortran compiler options available on the target platform that lead to 
optimized binaries (executables) 

• the use of timing tools to aid in assessing execution time and comparing 
implementations 

Ongoing work is underway to test and evaluate the algorithm on sample data.  
 

To achieve these aims, an understanding of the non-statistical tomographic methods of 

reconstruction that have been developed over the past twenty years has begun, with the aim of 
incorporating the salient features into a statistical framework.  In parallel work, the 
development of Bayesian methods for ascertaining the unknown size and distribution of 
known 3D structures (e.g., cubes) given 2D projections has begun.  Additional modeling to 
include identification of compounds and structure from spectra may be included later.  The 
statistical aspects of this project are extensively linked to the subject of electron microscopy 
and cannot be easily abstracted as a “statistical problem”.  As such, extensive collaboration 
with the other team members is essential.  
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5.8  Statistical Data Mining Tools 
 
Juan Soto, Z.Q. John Lu 
Statistical Engineering Division, ITL 
 
 

 
 

Figure: A graphic image depicting a support vector machine in a linear classification. 
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Collaborative research between members of the Statistical Engineering Division 

(SED) and members of the Process Measurements Division (Chemical Sciences and 
Technology Laboratory) has required that SED staff investigate various statistical 
tools for data mining. These tools include some very powerful statistical 
classification/prediction methods for high-dimensional data. This article briefly 
summarize this ongoing effort with the goal of bringing attention to a wide array 
of methods in a statistical toolkit that is already easily available to NIST scientists 
who may need them. Most of these functions have a user-friendly interface in the 
open source environment R and widely available commercial product S-plus.    
 

The neural network (NN) function (in library nnet) fits a single hidden layer, possibly with 

skip layer connections. NN can be used for both classification and prediction problems.  It 
utilizes a log -linear or a logistic model to solve classification problems and a nonlinear 
regression function to solve prediction problems. The implementation is based on a quasi-
Newton optimizer. NN is fairly fast and robust in many problems.  
 
The support vector machine (svm function in library libsvm) fits to the data a classifier 
function in terms of a linear combination of a positive definite kernel.  Options for the choice 
of kernels include linear, polynomial, radial, or sigmoid. The special feature of support vector 
machine methodology is that its fit to data is done through a special fitting criterion. For 
classification problems, it controls classification errors while maximizing the class (margin) 
separation. Svm is primarily used for classification. Developments for probabilistic modeling 
and prediction are also possible, but there is less advantage over other approaches. Its speed 
is independent of input dimension, but is dependent on the number of training examples. 
Because of the limitations in the choice of kernels, svm is less flexible than NN, but there is 
rapid progress in this area in which capability and features of svm are continuously being 
improved and expanded.  
aaddvvaannttaaggee  oovveerr  ootthheerr  aapppprrooaacchheess..  IIttss  ssppeeeedd  iiss  iinnddeeppeennddeenntt  ooff  iinnppuutt  ddiimmeennssiioonn,,  bbuutt  iiss    
The K-nearest neighbor (KNN) method is a much older technique in statistics and pattern 
recognition literature. But it works very well in some problems and is much simpler in 
concept and implementation. It is based on nonparametric estimates of the posterior 
probabilities of a given class or label. It finds the k nearest samples in the training data and 
assigns a class label by majority rule, or estimates the posterior probabilities by the 
proportions of the classes among the k samples. For example, a Euclidean distance metric is 
used here though other similarity metrics may be used as well. KNN is mainly used for 
classification. For prediction, analogous methods exist, called kernel nonparametric 
regression. The accuracy of the KNN methods depends on identifying good “analogies” in the 
training data. The choice of k depends on the quality of data (level of noise) as well as the 
amount of data available at decision time. The computational speed is adversely affected by 
the dimension of the input data, as well as the size of the training data. However, these 
drawbacks may be overcome via preprocessing, e.g., dimension reduction or choosing subsets 
of the training data. 
   
Additional data mining methods, which will likely be considered in the future by us, include 
recursive partitioning and tree methods, random forests, Bayesian methods, and bagging and 
boosting methods. Typically, these methods:  
 

• are computationally intensive but are often robust and perform well in many noisy 
situations 
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• do not involve pre-specified functions, in contrast to NNs or SVMs, but the predictive 
function or classifier is very much data dependent; the model complexity is controlled 
by some model selection criteria as in the case of tree-type methods 

 
• can be used for classification and probabilistic modeling, as well as prediction 
 
• fairly fast on moderate-sized data sets, but may be adversely affected by the 

dimensionality of input predictors, and some dimensionality reduction or data 
preprocessing may be needed.  

 
The hugely popular book, Modern Applied Statistics with S,  4th edition, by W. N. Venables 
and B. D. Ripley (2002) gives some detailed account of some of these methods. The NN 
functions are available in S+ under the “nnet” library. The SVM functions “libsvm” may be 
downloaded (http://www.stats.ox.ac.uk/pub/MASS04/Winlibs/libsvm.zip). The KNN functions 
are available in S+ under the “class” library. Tree based methods may be found in library 
“rpart.” The analogous R functions may be found at http://www.r-project.org. 
 

Researchers who are interested in utilizing these tools in conducting their own data mining 

project are encouraged to download and familiarize themselves with these tools. Alternatively, 
you may contact members of the SED to engage in collaborative research. It is important to 
note that these are a few among many tools developed specifically for data mining. The reader 
is cautioned that one should not be left with the impression that these are the only preferable 
techniques since no single technique works well on all problems.  Depending on the nature of 
problems, one technique may work noticeably better than others. A good data miner always 
tries various techniques in order to find the appropriate technique for the given problem, and 
uses the right metrics for prediction performance evaluation.  
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6  Collaborative Research 
 
 
The Statistical Engineering Division’s collaboration with NIST colleagues 
focuses on NIST’s highest priorities and initiatives, particularly in the 
emerging areas of science and technology with major agency-wide research in 
Nanotechnology, in BioSystems and Health and in Homeland Security.  Work 
on these high priority projects spans all the Science Laboratories at NIST, 
and almost all of the Divisions in each Laboratory.  While the goal of 
collaborative research is ensuring that NIST scientific results are based on a 
statistically solid foundation, the collaborative process also paves the way for 
an expanded role for statistics as smaller exploratory research projects 
develop into major research programs.  
 
Decisions to create e-Tools for Statistics are often based on collaborative work 
that identifies metrologists’ needs; illustrative web-based case studies and 
example data sets are drawn from specific joint projects that illuminate 
statistical principles, methods and modeling techniques. 
 
Collaborative Research also underpins NIST’s Core Mission activities and the 
delivery of measurement services to industrial customers and partners.  The 
Standard Reference Materials program provides certified materials to be 
used in high-precision calibration and testing – certification of the attached 
uncertainty is the responsibility of the Statistical Engineering Division. 
Conventional and new statistical tools take the forms of experiment designs, 
data analyses, specialized algorithms and software.          
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6.1  Nanotechnology  
 
6.1.1  First Entrance of DNA into a Nanopore 
 
Charles Hagwood 
Statistical Engineering Division, ITL 
 

 
 

A horizontal bilayer apparatus used in nanopore translocation. 
 



 127

 

John Kasianowicz (NIST) and team discovered in 1996 that sequencing of DNA 

could in principle be done by observing the blockage of ions flowing through a 
nanopore as single-stranded DNA traverses the pore. The mechanism by which 
this is done is illustrated in the figure below.  Two solutions, one of positive and a 
second of negative ions, are separated by a membrane.  On this membrane, a small 
hole or pore is drilled, only  large enough to allow one single strand of DNA 
passage at a time, thus initiating  a flux of positive ions through the pore to the 
oppositely charged ions on the other side,  and vice versa. Negatively charged DNA 
is driven through the channel, called translocation, and mostly blocks this flow of 
ions.  The current blockades were found to be sensitive to the properties of the 
DNA, such as the size of its bases.  The translocation process can be broken down 
into two parts: (1) the three-dimensional problem of the DNA finding the pore, and 
(2) the one-dimensional problem of the DNA treading the pore. 
 
 

The solution of the three-dimensional problem of the polymer finding the pore is sought in 

our analysis. A proper model for this problem is the motion of a chain of particles (monomers) 
in a box.  In polymer dynamics, there are several models for describing the interaction 
between monomers.  We use the Zimm model.  In the Zimm model, the motion of the polymer 
is described by a stochastic differential equation.  Let r1,(t)…, rn(t)  denote the positions, at 
time t, of the monomers in R3.  The equation of motion for the chain is given by 
 

 ( ) ( ) ( )spdr t k HAr t dt H dB tσ= − +  

 
where r(t)=( r1(t),…, rn(t)), B(t)=(B1(t),…,Bn(t)), ksp is a spring constant, H the hydrodynamic 
interaction matrix and A the connectivity matrix.  The vector B(t) represents the diffusion 
part  of the equation and its components B1(t),…,Bn(t)  are independent 3-dimensional 
Brownian motions. 
 
The transition probability for the motion of DNA in a box with all sides reflecting, except one 
absorbing side on which the pore resides, is derived from the Fokker-Planck equation.  From 
this, the probability that the DNA polymer is found at the entrance to the pore is computed. 
The first entrance time is also computed. 
 
 

 The fascinating work of John Kasianowicz promises to bring about new discoveries in cell 

biology, gene transfer and sequencing and properties of biopolymers.  Working out the 
transport properties and dynamics of polymers in nanopores is extremely important to the 
growing fields of nanobiology, nanochemistry, and nanophysics. 
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6.1.2  Development of a Single-Crystal Reference Material for 
Calibration of Semiconductor Linewidth Measurements 
 
William Guthrie 
Statistical Engineering Division, ITL 
 
Michael Cresswell and Richard Allen 
Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory 
 
Ronald Dixson 
Precision Engineering Division, Manufacturing Engineering Laboratory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AFM data with associated moving average fits for two reference features on a chip used for 
AFM calibration. The data points shown in orange correspond to the HRTEM window that is 
of interest. The data points shown in blue, outside the window of interest, were only used to 
help estimate the uncertainty. 



 129

As the integrated circuits (IC’s) used in computers and other electronic devices 

become more complex, the semiconductor industry requires increasingly accurate 
metrological tools for characterization of its manufacturing processes and 
products. The International Technology Roadmap for Semiconductors, an 
industry-led assessment of semiconductor technology requirements, notes a 
critical need to be able to manufacture IC’s that have conducting lines with 
linewidths that are within 10 nm of specifications. To help meet these goals, staff 
of the Semiconductor Electronics Division, the Precision Engineering Division, 
and the Statistical Engineering Division have developed a prototype single-crystal 
critical-dimension reference material for calibrating metrology instruments used 
to measure linewidth.  The reference material is a silicon chip mounted in a 200-
mm silicon carrier -wafer.  Six reference features on each chip range in size from 
about 50 nm to 200 nm, with typical expanded uncertainties of between  ± 1 nm 
and ± 2 nm. The calibrated linewidths of the reference features are determined 
using atomic force microscopy (AFM) referenced to high-resolution transmission-
electron microscope (HRTEM) images that reveal the cross-sectional counts of 
silicon lattice planes, whose spacing is traceable to the SI meter. 
 
 

One of the interesting features of the data used to calibrate the AFM is the fact that the 

AFM makes measurements along the reference lines, while the HRTEM only measures the 
linewidth at a single point.  This would not be a difficulty if the line were completely uniform 
or the location of the HRTEM slice through the sample were exactly known. However, some 
non-uniformity is currently unavoidable, even when using special etching techniques, and 
the location of the HRTEM slice can only be fixed within a 0.5 µ m window. As a result, the 

AFM data must be averaged within the window of interest and an estimate of the 
uncertainty of the AFM linewidth that accounts for the random variation in the AFM data 
and the variability due to the  non-uniformity of the line is also needed. 
 
In order to estimate the AFM linewidth and its uncertainty, the first step was to smooth the 
data to describe the deterministic non -uniformity in the data and to reduce the effects of 
outliers in the data. AFM scans of two lines with the associated moving average fits are 
shown in the figure on the preceding page. The data points shown in or ange correspond to 
the HRTEM window that is of interest. The data points shown in blue, outside the window of 
interest, were only used to help estimate the uncertainty. In order to reduce the effect of 
outliers that occasionally affected the measurement pr ocess due to surface contamination, 
the fitted values from the moving average, rather than the raw data values, were combined 
to obtain the AFM linewidth. The data were combined using a weighted average with 
weights inversely proportional to the distance of each point from the center of the HRTEM 
window. This type of weight function was chosen because the procedures used to obtain the 
HRTEM measurement were designed so that the slice of the reference feature that the 
HRTEM imaged  is more likely to be in the center of the window than at an edge. The AFM 
linewidth is indicated in the plots of the AFM data by a horizontal line segment in the 
HRTEM window. The uncertainty of the AFM linewidth was obtained using bootstrap 
methods with an allowance for the reproducibility of AFM measurements when samples are 
mounted and remounted in the AFM.  The AFM reproducibility was based on long-term 
experience with AFM data and was incorporated as a Type B standard uncertainty using the 
methods outlined in the ISO Guide to the Expression of Uncertainty in Measurement. The 
effect of the line’s non -uniformity on the AFM linewidth, which was the largest source of 
uncertainty, was estimated by computing a bootstrap upper bound on the range of the non-
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uniformity within the HRTEM window and also converted to a Type B standard uncertainty. 
Because the estimates for each component of uncertainty were based on over 70 data points, 
the number of effective degrees of freedom for the combined standard uncertainty is assumed 
to be infinite. The expanded uncertainty of the AFM linewidth is shown in each plot as a 
vertical dashed line. 
 
The top plot in the figure on the next page shows the calibration data relating the AFM 
linewidths to the HRTEM linewidths. Data from two chips, each with six reference features, 
were used for the calibration. After centering the data, a straight-line model was fit to the 
data using weighted least squares since the uncertainties of the AFM linewidths are not 
equal. The output from the fit of the model is given in the table below. The fact that the slope 
does not significantly differ from unity indicates that the scale of the AFM, which was 
previously calibrated with an independent standard, is on target and does not need to be 
corrected using the information from the single-crystal reference material, as was expected.   
 

Output from the fit of a straight-line regression model to the calibration data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The standard previously used to calibrate the offset of the AFM is not as precise as the scale 
calibrant, however, so an offset correction was expected. The offset correction was estimated 
using a weighted average of individual offset corrections computed for each reference feature. 
This approach allows for explicit inclusion of the uncertainty in the HRTEM linewidths, 
although the uncertainty from the HRTEM linewidths is believed to be negligible relative to 
the combined uncertainty of the apparent AFM linewidths. The estimate of the correction to 
the AFM offset is 1.03 nm ±  0.58 nm (expanded uncertainty).  The individually-estimated 
offsets and the mean offset are shown in the bottom plot in the figure on the next page.  The 
error bars on each estimate of the offset are expanded uncertainties. 
 
With the offset of the AFM established, the linewidths of reference features on chips 
manufactured at the same time as the calibration chips and measured under the same 
conditions were then estimated.  The effect of any non -uniformity of the lines on the chips to 
be distributed is reduced, however, because the center of each reference feature, the location 
selected for estimation of the linewidth, does not need to be as large as the HRTEM window.  
 
 

Reference materials like these will improve metrology for semiconductor manufacturing by 

reducing the disagreement between metrology tools within a company and between results 
from different laboratories. These materials will also provide an absolute assessment of 
linewidth that is critical for controlling circuit properties. A workshop to obtain industry 
feedback on these prototype reference materials is planned for February 2005. 

Value Std. Error t value Pr(>|t|)

Intercept 138.8825 0.3250 427.3745 0.0000

Slope 0.9960 0.0053 187.8507 0.0000

Residual standard error: 1.469 on 10 degrees of freedom
Multiple R-Squared: 0.9997

F-statistic: 35290 on 1 and 10 degrees of freedom, the p-value is 0

Correlation of Coefficients:
Intercept Slope

Intercept 1 0

Slope 0 1
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A straight-line calibration curve fit to the AFM/HRTEM data (top), and 

individual and mean corrections to the existing AFM offset (bottom). 
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6.1.3  Statistical Methods for Microanalysis and Nuclear Forensics 
 
K. J.  Coakley and A. M. Leifer 
Statistical Engineering Division, ITL 
 
D. S. Simons  
Surface and Microanalysis Division, CSTL 
 
 

 
 

                                                                                                                           
Figure 1.  In a Secondary Ion Mass Spectrometry measurement, isotopes of boron are 
measured sequentially.  Instrumental drift introduces systematic error into the estimate of 
the ratio of B10 and B11 isotopes.  Top: Estimates of ratio of B10 to B11 isotopes computed 
from raw data.  Bottom: Estimates of ratio of B10 to B11 isotopes computed from 
interpolation schemes which correct for drift.  We plot the average of the interpolation 
method estimates of the isotopic ratio as a reference line.  
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Secondary ion mass spectrometry (SIMS) is a specialized analytical method that 

can be used to perform localized isotopic ratio measurements on a micrometer 
scale. Such measurements have broad applicability in areas of geology, astronomy, 
and biology. A specific application area of recent interest is nuclear forensics, 
whereby SIMS has been applied to the search for evidence of uranium enrichment 
activities through the measurements of the relative abundances of U-235 and U-238 
in micrometer-sized particles.  We developed statistical methods to correct SIMS 
measurements for the effects of instrumental drift. 
 
 

In SIMS measurement systems, the count rate of isotopes may vary in time as a particle is 

consumed during the analysis.  Since only one isotope at a time is measured in conventional 
ion counting systems, this drift can introduce systematic error into the estimate of the ratio 
of any two isotopes.  Hence, correcting the SIMS instrument for drift is critical to the 
accurate determination of isotopic ratios and their associated random uncertainties. 
 
In each of two interpolation schemes, we align one isotope time series with respect to the 
other.  In the major-minor interpolation scheme, the minor time series is fixed and the major 
time series is interpolated.  In the minor -major interpolation scheme, the major time series is 
fixed and the minor time series is interpolated.  In simulation studies, we show that the 
average of the estimates obtained from both interpolation schemes is superior to the estimate 
computed either from the unaligned data or from a single interpolation scheme for the case 
where the count rate varies in time. 
 
We present a formula for the approximate standard deviation of the isotopic ratio estimated 
from the aligned data. Our formula accounts for the effect of interpolation on the variability 
of the data.  We also present an approximate hypothesis test procedure to detect and 
quantify possible systematic temporal variation in the isotopic ratio time series data. 
 
 
Publication and Presentations 
 
K. J. Coakley, D. S. Simons, and A. M. Leifer, “Secondary ion mass spectrometry 
measurements of isotopic ratios: correction for time varying count rate,” The International 
Journal of Mass Spectrometry 240 (2005) pp. 107-120. 
 
D. S. Simons (CSTL), K. J. Coakley, A. M. Leifer, “Application of Time Interpolation to SIMS 
Isotopic Ratio Measurements,” 17th Annual SIMS Workshop, Westminster, CO, May 19, 
2004 and American Vacuum Society, 51st International Symposium, Anaheim, CA, 
November 15, 2004. 
 
 

Our statistical methods for drift correction and quantification of systematic and random 

uncertainty in SIMS measurements should have broad applicability in geology, astronomy, 
biology, and nuclear forensics. 
 
 
 
 



 134

6.2  BioSystems & Healthcare  
 
6.2.1  Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy 
for Water Purity 
 
James Yen, Stefan Leigh, Alan Heckert, Andrew Rukhin 
Statistical Engineering Division, ITL 
 
David Holbrook 
Surface and Microanalysis Science Division, CSTL  
 

 
 

 
 
 
Depicted are the raw data (top) and the estimated PARAFAC model (bottom) for an EEM 
data taken from a watershed in the Mid-Atlantic region. 
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Naturally occurring bodies of water, such as are used for bathing, drinking, and 

irrigation, are known to contain agglomerated microscopic particles of dissolved 
organic molecules (DOMs, or humics).  Although these complex mixtures of organic 
polymers are known to play an influential role in aquatic ecosystems, the biology, 
chemistry, speciation, transport, and toxicity of such systems, the details of their 
dispersion, their interactions, and their propagation remain poorly understood.  
The humics of immediate interest frequently incorporate residues of pesticides, 
herbicides, and other hydrocarbons.  Due to their complexity, the exact chemical 
characterization of DOMs would be an arduous process, involving large volume 
sampling and many stages of analysis.  
 

Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy is a simple technique for 

measuring and monitoring the heterogeneous composition of organic material contained in 
aqueous samples. The method entails collection of the emission spectrum at multiple 
excitation wavelengths, producing a topographic or contour map where the fluorescence 
peaks can be used to help identify the constituents of the sample. Advantages of the 
technique include small sample volume, minimal sample preparation, and quick analysis 
time. EEM devices are operationally robust and could be stationed in environmentally 
sensitive bodies of water to provide a remote monitoring capability.   
 
Initial SED work focuses on two sets of issues: (1) how to determine if two EEM matrices are 
essentially different from one another, both in terms of qualitative and quantitative 
information that they convey, and (2) automation of the task of determining where and how 
two matrices considered not identical do in fact differ. 
 
A first simple tool for assessing differences between successive EM topographical snapshots 
is a graphic that plots correlations or comovements between complete Excitation spectra 
against the corresponding Emission Spectrum wavelengths.  It has the virtue of representing 
3D contour differences in the form of an easily interpretable 2D graphic.  For a more formal 
test of differences, at each individual wavelength, perform a hypothesis test that the 
correlation (or comovement) of the corresponding data from different EEM matrices falls into 
some pre-fixed range of interest.   The spectrum of resulting p-values can then be combined 
into a single test of equivalence using any number of standard combining techniques, such as 
Fisher’s method.  An application of this approach to calibration of EEM against 
representative samples from the International Humic Substance Society samples is currently 
being documented for submission to the Journal of Environmental Quality. 
  
Previous work in DOM analysis has partitioned the spectral matrix into regions that contain 
groupings of molecules such as aromatic proteins or humic-like organics.  More elaborate 
approaches to the analysis of EEM data for environmental application have only just begun 
to appear in the literature.  Stedman et al (Marine Chemistry, 2003) make use of parallel 
factor analysis (PARAFAC), documented by Bro (Chemometrics and Intelligent Laboratory 
Systems, 1999), who also provides a free PARAFAC tool in Matlab (Anderson and Bro, 
Chemometrics and Intelligent Laboratory Systems, 2000).  We illustrate PARAFAC on water 
sample data taken from a watershed in the mid-Atlantic region.  We do a 4-way analysis 
with the 4 dimensions being Emission wavelength (EM), Excitation wavelength (EX), 
Location, and Date.  We will look at samples taken on 5 different dates (coded as 1=May 5, 
2=May 12, 3=May 21, 4=May 28, 5=June 2) at 4 different locations at the watershed.  These 
data are modeled with a PARAFAC 3-Component model. The top figure on the previous page 
is a perspective plot of the EEM matrix at one location (ST-30, coded as Location 3) on May 
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12.  The figure below that is a perspective plot of the PARAFAC 3-Component model of this 
matrix.  The PARAFAC model captures the main features of the data, except that it seems to 
round the main hump too much and it does not capture the diagonal ridges near the opposite 
corner.  Such diagonal elements violate the conditions of the quadrilinear model used by 
first-order PARAFAC.  The ridges are probably scattering noise that has not been fully 
accounted for, rather than being indicative of the underlying chemical composition. 
 
The number of components is chosen beforehand; ideally, the components will correspond to 
different chemicals with distinctive spectral signals.  However, correlated components may 
lead to convergence problems, necessitating a choice of fewer components.  For each of the 
four factors (EM, EX, Date, and Location) in the watershed data, we show below a graph 
depicting the loadings of the 3 estimated components.  Note that the factor loading units are 
all on an arbitrary scale because the factor loadings of a component are only meaningful 
relative to the loadings of the other components for that factor.   
 
Each estimated component has the same color in all 4 factor graphs.  All 3 components tend 
to be concentrated at small EX and large EM, which agrees with the perspective plots.  
However, the sharpest peaks are from the blue component, which is concentrated on the low 
edge of the EX range.  This blue component is high at Date 1 (May 5, 2004) and basically 
disappears for the other dates.  This corresponds to the data from May 5 having a huge spike 
there that is not present on other days.  That may indicate a contamination or, more likely, 
incomplete suppression of scattering noise.  Thus, PARAFAC can be a useful tool for data 
cleaning as well as for data mining.  The green and red components combine to form the 
dominant features of pictured EEM matrices; these components tend to be at a higher level 
for Locations 2 and 4, and at a lower level for Locations 1 and 3.  That they are at a higher 
level for Date 1 may be an artifact of the huge peak at Date 1.  Scientists can determine if 
the red and green components correspond to particular chemical compounds, and how 
important is the difference in locations.  A series of articles documenting the analysis of 
water data using PARAFAC and other methods is planned. 
 

 
Depicted are the estimated EM factor loadings for the 3 estimated components of the 
PARAFAC model. 
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Depicted above are the estimated EX, Location, and Date factor loadings for the 3 
components of the PARAFAC model. 
 

Dissolved organic matters (DOMs) are known to be influential actors in aquatic 

ecosystems, but their compositions and short-term and long-term effects on water sources are 
only beginning to be appreciated and understood. The complexity of DOMs stands as a major 
roadblock to fully understanding their form and function. EEM holds the promise of being 
able to construct a meaningful taxonomy and catalogue of DOMS as an important first step in 
appreciating and counteracting their potentially deleterious effects.  
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6.2.2  Stress-Strain Behavior of Rat Pulmonary Arteries 
 
Jolene Splett and Dom Vecchia 
Statistical Engineering Division, ITL 
 
Liz Drexler 
Materials Reliability Division, MSEL 
 
 
 

   (A) 
 
 

   (B) 
 
Figure 1.  (A) Stress versus strain for six normotensive rats.  The samples were taken from 
the right ventricle and were measured in the longitudinal direction.  (B) Stress versus strain 
for rat number 5397 with fitted hyperbola. 
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It is well known in the medical community that pulmonary arteries “remodel,” or 

stiffen, in the presence of pulmonary hypertension, but detailed biomechanical 
studies of the proximal arteries are lacking.  Characterizing the biomechanical 
features of the proximal arteries under normal and hypertensive conditions is an 
important step in understanding pulmonary vascular dynamics.  
 
 

Rats were chosen for the initial study because they can be bred to be genetically identical, 

thus minimizing variation among rats and increasing the probability that observed 
differences are due to the disease.  A bubble inflation technique is used to compare the 
stress-strain behavior of diseased versus healthy proximal pulmonary arteries in rats.  Each 
test on a single tissue sample provides a stress-strain curve based on increasing pressures.   
 
Limited tests were conducted to quantify the difference in mechanical properties of 
normotensive and hypertensive rat pulmonary arteries.  Stress-strain measurements were 
obtained for comparison of the properties at multiple orientations of the trunk, right, and left 
pulmonary arteries from normal (control) and treated rats.   
 
We are currently examining models to describe the length versus pressure relationship that 
can be used to predict the initial length (or diameter) of the bubble before inflation.  The true 
length is difficult to measure because of small wrinkles and bumps in the surface of the 
tissue.  The length before inflation is crucial to subsequent calculations of both stress and 
strain. 
 
Assuming the initial length is correct, preliminary analyses indicate that a hyperbolic model 
fits the stress-strain data quite well.  The form of the model is chosen such that one of the 
parameters can be associated with the onset of strain stiffening of the arterial material with 
increasing load.  Estimated values of this parameter may be useful in analyses for various 
comparisons between normotensive and hypertensive experimental rats.   
 
 

Eventually a constitutive model that fully describes the viscoelastic non-linear 

characteristics of arterial tissue will be developed.  Understanding biomechanical properties 
of proximal pulmonary arteries will facilitate the development of novel diagnostic techniques 
with respect to pediatric pulmonary hypertension.  
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6.2.3  Displaying the Effect of Radiation on Cancer Prone Cells 
 
Dennis Leber 
Statistical Engineering Division, ITL 
 
Miral Dizdar, Henry Rodriguez 
Biotechnology Division, CSTL 
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R-dGuo Measurements 
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S-dGuo Measurements 
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Measurements taken during an experiment to assess the effect of radiation on cancer prone 
cells.  From left to right in each measurement type: 1.) Raw data are observed;  2.) Raw data 
separated into BRCA1 cells (left panel) and control cells (right panel) plotted by age and 
color -coded by radiation exposure (red);  3.) Residuals (age effect removed) separated into 
BRCA1 cells (left panel) and control cells (right panel) plotted by age and color -coded by 
radiation exposure (red);  4.) Residuals (age effect removed) separated into BRCA1 cells (left 
panel) and control cells (right panel) plotted by and color -coded by radiation ex posure (red).     
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In ongoing efforts in the scientific and medical communities to understand, treat, 

prevent and potentially find a cure for cancer, Miral Dizdar and Henry Rodriguez 
of the DNA Technologies Group at NIST have examined the effect of radiation on 
cells with a genetic structure, BRCA1, known to potentially lead to breast cancer 
in women at an early age. 
 
 

Samples of cells from individuals of various ages containing the genetic makeup BRCA1 

were examined in this study, as well as cells from a control group.  The cells from each 
individual within each group were divided into six subsamples.  Since these subsamples were 
taken from cells from the same individual, it is assumed that the subsamples are identical 
from the genetic perspective.   
 
As normal, healthy cells from the human body are damaged, human nature repairs the 
damage done.  In this study, several genetic measurements, 8-OH-dGuo, R-dGuo, and S-
dGuo, were utilized to assess damages and repair of the cells.  Measurements were taken on 
three of the subsamples for each individual in the study.  The remaining three subsamples 
from each individual were subjected to a dose of radiation, allowed sufficient time to repair 
itself, and then measurements were taken. 
 
At first view, meaningful relationship in the data is hard to depict  as seen in the leftmost 
graphs above for each measurement type.  A first step to uncover structure in the data was to 
graphically view the data according to the group with which it is associated, BRCA1 or 
Control, as illustrated by the left and right panels, respectively, of the second graphs above 
for each measurement type.  Additionally, the data are plotted by Age and color-coded to 
display weather or not the subsample was exposed to radiation. 
 
Since individuals vary greatly, it is no surprise that the data show great variation from one 
individual, or age, to another within each group.  Since this variation is of no interest to the 
study, an Analysis of Variance (ANOVA) model was used to detect and remove the effects 
due to the differences in individuals.  The signal remaining in the data after removing these 
effects is now due to remaining factors such as the effect due to exposure to radiation and the 
effect of the BRCA1 genetic makeup.  Using the same graphical separation of groups and 
color -coding of radiation exposure as previously used, the residual data are plotted and 
shown in the third graphs above for each measurement type.  The graphs of the residual data 
clearly display the effect the radiation had on the BRCA1 cells, but did not have on the 
Control group cells.  Since the effect due to individual has been removed, it would now be 
appropriate to combine the data across age.  The result is displayed in the final graphs above 
for each measurement type.  It can now easily be seen that the measurements of the cells 
exposed to radiation for the BRCA1 cells (left panel) are significantly higher than those not 
exposed to radiation.  The cells from the control group (right panel) do not display this 
difference.  Quantitative ANOVA models verify the significant difference just observed. 
 
 

Although very early in the research, these findings may lead to alternative treatment plans 

for individuals with the BRCA1 genetic makeup that do not include exposure to radiation.  In 
fact, since it is seen that cells containing the BRCA1 genetic makeup do not completely repair 
damages done as a result of exposure to radiation, special precautions to avoid radiation 
altogether may be in order for individuals with this genetic makeup.  
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6.3  Homeland Security  
 
6.3.1  Experimental Design for Body Armor Failure Investigation 
 
Dennis Leber 
Statistical Engineering Division, ITL 
 
Kirk Rice, Michael Riley 
Office of Law Enforcement Standards, EEEL 
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          Shot zones/locations on a ballistic panel                                Ballistic panel after testing   
 
 
Shot zone/location, as defined by the above graphic, was identified as a factor of interest in 
the body armor failure study.  The violent impact of the bullet with the body armor produces 
the drastic deformations shown.     
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On June 23, 2003, an officer from a municipal police department in a suburb east 

of Pittsburgh, working undercover as a member of the state attorney general’s 
Drug Enforcement Task Force, was shot in the abdomen while attempting to arrest 
a drug suspect.  The officer was wearing ballistic-resistant body armor; the bullet 
completely penetrated the six-month-old armor and lodged near the officer’s 
kidney.  The officer survived the incident.  Two additional armor penetrating 
incidents have been reported, one fatal.  In all three cases, the armor was of the 
same model from the same leading body armor manufacturer.  The material used, 
Zylon, has only been in use in the manufacturing of ballistic-resistant body armor 
since 1998.        
 

NIST’s Office of Law Enforcement Standards, sponsored by the National Institute of 

Justice (NIJ), in conjunction with SED and other key NIST divisions are investigating the 
June 23rd armor failure.  Additionally, in response to US Attorney General Ashcroft’s 
Bulletproof Vest Safety Initiative, the research group is examining all Zylon -based bullet 
resistant vests (both new and used), as well as the upgrade kits offered by manufacturers to 
retrofit the Zylon-based vests.  Furthermore, this research will be expanded in the future to 
include all materials used to manufacture body armor as well as the test methodologies used 
to ensure their reliability.    
 
In an attempt to determine the cause for the June 23rd body armor failure, the focus of the 
experimental testing was the central question of: 
 

Why was the vest able to pass the NIJ standard testing, but failed on the street? 
 
Experimental Factors 
To explore the question at hand, major differences between the NIJ standard testing in the 
laboratory and the incident on the street were explored.  Extensive characterization testing 
was done on unfired ammunition recovered at the crime scene, similar ammunition 
purchased in the area the crime took place, the recovered crime weapon, the failed vest, and 
vests identical in model to the failed vest.  Noteworthy results include a crime scene bullet 
velocity slightly lower than that used in the NIJ certification standard and vest fabric 
strength significantly lower than when certified.  The differ ences (factors) of interest, and 
appropriate levels for these factors chosen to be included in the study were as follows: 
 

Experimental Factor 
NIJ Standard 
Laboratory 

Forest Hills 
Street 

Material Condition New Weakened 
Bullet Type Remington Magtech 
Bullet Velocity 1055 ft/sec 975 ft/sec 
Barrel/Twist SAAMI Hi Point 
Angle of Incidence 0º 45º 

 
In addition to the above five factors, a sixth factor, Vest Zone, was included in the 
experimental design.  Vest Zone is a three-level factor that refers to the areas of the vest that 
have: 

1.) No additional stitching; 
2.) Additional stitching in one direction, the vertical or horizontal direction, and; 
3.) Additional stitching in both the horizontal and vertical directions. 
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Observations 
The five two-level factors and the three-level factor were organized into a 25 * 31 Full 
Factorial Design, where each level of every factor was combined with each level of all other 
factors, for a total of 96 unique observations.  Each of the 96 unique observations was 
replicated, resulting in a total of 192 observations taken for the experiment.   
 
At the request of NIJ, the manufacturer of the armor in question provided 100 identical body 
armor panels representing the armor model in question.  Approximately half of these panels 
were subjected to extreme, but carefully monitored, temperature and humidity to weaken the 
material strength to the levels of that found within the failed vest.  Thirty-two randomly 
selected panels of armor, 16 new and 16 weakened were used in the investigative study.  Six 
shots were placed on each panel of armor.  The six shots within each armor panel were 
arranged in such a manner that no two shots were under identical conditions.  Exactly two 
shots were placed within each of the Vest Zones and within each vest exactly three 
observations were made at each level of the two-level factors (Bullet Type, Bullet Velocity, 
Barrel/Twist, and Angle of Incidence). 
  
Across both the 16 new and 16 weakened vests, each condition was observed in each zone 
exactly twice (creating the replicated shot under each condition).  The conditions assigned to 
the 16 new vests were repeated exactly as for the 16 weakened vests, creating the ability for 
a paired comparison. 
 
Observation Order 
Forty-eight observations were made throughout each of four days.  Twenty-four observations 
were taken each morning using a single defined barrel with the remaining twenty-four 
observations taken in the afternoon using the second barrel.  The order of barrels was 
arranged in such a manner to reduce the need for the barrel to be changed. 
 
Each new vest was paired with a weakened vest as described above.  Each vest was observed 
at least once, but no more than twice each day.  The new/weakened vest pair was observed 
sequentially with the order randomly predetermined.   
 
Eight shots were taken against a given clay block backing fixture before the block is 
replaced/repaired as described in the NIJ Standard.  The eight shots contained exactly four 
New Vests and four Weakened Vests; four Magtech Bullets and four Remington Bullets; four 
1055 ft/sec Velocity shots and four 975 ft/sec Velocity shots; four 0° Angle shots and four 45° 
Angle shots; with all Vest Zones represented and no paired location appearing more than 
once.  The order of these observations that met the constraint requirements for a given clay 
block were randomly selected.   
 
Six clay blocks (two blocks used three times) were used each day.  Given the balanced factor 
constraints on each clay block, an overall daily factor balance was achieved. 
 
Testing 
Prior to the observations being made in both the morning and afternoon, shots were fired 
through the defined barrel verifying the velocities; 975 ft/sec and 1055 ft/sec, with each bullet 
type; Remington and Magtech, could accurately be achieved.  Upon verifying the velocity 
accuracies, observations were taken as defined. The four-day test plan follows: 
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Day Time Barrel
Observation 

Number
Panel 

ID Position Zone
Material 

Condition Bullet
Velocity 

ft/sec Angle
1 103 A I New Remington 1055 0º
2 058 A I Weakened Remington 1055 0º
3 041 F III Weakened Magtech 975 45º
4 035 F III New Magtech 975 45º
5 090 E III New Remington 975 0º
6 092 E III Weakened Remington 975 0º
7 080 C II New Magtech 1055 45º
8 056 C II Weakened Magtech 1055 45º
9 070 A I New Remington 975 45º
10 064 A I Weakened Remington 975 45º
11 057 D II Weakened Remington 1055 0º
12 069 D II New Remington 1055 0º
13 096 B I Weakened Magtech 1055 45º
14 068 B I New Magtech 1055 45º
15 058 E III Weakened Magtech 975 0º
16 103 E III New Magtech 975 0º
17 065 D II Weakened Remington 1055 45º
18 099 D II New Remington 1055 45º
19 077 B I New Magtech 1055 0º
20 054 B I Weakened Magtech 1055 0º
21 091 E III Weakened Magtech 975 45º
22 098 E III New Magtech 975 45º
23 055 A I Weakened Remington 975 0º
24 085 A I New Remington 975 0º
25 048 B I Weakened Magtech 1055 0º
26 038 B I New Magtech 1055 0º
27 087 A I Weakened Remington 975 45º
28 037 A I New Remington 975 45º
29 029 E III New Magtech 975 45º
30 045 E III Weakened Magtech 975 45º
31 092 D II Weakened Remington 1055 0º
32 090 D II New Remington 1055 0º
33 056 B I Weakened Magtech 1055 45º
34 080 B I New Magtech 1055 45º
35 052 D II Weakened Remington 1055 45º
36 025 D II New Remington 1055 45º
37 026 E III New Magtech 975 0º
38 060 E III Weakened Magtech 975 0º
39 035 A I New Remington 975 0º
40 041 A I Weakened Remington 975 0º
41 055 F III Weakened Magtech 975 45º
42 085 F III New Magtech 975 45º
43 069 E III New Remington 975 0º
44 057 E III Weakened Remington 975 0º
45 026 A I New Remington 1055 0º
46 060 A I Weakened Remington 1055 0º
47 068 C II New Magtech 1055 45º
48 096 C II Weakened Magtech 1055 45º
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Day Time Barrel
Observation 

Number
Panel 

ID Position Zone
Material 

Condition Bullet
Velocity 

ft/sec Angle
49 035 E III New Magtech 1055 0º
50 041 E III Weakened Magtech 1055 0º
51 090 F III New Remington 1055 45º
52 092 F III Weakened Remington 1055 45º
53 026 C II New Remington 975 45º
54 060 C II Weakened Remington 975 45º
55 096 A I Weakened Magtech 975 0º
56 068 A I New Magtech 975 0º
57 029 C II New Remington 975 0º
58 045 C II Weakened Remington 975 0º
59 037 E III New Magtech 1055 45º
60 087 E III Weakened Magtech 1055 45º
61 052 F III Weakened Remington 1055 0º
62 025 F III New Remington 1055 0º
63 077 A I New Magtech 975 45º
64 054 A I Weakened Magtech 975 45º
65 064 F III Weakened Magtech 975 0º
66 070 F III New Magtech 975 0º
67 054 C II Weakened Magtech 1055 0º
68 077 C II New Magtech 1055 0º
69 065 E III Weakened Remington 975 45º
70 099 E III New Remington 975 45º
71 045 A I Weakened Remington 1055 45º
72 029 A I New Remington 1055 45º
73 038 C II New Magtech 1055 0º
74 048 C II Weakened Magtech 1055 0º
75 052 E III Weakened Remington 975 45º
76 025 E III New Remington 975 45º
77 091 A I Weakened Remington 1055 45º
78 098 A I New Remington 1055 45º
79 037 F III New Magtech 975 0º
80 087 F III Weakened Magtech 975 0º
81 080 A I New Magtech 975 0º
82 056 A I Weakened Magtech 975 0º
83 069 F III New Remington 1055 45º
84 057 F III Weakened Remington 1055 45º
85 058 C II Weakened Remington 975 45º
86 103 C II New Remington 975 45º
87 085 E III New Magtech 1055 0º
88 055 E III Weakened Magtech 1055 0º
89 038 A I New Magtech 975 45º
90 048 A I Weakened Magtech 975 45º
91 065 F III Weakened Remington 1055 0º
92 099 F III New Remington 1055 0º
93 091 C II Weakened Remington 975 0º
94 098 C II New Remington 975 0º
95 064 E III Weakened Magtech 1055 45º
96 070 E III New Magtech 1055 45º
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Day Time Barrel
Observation 

Number
Panel 

ID Position Zone
Material 

Condition Bullet
Velocity 

ft/sec Angle
97 035 D II New Magtech 975 0º
98 041 D II Weakened Magtech 975 0º
99 026 B I New Remington 975 45º
100 060 B I Weakened Remington 975 45º
101 056 E III Weakened Remington 1055 0º
102 080 E III New Remington 1055 0º
103 052 A I Weakened Magtech 1055 45º
104 025 A I New Magtech 1055 45º
105 055 C II Weakened Remington 1055 45º
106 085 C II New Remington 1055 45º
107 054 D II Weakened Remington 975 45º
108 077 D II New Remington 975 45º
109 029 F III New Magtech 1055 0º
110 045 F III Weakened Magtech 1055 0º
111 065 B I Weakened Magtech 975 0º
112 099 B I New Magtech 975 0º
113 048 E III Weakened Remington 1055 45º
114 038 E III New Remington 1055 45º
115 090 A I New Magtech 1055 0º
116 092 A I Weakened Magtech 1055 0º
117 087 D II Weakened Magtech 975 45º
118 037 D II New Magtech 975 45º
119 029 B I New Remington 975 0º
120 045 B I Weakened Remington 975 0º
121 064 D II Weakened Magtech 975 45º
122 070 D II New Magtech 975 45º
123 069 A I New Magtech 1055 0º
124 057 A I Weakened Magtech 1055 0º
125 058 B I Weakened Remington 975 45º
126 103 B I New Remington 975 45º
127 068 E III New Remington 1055 0º
128 096 E III Weakened Remington 1055 0º
129 055 D II Weakened Magtech 975 0º
130 085 D II New Magtech 975 0º
131 098 B I New Remington 975 0º
132 091 B I Weakened Remington 975 0º
133 077 E III New Remington 1055 45º
134 054 E III Weakened Remington 1055 45º
135 065 A I Weakened Magtech 1055 45º
136 099 A I New Magtech 1055 45º
137 038 D II New Remington 975 45º
138 048 D II Weakened Remington 975 45º
139 052 B I Weakened Magtech 975 0º
140 025 B I New Magtech 975 0º
141 041 C II Weakened Remington 1055 45º
142 035 C II New Remington 1055 45º
143 098 F III New Magtech 1055 0º
144 091 F III Weakened Magtech 1055 0º
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Day Time Barrel
Observation 

Number
Panel 

ID Position Zone
Material 

Condition Bullet
Velocity 

ft/sec Angle
145 069 C II New Magtech 975 45º
146 057 C II Weakened Magtech 975 45º
147 064 B I Weakened Remington 1055 0º
148 070 B I New Remington 1055 0º
149 098 D II New Magtech 1055 45º
150 091 D II Weakened Magtech 1055 45º
151 048 F III Weakened Remington 975 0º
152 038 F III New Remington 975 0º
153 055 B I Weakened Remington 1055 45º
154 085 B I New Remington 1055 45º
155 056 F III Weakened Remington 975 45º
156 080 F III New Remington 975 45º
157 058 D II Weakened Magtech 1055 0º
158 103 D II New Magtech 1055 0º
159 065 C II Weakened Magtech 975 0º
160 099 C II New Magtech 975 0º
161 090 B I New Magtech 975 45º
162 092 B I Weakened Magtech 975 45º
163 037 C II New Remington 1055 0º
164 087 C II Weakened Remington 1055 0º
165 103 F III New Magtech 1055 45º
166 058 F III Weakened Magtech 1055 45º
167 080 D II New Remington 975 0º
168 056 D II Weakened Remington 975 0º
169 096 D II Weakened Remington 975 0º
170 068 D II New Remington 975 0º
171 060 F III Weakened Magtech 1055 45º
172 026 F III New Magtech 1055 45º
173 064 C II Weakened Remington 1055 0º
174 070 C II New Remington 1055 0º
175 069 B I New Magtech 975 45º
176 057 B I Weakened Magtech 975 45º
177 090 C II New Magtech 975 45º
178 092 C II Weakened Magtech 975 45º
179 054 F III Weakened Remington 975 0º
180 077 F III New Remington 975 0º
181 087 B I Weakened Remington 1055 0º
182 037 B I New Remington 1055 0º
183 045 D II Weakened Magtech 1055 45º
184 029 D II New Magtech 1055 45º
185 060 D II Weakened Magtech 1055 0º
186 026 D II New Magtech 1055 0º
187 096 F III Weakened Remington 975 45º
188 068 F III New Remington 975 45º
189 041 B I Weakened Remington 1055 45º
190 035 B I New Remington 1055 45º
191 025 C II New Magtech 975 0º
192 052 C II Weakened Magtech 975 0º
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Recorded Data 
The data recorded for each defined observation included: 

§ Complete or Partial Penetration 
§ Bullet Velocity Readings from each of two sets of Chronographs  
§ Back Face Signature Measurement 
§ Laboratory Temperature 
§ Laboratory Humidity 
§ Clay Block ID used 

 
Velocity Error 
In the event that the desired velocity was not achieved due to the velocity variation 
introduced as a result of hand loading, the fair shot criterion as described in the NIJ 
standard was to be used.  If the shot is deemed unacceptable, an additional shot elsewhere 
within the desired zone was taken after all other shots on the vest had been observed.  No 
shots were deemed unacceptable throughout the testing.         
 
 

Unfortunately, at the time of writing, the results from the experiment have yet to be 

approved by the funding agency, NIJ, for release to the public and therefore cannot be 
discussed in detail.  The experiment did lead to several additional questions to be explored, for 
example: Were the assumptions relating to vest material strength based on observations of the 
rear panel correctly extrapolated to the failed front panel?  Did the artificial weakening of the 
samples in the laboratory accurately simulate that which occurred in the officer’s vest at the 
molecular level?  These and many more questions, future experiments, and potentially life-
saving conclusions will address the issues surrounding the safety of Zylon-based bullet-
resistant vests.  The extensive knowledge gained throughout the study has been and will 
continue to be used in the further refining of the measurement and analytical methods used in 
testing body armor as well as improvements to the National Institute of Justice’s certification 
standard, ensuring the continuing commitment to safety for those who wear NIJ certified 
ballistic -resistant body armor. 
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6.3.2  Troubleshooting Plutonium Contamination in NIST 
Radionuclide Shellfish Measurements via Experiment Design 
 
James J. Filliben   
Statistical Engineering Division, ITL 
 
Kenneth Inn, Robert Radford   
Radiation Physics Division, PL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Alpha-Spectrometric analysis of a blank with a Pu-242 tracer. The Pu-242 and the 
Po-212 peaks were as expected.  Note the existence of anomalous peaks from Pu-239/240 and 
from Pu-238.  These extraneous peaks were the first indication of plutonium contamination in 
the NIST shellfish radionuclide measurement process. 
 

 
Low-level Plutonium-(239, 240 and 238) Contamination Detected in the Clean Lab 

 

Pu-239/240 

Pu-238 and/or      
U-232 

Po-212 

Pu-242 
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The NIST Radiation Physics Division (RPD) provides state-of-the-art 

measurements for a variety of radionuclides over a wide range of concentrations.  
NIST/RPD has particular expertise at low-dose oceanic (shellfish, seaweed, etc.) 
measurements, and the outside environmental/pollution  community looks to this 
Division for definitive measurements, standards and calibration of such low-dose 
artifacts. 
 
On occasion, low-concentration measurements of one radionuclide are 
contaminated by trace residues of another radionuclide. This write-up describes 
one such case, whereby it was determined that trace concentrations of plutonium 
had crept into a particular NIST shellfish alpha spectrometry measurement 
process.  In order to maintain the world-class metrological standards symbolic of 
NIST/RPD, it was necessary that the source of plutonium contamination be 
identified and removed.  Statistically designed experiments were critical in the 
uncovering of the contaminant source, and in doing so with a minimal number of 
runs/time/$.  
 

As part of its ongoing program of monitoring ocean pollution worldwide, the NIST 

Radiation Physics Division regularly carries out high-accuracy measurements of 
radionuclides in shellfish, seaweed, and other oceanic artifacts.  Increases in such 
radionuclide concentrations would suggest a possible worsening of pollution across space 
and/or time.  In this regard, a question of interest is what procedural safeguards does 
NIST/RPD have in place to assure that such measurements are accurate. 
 
One such safeguard is the incorporation and use of controls. In the context of these marine 
measurements, this translates into the execution of the measurement protocol on "blank" 
samples--that is, samples with zero concentration for all of the various radionuclides.  This 
zero-base reading is valuable all by itself; an additional value-added is achieved, however, 
when the physical chemists artificially augment the blank with a "spike"--a known 
concentration of a single known radionuclide. This permits the proper calibration and 
interpretation of the resulting alpha spectrum.   
 
In early 2003, in connection with NIST measurement of shellfish samples, the routine 
spectral examination (see Figure 1) of the spiked blank revealed a serious anomaly: not only 
did the spike (Pu-242) show up on the spectrum (as it should), but 2 additional plutonium 
peaks also appeared (unexpectedly)--one at Pu-239/240 and the other at Pu-238. There was 
no physical basis for these 2 additional peaks; they were, in fact, a clear indication that 
plutonium contamination existed somewhere in the shellfish measurement process itself.   
 
Two courses of action were possible: 

1. Leave the process unchanged, estimate the amount of contamination, and correct for it 
during the statistical analysis stage; or 

2. Experiment with the process, determine the source of the contamination, and remove 
it.   

 
The second option was clearly preferable.  In this regard, over the course of the following 
year, a series of "best guess trial and error" tests were run by a RPD member with the hope 
of discovering the specific source of the contamination.  This effort was unsuccessful.  
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In the early summer of 2004, an alternative approach was employed by RPD--the use of 
orthogonal fractional factorial designs--to systematically uncover the cause for the 
contamination.  This entire effort took only 12 weeks--and was successful in  resolving the 
problem.  Details of this approach follow. 
 
The first step in the experimental design structured approach is to carefully enumerate and 
scrutinize the components of the shellfish measurement process.  The following is a summary 
of the 8-step procedure that was used for processing a (shellfish or blank) sample for alpha 
spectrometry: 
 
1. Ashing 

Ashing is the process of burning the shellfish (or blank) sample.  This is done to remove 
the organics.  This ashing could be done at 2 different workstations: workstation 1 
(belonging to staff member I), and workstation 2 (belonging to staff member H).   
 

2. Dissolution 
Dissolution is the dissolving of the ash in acid.  This is done to liquify the sample for 
further processing. The dissolution could be done by either of 2 NIST staff: I or H.  

 
3. Chemistry 

Chemistry is the process of separating the plutonium (Pu) from the ash.  This is done by 
putting the dissolved samples into an anion exchange column.  By varying the acid 
concentration, the type of acid, and the oxidation state, one can cause the deposition of a 
radionuclide (plutonium, uranium, etc.) on the column. For this experiment, 2 different 
chemistry approaches were used: the above-described, or none.   

 
4. Glassware 

The samples were at this time put into glassware.  With the thought that the glassware 
could be contaminated due to the glassware storage area being contaminated and/or the 
wash solution contaminated, 2 different glassware wash procedures were considered: 
washing/storage by staff member I, and washing/storage by staff member H.  

 
5. Hood 

The sample is further processed in a class 100 clean environment: (a max of 100 particles 
per cubic meter with each particle < .1 micron). In order to achieve this environment, 2 
separate hoods were utilized: one at staff member I's workstation, and one at staff 
member H's workstation.   

 
6. Reagents 

The addition of reagents facilitates the ultimate measurement of plutonium.  To address 
the possibility that reagent bottles may be contaminated, two different reagents sources 
were used: one belonging to staff member I and the other belonging to staff member H.  

 
7. Tracer 

The "tracer" refers to the spiking of the blank by Pu-242.  To address the possibility that 
the Pu-242 was contaminated by other plutonium radionuclides, 2 tracers were used: one 
belonging to staff member I, and the other belonging to staff member H.  

 
8. Sample Preparation 

Sample preparation refers to the final step of preparing the sample for (plutonium) 
counting.  To determine if further plutonium contamination was caused by the sample 
prep method, 2 different sample prep procedures were used: one was electrodeposition, 
and the other was selective precipitation and filtering ("co-precipitation").   
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In terms of design essentials, this problem may be classified as a (k = 8 factor, n < 20 run) 
experiment.  In terms of design goals, this is a classical screening experiment with its usual 
objectives: 
 

1. Determine the important factors out of the 8 that maximize the response (= plutonium 
contamination); and 

2. Determine the "worst" settings--those settings of the 8 factors that yield the highest 
plutonium contaminations. 

 
In terms of factor levels, the natural binary settings for each of the 8 factors suggests taking 
advantage of the efficiency and power of 2-level orthogonal fractional factorial experiment 
designs. Based on k = 8 and n < 20, NIST/RPD selected a 2**(8-4) orthogonal fractional 
factorial design, which effectively and efficiently examines the relative importance of 8 
factors with only 16 experimental runs. 
 
The 8 factors and their 2 coded settings are given below in table 1: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1.  Factors for the Plutonium Contamination Study 
 
 

Note that out of the 8 factors, 4 are "operator" in nature; that is 4 factors (1, 2, 4, and 6) have 
a human component involved in the operation (e.g., cleaning the glassware, mixing the 
reagent, adding the tracer, and doing the dissolution, respectively).  Although such "human 
operator factors" are not physical in nature, it is a well-known fact that many measurement 
processes have human components, and these human components are oftentimes vulnerable 
to affecting/contaminating the final result.   In this study, the same 2 staff members (staff 
member "I" and staff member "H") shared responsibility in 4 steps of the measurement 
process protocol.  
 
Ken Inn of the RPD has been a strong local advocate of statistically designed experiments for 
many years.  Ken has successfully incorporated many such designs for solving specific 
radiometric physics problems over the years; this "plutonium contamination detective work" 
problem was the latest.  The final design (a 28-4) is a resolution 4 which of course means that 

none of the 8 estimated main effects will be confounded with any of the 







2
8

 (= 28) 2-factor  

interactions.  This is an excellent design for the "detective" problem at hand.  The design is 
given in Table 2 below: 
 

 Factor -1 1 

1 Glassware Staff I Staff H 
2 Reagent Staff I Staff H 

3 Sample Prep Co-precipitation Electrodeposition 
4 Tracer Staff I Staff H 

5 Dissolution Without With 

6 Hood Staff I Staff H 
7 Chemistry Without With 

8 Ashing Without With 
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Table 2. 28-4 Orthogonal Fractional Factorial Design (k = 8 factors, n = 16 runs) 

 
 
Upon executing the design, the response (= total amount of plutonium contamination) is 
given in the last column of Table 2.  Note that some (3) of the 16 runs yielded zero 
contamination. 
 
With respect to the analysis, the design and data were inputted into the DEXPLOT.DP 
macro in NIST/SED's Dataplot statistical software system; this macro automates the 
recommended 10-step graphical procedure for analyzing orthogonal 2k-p factorial designs (see 
"An EDA Approach to Experimental Design” in the "Advanced Topics" section of the Process 
Improvement chapter (i.e., Chapter 5) of the NIST/Sematech e-Handbook of Engineering 
Statistics). Three of those 10 steps are presented below to provide a clear answer to the 
problem of determining the plutonium contamination source. 
 
Figure 2 is an ordered data plot: the vertical axis is the ordered response Y (= 
contamination); the horizontal axis is the "carry along" settings of all 8 factors.  Note that 
there are 3 large contamination values.  Note also the settings of the 8 factors that yield 
these 3 large values.  Note finally that 2 of the 8 factors, namely (X1 = Glassware and X6 = 
Hood) have identical settings for all 3 of these extreme runs; in particular, when the 
contamination Y is large, X1 = (+ + +) and X6 = (+ + +).  
 
 
 
 
 

 

28-4 Glassware Reagent 
Sample 

Prep Tracer Dissolution Hood Chemistry Ashing Response 
Run X1 X2 X3 X4 X5 X6 X7 X8 Y 

1 -1 -1 -1 -1 -1 -1 -1 -1 0 
2 1 -1 -1 -1 -1 1 1 1 0.003312 
3 -1 1 -1 -1 1 -1 1 1 0.000037 
4 1 1 -1 -1 1 1 -1 -1 0 
5 -1 -1 1 -1 1 1 1 -1 0.000065 
6 1 -1 1 -1 1 -1 -1 1 0.000133 
7 -1 1 1 -1 -1 1 -1 1 0.000046 
8 1 1 1 -1 -1 -1 1 -1 0.00003 
9 -1 -1 -1 1 1 1 -1 1 0 
10 1 -1 -1 1 1 -1 1 -1 0.000287 
11 -1 1 -1 1 1 1 1 -1 0.000133 
12 1 1 -1 1 1 -1 -1 1 0.000048 
13 -1 -1 1 1 -1 -1 1 1 0.000133 
14 1 -1 1 1 -1 1 -1 -1 0.005749 
15 -1 1 1 1 1 -1 -1 -1 0.000015 
16 1 1 1 1 1 1 1 1 0.00247 
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Figure 2.  Ordered Data Plot.  Vertical Axis = Plutonium Amount.   Horizontal Axis = 

Experimental Runs (1 to 16) 
 
 

The conclusions based on this EDA plot are as follows: 
 
1. X1 (Glassware) and X6 (Hood) are the 2 most important                                                                                    

factors; 
2. X1 (Glassware) = + (that is, staff member H) and X6 (Hood) = + (that is, staff member 

H) are leading candidates for the plutonium contamination source. 
 
Figure 3 (below) is a main effects plot, which shows the mean of each of the 2 settings for 
each of the 8 factors.  Since the design is orthogonal, the difference in the means is 
identically the least squares estimate for the factor effect.  The main effects plot reaffirms 
the above conclusions; namely, that 
 

1. X1 (Glassware) and X6 (Hood) are the 2 most important factors; 
2. X1 (Glassware) = + (that is, staff member H) and X6 (Hood) = + (that is, staff member 

H) yield the highest average contamination. 
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Figure 3.  Main Effects Plot.  Vertical axis = Average Plutonium Contamination.  Horizontal 

Axis = 8 Factors and 2 Settings per Factor 
 
A final analysis technique of interest is the half-normal probability plot of |estimated 
effects| (see Figure 4 below).  Note how the 3 largest effects have separated themselves from 
the remaining 13 effects.  This indicates that the 3 most important factors are 
 

1. X1 
2. X6 
3. X3X4, X1X6, X2X5, X7X8 (confounded) 

 
From other considerations, we may deduce that the 2-term interactions X3X4, X2X5, and 
X7X8 make relatively minor contributions to this third effect, and that the bulk of this effect 
comes from the X1X6 interaction. Given that, we make a final conclusion that the plutonium 
contamination from this system is being driven by 
 

1. X1 (Glassware) 
2. X6 (Hood) 
3. X1X6 (the Glassware*Hood interaction) 
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Figure 4.  Half-normal Plot of |Effect Estimates|. 
3 Factors Dominate: 1, 6, and 16 Interaction 

 
Thus in summary, this analysis shows that the plutonium contamination has been narrowed 
down to 2 sources: the cleansing of the glassware and the hood.  For item 1 (glassware 
cleaning), stricter cleaning and storage room protocols are being put in place.  With respect 
to item 2 (hood), it is believed that the filter within the hood is the culprit--this filter is 
currently being replaced ($3000).  
 

The use of orthogonal fractional factorial designs to simultaneously and efficiently study a 

large number of factors to provide information about dominant factors and best/worst 
settings played a critical role in the RPD's effort to troubleshoot and maintain high-accuracy 
contamination-free shellfish measurements. This approach has potentially many similar 
applications.  The presentation of this case study by one of the collaborators (Radford) to the 
radiometric community at the recent Cincinnati meeting led one of the Los Alamos 
management-level attendees to declare what a superb presentation/method it was, and how 
he/she could think of many applications back at Los Alamos that might benefit from the same 
structured orthogonal experiment design approach.  In any event, the NIST RPD oceanic 
radionuclides measurement program  specifically benefitted by identifying the major sources 
of pollution contamination in a minimal amount of time and effort.  This will serve to 
maintain NIST/RPD's leadership role in continuing to provide the precise and bias-free 
measurements so vital to environmental and pollution communities worldwide. 
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6.3.3  Statistical Design and Signal Processing of Microhotplate 
Sensor Arrays in Detection of Chemical Warfare Simulants 
 
Z.Q. John Lu, Juan Soto, Nell Sedransk 
Statistical Engineering Division, ITL 
 
Jon Evju, Zvi Boger, Steve Semancik 
Process Measurement Division, CSTL 
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Figure 1. Design introducing interferences and simulant to TPS sensing cycles during one 
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Microhotplate sensor arrays are low-cost and extra-sensitive monitoring 

devices that can be used to detect certain chemical analytes at extremely low 
levels of concentration, such as parts per million (ppm) or parts per billion (ppb). 
This interdisciplinary project, funded in part by the Department of Defense, aims 
to demonstrate for the first time the feasibility of this NIST-patented technology 
for detection of chemical warfare simulants at low concentration and under strong 
interference factors such as water, diesel, etc.  The Statistical Engineering 
Division has made key contributions in this project, which include:  (a) the design 
of experiments with the collection of high throughput data under multi-factor 
influences and inputs and high -dimensional signal outputs, and (b) the 
development of a statistical methodology for signal processing and statistical data 
mining: finding weak fingerprints (needle) from high -interference signal data 
(haystacks). 
 

MicroElectroMechanical Systems (MEMS) design-based microhotplates are miniaturized 
platforms that are used to collect relevant chemical signals in a parallel and high-throughput 
fashion so that a particular chemical analyte of interest may be distinguished from other 
environmental interferences via its kinetic reactions to certain thin films while heated at 
some very high temperature ramping cycles.  Figure 2 depicts a 2x2 design of this device. 

 

  

 

 

 

 

 
Features include: Thermal isolation 
•Lateral dimensions 30 to 200 mm; mass 250 ng 
•Capable of heating rates of 106 °C/s 
•Time constants ~2 ms•20 °C to 500 °C normal operation range 
•Both films and hotplates are independently controlled and measured 
•Tool for controlled materials preparation and gas analyte sensing 
 

Figure 2. Diagram of the microhotplate-sensing device 
 
 
Traditional conductometric sensors have but a single response to their environment – 
conductance change.  As a result, they are fundamentally non-selective, since any reducing 
agent present in a given analyte stream will interact with the metal oxide film, resulting in a 
conductance change.  Rapid thermal control of microhotplates allows a sensing mode not 
available to traditional conductometric sensors: Temperature Programmed Sensing (TPS).  
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High-speed temperature modulation during conductometric measurements results in the 
collection of a series of kinetic transients rather than thermodynamic equilibria.  In this way, 
an array of four microsensors programmed to sample 20 temperatures in 13.5 seconds can be 
treated as 80 different virtual sensors, each with a time resolution equal to the program 
time.  Larger numbers of sensors, virtual or otherwise, expand response orthogonality, and 
thus selectivity, for a given analyte system.  Through careful selection of sensor materials 
and temperature programs, maximum selectivity and sensitivity can be achieved. 
 
Our goal in this DoD funded project is to demonstrate the feasibility of using the 
microhotplate technology for detection of some chemical warfare simulants at very low 
concentration with various interferences being introduced during the experimental setup. 
Figure 1 shows a design for one run at 36 experimental settings with about 4800 
temperature cycles. Figure 3 shows an example of signal data from 4 sensors under the TPS 
mode. It is seen that the two types of films, SnO2 and TiO2 can give rise to quite different 

kinetic reactions for the given simulant at various experimental conditions. However, it is 
clear that within each experimental setting (denoted by the same color), the response cycles 
are quite consistent and compact, indicating very good reproducibility of the sensors at a 
given condition.               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. An example of sensor signals (conductivity response cycles) from one experiment 
from TPS temperature cycles: 480oC?  420oC? …? 367oC? 420oC? 480oC 

Sensing film material 
 

          SnO2                                 TiO2                           SnO2                               TiO2 
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To validate this claim, Figure 4 shows the prediction results using a very simple statistical 
data mining algorithm.  The training data consist of the cycles for the time interval 8-12 
minutes.  The rest of the data within the 15-minute setting are tested based on a fitted 
nonlinear classifier or posterior probability model. Only data from one experimental run from 
all 36 settings are used. Two conclusions can be drawn. First, sensor signals from a given 
short time period can be used for training. These yield prediction results corresponding to the 
experimental inputs with very good accuracy. Second, there is a short transient period when 
the sensors are switched to different experimental settings. The initial signals from sensors 
are vulnerable to residual effects from previous settings.  These nonstationary effects may be 
detected or calibrated for in the future.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Prediction results from a statistical data mining algorithm. The black diamonds 
denote posterior probabilities for the presence of a simulant during the training phase (time 
period), whereas the orange diamonds denote posterior probabilities for the presence of a 
simulant during the testing phase (time period). 

In summary, statistical science provides the much-needed experimental design and decision-
theoretic support, as well as pattern recognition algorithms that can be implemented easily in 
an S-PLUS or GNU R environment.  This project illustrates SED expansion in the 
challenging experimental design and signal processing areas of combinatorial and high-
throughput experiments.  The statistical data mining efforts using neural networks, support 
vector machines, and k-nearest neighbor methods are applicable to many other problem areas, 
e.g., bioinformatics.  
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6.4  Web Products and Software  
 
6.4.1  Rewrite of MASSCOMP Calibration Software  
 
Alan Heckert, Hung-Kung Liu   
Statistical Engineering Division, ITL 
 
Jalilian Firouzeh   
University of Maryland 
 
Zeina Jabbour   
Manufacturing Metrology Division, MEL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 
 
 
                                                      Standards: K20 – National Standard 
                                                                         K4   - Check Standard 
                                                                         K79 – Research Standard 
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The mass of an object, a measure of quantity of matter, is an intrinsic property of 

the object.  Precise measurement of mass is a cornerstone for trade and commerce 
and therefore serves a vital role in science and manufacturing.  To ensure equity 
and equivalence in trade and manufacturing at the national and international 
levels, uniform standards for mass are needed. Using weighing designs, mass 
standards are calibrated at NIST by comparison measurements that relate the 
mass of a client’s standard to the NIST standard kilogram.  The NIST standard 
kilogram is in turn related to the internationally defined unit for mass, the IPK. 

The current mass calibration software was initially written in Fortran 66 in the 1970’s. 

Although this code has served for several decades, it now has a number of limitations.  
• The code is unstructured (e.g., Fortran 66 did not support IF-ELSEIF -ELSE 

constructs and it uses a limited number of large subroutines). This makes the code 
difficult to read and therefore difficult to update.  As a result, a number of desired 
code updates have not been implemented. 

• The code has a rigid data input format. 
• The code only runs in a command line and does not support any graphical output. 

 
For these reasons, we are currently rewriting the mass calibration software.  The primary 
goals for this project are 

• Rewrite the mass calibration software in a modern language to provide a more 
structured and modularized code. This will result in a more maintainable code. 

• Provide a more flexible data input model. 
• Implement a large number of proposed updates to the program.  Some of these 

updates are relatively minor while others are significant. 
• Implement a graphical user interface (GUI) for Windows. The mass calibration 

software is used by a number of non -NIST users of varying computer skills. 
 
We chose Fortran 90 as the language for the computational engine.  Fortran 90 provides 
modern control structures and convenient methods for modularizing the code.  Of particular 
note, it supports sophisticated array syntax that allows simplification of the mathematical 
and statistical computations. We chose Visual Basic as the language for developing the 
graphical user interface (GUI).  Visual Basic provides easy-to-implement user -interface 
features while maintaining compatibility with a Fortran 90 computational engine.  For the 
GUI, the main program is written in Visual Basic while the Fortran 90 modules are 
implemented as a dynamic link library (DLL). 
 
Accomplishments for the mass calibration software rewrite over the last year include 

• The Fortran 90 rewrite of the current code is essentially complete.  The large 
subroutines were split into smaller and easier to understand modules.  Extensive 
documentation was added to the Fortran subroutines.  Computations were simplified 
by using modern control structures and array syntax.  All of these steps lay a strong 
foundation for future enhancements to the code. 

• A keyword data input format was designed and implemented.  This also served as a 
basis for designing the input module in the GUI. 

• Most common weighing designs are now built into the code. 

Future efforts include refining and developing the GUI and enhancing the functionality of 

the mass calibration software.  The rewritten mass calibration software should provide a solid 
foundation for a program that is easier to maintain and update and that will be easier for 
non-NIST customers to use. 
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6.4.2  The Basic Mass Metrology CD-ROM – Spanish Version 
(CD-ROM de metrología básica de masa del NIST) 
 
A. Ivelisse Avilés 
Statistical Engineering Division, ITL 
 
Georgia L. Harris  
Weights & Measures Division,TS 
 
 

 
 
The multimedia CD-ROM metrology course is divided into modules.  At the end of the course, 
a participation certificate can be printed.  
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The National Institute of Standards and Technology (NIST) trains many state 

and industrial laboratory metrologists who verify the accuracy of standards used 
to test the measuring equipment used in commercial transactions.  To alleviate a 
training backlog of officials from government and industrial mass calibration 
laboratories, NIST released an electronic mass measurement training course in 
October 2003.  Although NIST receives numerous requests to provide training in 
Spanish, it has been difficult to get enough students in one class to make it cost-
effective to offer the course in Spanish.  Thus, funding was obtained to translate 
the entire project and provide a version of the Basic Mass Metrology course in 
Spanish.  This version of the CD-ROM was just released.  The Statistical 
Engineering Division has been involved in the review assessment of technical 
(statistical) validity, with appropriate technical and linguistic editing and/or 
revision, as required, in both English and Spanish. 
 
 

The free multimedia CD-ROM covers NIST’s basic one-week mass metrology course. It 

includes interactive activities, knowledge quizzes, examples, video demonstrations, and 
specialty graphics and photos for specific products. The CD-ROM is designed to introduce 
mass metrology to newcomers to the field; offer supplementary training for those who have 
recently attended a metrology course and want to review their knowledge before entering the 
laboratory environment; and act as a refresher for long-time laboratory staff unfamiliar with 
the latest measuring techniques. 
 
The course is divided into the following modules: 
Module 1 – General Principles 
Module 2 – Basics in Mass Metrology Lab 
Module 3 – Calibration Procedures 
 
By the time metrologists finish this course, they will be able to:   

• Perform basic math and statistics in metrology calculations 
• Explain the measurement assurance process and the factors that influence 

measurement uncertainty 
• Develop good laboratory practices 
• Create control charts, calculate measurement uncertainties, and interpret the 

measurement results 
• Explain basic mass metrology theory used in making accurate mass measurements 
• Select an appropriate standard operating procedure for a mass measurement 
• Correctly find the correction and uncertainty for the unknown weight being 

calibrated 
 
 

The CD-ROM was developed so that metrologists can have a ready reference on mass 

calibration that can be reviewed at any time.  The course material has been translated into 
Spanish for even wider distribution and metrology support.  It provides a good introduction 
for new metrologists while providing supplemental training for the experienced metrologist.  
The information is divided into modules, lessons, and topics to help them quickly locate 
information as necessary for the job.  The Basic Mass Metrology CD-ROM (NIST Special 
Publication 1001) is available from NIST at (301) 975-4004 or by e-mail at owm@nist.gov 
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.6.4.3  e-FITS  
 
Alan Heckert   
Statistical Engineering Division, ITL 
 
Ken Inn   
Ionizing Radiation Division, PL 
 

 
Figure 1: A ranked list of distributional fits generated by e-FITS. 
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The e-FITS software is a Web-based tool used to generate graphs, tables, critical 

values, random numbers, and distributional fits for a large number of probability 
distributions.  The motivation for e-FITS is to support the statistics chapter in the 
Digital Library of Mathematical Functions (DLMF) and to provide a convenient 
way to perform distributional modeling.  Although e-FITS complements the DLMF, 
it is a distinct product from the DLMF. 

The statistics chapter of the DLMF documents 22 univariate continuous distributions and 

seven discrete distributions.  e-FITS generates the following for these distributions. 
• Graphs of common probability functions (probability density, percent point, hazard, 

cumulative hazard, survival, and inverse survival).  
• Tables and single values for each of the above functions. 
• Random numbers for the distribution. 
• Generate a fit for the distribution with user -supplied data. Fits will be generated 

using either the PPCC/probability plot or with maximum likelihood methods of 
moment estimates (or both). Diagnostic plots and Anderson-Darling or Kolmogorov-
Smirnov goodness of fit tests are generated to assess the adequacy of the fit. 

• For selected distributions, generate tables of critical values. 
 
The e-FITS software is implemented using forms and CGI scripts. The user of e-FITS does 
not need to install or learn a statistical software program.  The user fills out a Web form and 
a CGI script utilizes Dataplot to generate the requested graph, table, or fit.  Ken Inn of the 
Ionizing Radiation Division provided support for the e-FITS project over the last year.  His 
group is particularly interested in distributional fitting and in finding uncertainty intervals 
for percentiles of the fitted distributions. 
 
Accomplishments for e-FITS over the last year include 

• 28 (up from 14) continuous distributions are operational with two additional 
distributions in progress.  Nine (up from zero) discrete distributions are operational.  
Fitting algorithms are still being developed for a few of these distributions. 

• Forms were added for fitting a number of distributions and returning a ranked list of 
best fit. One form fits five common symmetric distributions while another fits twelve 
common asymmetric distributions.  Forms were also added to generate distributional 
graphs of the user-supplied data (e.g., histograms, kernel density plots). 

• The fitting forms are being expanded to include pre-binned data and censored data 
for a number of the supported distributions. 

• A number of updates were made to the underlying Dataplot software to better 
support e-FITS.  Maximum likelihood estimation was enhanced to support additional 
distributions, to support censored data (normal, exponential, gamma, lognormal, 
Weibull, Gumbel), and to provide better confidence intervals for estimated 
parameters and percentiles for selected distributions. The PPCC and probability 
plots were enhanced to support censored data.  We are currently developing a 
command to provide bootstrap based confidence intervals for estimated parameters 
and percentiles for a wide range of distributions. 

 
Future efforts include adding additional univariate distributions, support for selected 
multivariate distributions, and using Java to dynamically generate tables and graphs for 
selected distributions. 

The Web-based e-FITS software will be a useful educational and reference tool.  It will also 

provide a useful tool for NIST staff and industry to perform distributional modeling. 
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7  Education 
 
 
SED provides education and training in a variety of ways:  (1) short courses 
on both campuses at NIST, (2) Web based, (3) professional society short 
courses and workshops, (4) SED sponsored seminars, (5) case studies, and (6) 
talks by NIST staff. 
 
SED has reinstituted the series of statistics short courses known as Statistics 
for Scientists and Engineers.  These courses target NIST staff, although they 
typically draw attendees from outside of NIST as well, both from other U. S. 
government agencies and private corporate sources.  The courses are of 
varying duration and depth, but are designed to cover statistics, probability, 
data analysis, and statistical computing topics deemed to be relevant to NIST 
scientific staff at a level appropriate for NIST staff, from technician to senior 
Ph.D. level. 
 
Each course typically covers one major area or aspect of statistics, with an 
emphasis on applications to NIST scientific and engineering problems.  The 
principal objective of each course is to help researchers recognize 
opportunities for the use of particular statistical methods and to offer 
practical guidance in their applications. 
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7.1  Short Courses 

 
Hands-on Workshop on Estimating and Reporting Measurement Uncertainty 
Will Guthrie, Hung-kung Liu, Adriana Hornikova 
Measurement Science Conference, Anaheim CA  
January 12/13, 2004 
 
This workshop on uncertainty describes the statistical framework and methods needed to 
develop uncertainty statements based on the ``ISO Guide to the Expression of Uncertainty in 
Measurement.'' Methods for uncertainty estimation are illustrated with practical examples 
from different metrological areas. The workshop includes hands-on examples to be analyzed 
by the participants. The examples are handled using both propagation of uncertainty 
formulas and the Kragten spreadsheet, an easy-to-use computational tool for propagation of 
uncertainty. 
 
 
Introduction to Markov Chains and Markov Chain Monte Carlo for Scientists and 
Engineers 
Andrew Rukhin, Stefan Leigh, Van Molino 
August 16/17, 2004 
 
This two-day introductory course devotes one day to an overview of the basic theory of finite 
Markov chains and their applications, and one day to their application to Markov Chain 
Monte Carlo. 
 
Day one topics include: probability concepts review, Markov chain basics (order, time 
homogeneity, transition matrices), visualization and application of chains, operations to 
extend applicability of first-order time homogeneous chains, Markovian taxonomy 
(classification of states), canonical representation, periodicity, irreducibility, 
limiting/stationary distributions, equilibrium, reversibility, and absorbing chain taxonomy 
and properties. 
 
Day two on MCMC follows the introductory exposition of the course text, FINITE MARKOV 
CHAINS AND ALGORITHMIC APPLICATIONS (Haggstrom, Cambridge Univ. Press, 
2002). The concepts are motivated at length through a study of interspecies competition 
measures on a closed eco-community that can be modeled by simulating progressions of zero-
one co-occurrence matrices with constrained marginal sums (Cobb and Chen, AMERICAN 
MATHEMATICAL MONTHLY, April 2003). Coding issues, standard generic variations, 
convergence issues (and proofs), the Propp-Wilson Algorithm, sandwiching, and simulated 
annealing are covered at a gentle pace. 
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Introduction to Nonparametric Regression 
Will Guthrie NIST 
September 8, 2004 
 
This course introduces several popular non-parametric regression methods for use by 
scientists and engineers. The course starts with spline models with pre-specified knots, 
which can be fit with regular regression software, and then moves on to cover smoothing 
splines, LOESS, and kernel smoothers. The properties of the different methods are compared 
and methods for assessing model fit, with emphasis on graphical residual analysis, are 
discussed. Detailed NIST examples on nuclear tank calibration, thermal expansion of copper, 
and ozone spectroscopy are used to illustrate and compare the different methods.  
 
 
NIST-SEMATECH e-Handbook of Statistical Methods and DATAPLOT: an 
Interactive Demonstration 
Alan Heckert, Dennis Leber 
September 29, 2004 
 
The NIST/SEMATECH e-Handbook of Statistical Methods is a Web-based book for which the 
goal is to help scientists and engineers incorporate statistical methods into their work as 
efficiently as possible.  It is hoped that the e-Handbook will serve as a useful educational tool 
that will help users of statistical methods and consumers of statistical information better 
understand statistical procedures and their underlying assumptions, and more clearly 
interpret scientific and engineering results stated in statistical terms.  The e-Handbook has 
been integrated with the Dataplot statistical software. 
 
The e-Handbook demo is presented in two parts.  The first part is an introduction to the e-
Handbook.  We cover the basic chapters (exploratory data analysis, measurement process 
characterization, production process characterization, process modeling, process 
improvement, process or product monitoring and control, product and process comparison, 
and process reliability), and demonstrate running the case studies with the Dataplot 
software.  The second part of the demo consists of a brief introduction to the Dataplot 
software.  Students are invited to bring sample data sets on a floppy drive or CD-R. 
 
  
Statistical Analysis of Incomplete Data for Scientists and Engineers 
Grace Yang, Hung-kung Liu 
December 13/15, 2004 
 
This two half-day course introduces scientists to modern techniques for handling 
imputational issues for partially observed and missing data. Censoring mechanisms are 
discussed.  The Kaplan-Meier estimator for the reliability function for right-censored data is 
covered. The EM algorithm is motivated as a computational device for Kaplan-Meier. More 
general types of censoring and regression analysis with censored data are discussed.  A 
partially observed Poisson process is used for modeling missing data, and maximum 
likelihood estimators of parameters of interest and their uncertainties are derived. NIST 
case studies, including electromigration in microelectronics reliability, deadtime in phase 
Doppler interferometry recordings, partially observed neutron lifetimes, software reliability, 
and quality assurance for software embedded systems are used to motivate the specific 
imputation approaches covered. 
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COURSES TAUGHT BY SED STAFF IN 2004 
 
January 

• Hands-on Workshop on Estimating and Reporting Measurement Uncertainty 
    Measurement Science Conference, Anaheim, CA 
    Will Guthrie, Hung-kung Liu, Adriana Hornikova 
 

• Estadística para Experimentos (Statistics for Experiments) 
    University of Puerto Rico, Mayagüez, PR 
    Ivelisse Aviles   (taught in Spanish) 
 
May 

• Symposium on Statistical Methods for Analyzing Color Differences 
    NIST (at the ASTM E12 - Color and Appearance Meeting) 
    Ivelisse Aviles 
 
August 

• Introduction to Markov Chains: Markov Chain Monte Carlo for Scientists and 
Engineers 

   NIST 
    Andrew Rukhin, Stefan Leigh, Van Molino 
 
September 

• Introduction to Nonparametric Regression 
    NIST 
    Will Guthrie 
 

• NIST/SEMATECH e-Handbook of Statistical Methods and DATAPLOT: An 
Interactive Demonstration 

    NIST 
    Alan Heckert and Dennis Leber 
 
December 

• Statistical Analysis of Incomplete Data for Scientists and Engineers 
    NIST 
    Grace Yang and Hung-kung Liu 
 
 
 
COURSES PROJECTED FOR 2005 
 
Hands-on Workshop on Estimating and Reporting Measurement Uncertainty 
Will Guthrie, Hung-kung Liu, and Adriana Hornikova 
 
Experimental Design for Calibration and Interlaboratory Studies 
Dennis Leber and Ivelisse Aviles 
 
Hands-on Workshop on Estimating Uncertainties for Chemical Analysis 
Thomas Vetter (CSTL/ACD) and Will Guthrie 
 
Regression Models 
Will Guthrie 
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Introduction to Nonparametric Regression Analysis 
Will Guthrie 
 
Using WinBUGS for Bayesian Analysis of Physical Science and Engineering Data 
Will Guthrie and Blaza Toman 
 
Analysis for Incomplete Measurements 
Hung-kung Liu & Grace Yang 
 
Introduction to e-Handbook & DATAPLOT 
Alan Heckert 
 
Introduction to ANOVA 
Dennis Leber & Stefan Leigh 
 
Introduction to Markov Chain Monte Carlo 
Andrew Rukhin & Stefan Leigh 
 
Introduction to Principal Components Analysis 
John Lu and Stefan Leigh 
 

 
7.2  SED Seminar Series 
 
Dale Newbury and David Bright (NIST), Finding the Unexpected in X-Ray Spectrum Images:  
Developing Tools to Aid in Searching the Cube, March 2004. 
   
George Ostrouchov (Oak Ridge National Laboratory), Data Intensive Analysis and 
Visualization Projects at ONRL, May 2004. 
   
Karol Marsina (Geological Survey of the Slovak Republic), Geochemical Mappings Surveys, 
June 2004. 
     
Fern Hunt (NIST), Visualizing the Frequency Patterns of DNA Sequences, September 2004. 
 
Seungseok Oh (Purdue University), Nonlinear Multigrid Inversion for Bayesian Optical 
Diffusion Tomography, September 2004. 
 
Adriana Hornikova (NIST), A Survey of Design, Analysis and Reporting of Results, October 
2004. 
 
G. P. Patil (Pennsylvania State University), Surveillance Geoinformatics of Hotspot 
Detection, Priortization, and Early Warning, October 2004. 
 
William Notz (Ohio State University), The Design of Computer Experiments to Determine 
Optimum and Robust Control Variables, November 2004. 
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7.3  Summer Students 
 
Brian Cordes and Charles Hagwood  
Statistical Engineering Division, ITL  
 
 

 
Summer Students (left to right): Firouzeh Jalilian, Daniel Cogut, Van Molino, Abderahman 
Cheniour, Brian Cordes  
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Each year, for the last 4 years, the division has run a summer students program. 

Students are hired to spend approximately two months working on a project 
under the direction of one of our staff members. Then, they make a final 
presentation of their results to the division staff. Our students are chosen from a 
variety of resources. Our three main resources are: (1) The Department of 
Commerce's Post-Secondary Internship Program (PSIP), (2) The NIST Summer 
Undergraduate Research Fellowship (SURF) Program, and (3) The Statistical 
Engineering Division's Minority Internship Program.  
 

The purposes of the PSIP are to use work experience to integrate academic theory and 

workplace requirements, to expose interns to the federal workplace and federal career 
opportunities, and to develop professional networks. Basic eligibility requirements are 
enrollment as an undergraduate or graduate student in a two- or four-year accredited 
educational institution, as well as U.S. citizenship.  Interns receive stipends as well as paid 
round-trip transportation expenses between their homes/schools and NIST. Assistance with 
temporary housing arrangements is also provided. Interns are not employees of the 
Department of Commerce; rather, they are affiliated with one of four sponsoring 
organizations with which the Department of Commerce collaborates to recruit interns. The 
four sponsoring organizations are the American Indian Science and Engineering Society 
(AISES), the Hispanic Association of Colleges and Universities National Internship Program 
(HACU/HNIP), Minority Access, Inc. (MAI) and the Oak Ridge Associated Universities 
(ORAU). In addition to these programs, we welcome and consider applications from all 
students who express an interest in working in the Statistical Engineering Division.  
 
The NIST SURF program is a partnership, supported by NIST, NSF, and participating 
colleges/universities. The program is open to students majoring in science, mathematics and 
engineering, whose universities are participating institutions. Applications for participation 
in the SURF program are only accepted from colleges and universities, and not from 
individual students.  Students are selected by the participating universities from a pool of 
applicants. Students have to be undergraduates at a U.S. university or college with a 
scientific major, a G.P.A of 3.0/4.0 or better, intend to pursue a Ph.D., and must be covered 
by a health insurance plan (either through school or family). Students attend weekly 
seminars of outside speakers and partake of other science seminars available at NIST.  They 
present their own research results to NIST scientists and other SURFers at the end of the 
summer. They receive a $4,000 stipend for the summer (for 12 weeks, prorated for shorter 
periods if their school year does not permit the full 12 weeks).  
 
The SED Minority Internship is a recent program initiated to recruit minority summer 
students. The program began in 2001 and has been quite successful.  The purpose of the 
program is to interest more minorities in the field of statistics and probability. An 
announcement is sent out annually to Historically Black Colleges and Universities, to 
Hispanic Serving Institutions, and to other colleges and universities.  
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2004 Summer Students    
 
1.  Abderahman Cheniour, I.S.T.I.L (Institut des Sciences et des Techniques de    
     L'ingenieur de Lyon) at the University Claude Bernard Lyon - Mentors Juan Soto         
     and Don Malec   
2.  Daniel Cogut, The College of William and Mary (SURF) - Mentor Andrew Rukhin  
3.  Brian Cordes, Worcester Polytechnic Institute (SURF) - Mentor Ivelisse Aviles  
4.  Firouzeh Jalilian, University of Maryland College Park (SURF) - Mentor Alan  Heckert  
5.  Van Molino, Princeton University (SURF) - Mentors Stefan Leigh and Andrew  
      Rukhin  
 
 
ABSTRACTS  
 
Abderahman Cheniour 
Sensitivity Testing for Bayesian 2D and 3D Tomography  
 
The primary objective of the 3D chemical study is to understand the 3D spatial distribution of 
chemical species in materials at the nano-scale level. The information available for doing this 
is in the form of non-destructive, transmission electron microscopy measurements. To achieve 
this objective, the dual aim of the study to extend Bayesian methods of tomographic 
reconstruction from 2 dimensions to 3 dimensions and to utilize all electron microscope 
information pertinent to chemical species identification, such as the electron energy loss 
spectra and X-ray spectra. After developing a new 3D Bayesian algorithm, the next step is to 
evaluate its properties under a variety of conditions. This project specifically evaluates how 
well a proposed Bayesian method can reconstruct images (both 2D and 3D) using known 
inputs. The results of this testing will be useful in improving the proposed method and for  
assessing its computational efficiency.  
 
 
Daniel Cogut  
Fusion of Biometric Algorithms  
 
Biometric identification plays an important role in security today. Biometric technology 
allows for recognition of an individual's identity based on certain characteristics, called 
signatures. These characteristics can include facial features, fingerprints, and vocal 
expressions. A signature of an unknown individual, called a probe, is compared to a database 
of known individual's signatures, called a gallery. Then a biometric algorithm produces 
similarity scores between the probe and each signature in the gallery and ranks them. 
Despite the fact that many biometric algorithms are now available for commercial use, there 
is no optimal algorithm that is widely accepted. Thus it is practical to create aggregations or 
fusions of various algorithms. In this project, the similarity scores produced by four biometric 
algorithms were used, with data from the Face Recognition Technology (FERET) program. 
The method of fusion was implemented by means of weighted averaging of the ranks of the 
similarity scores.  
 
 
Brian Cordes  
Developing a Graphical Tool to Determine the Estimation Capacity of an Experimental 
Design  
 
In scientific research, the quality of the design of an experiment has a great deal of impact on 
the quality of the experimental results. Experimental design is concerned with exactly this: 
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finding the most efficient method for obtaining the most amount of information about a 
process. By using a certain class of experimental designs called assembled designs, Aviles 
(2001) has focused on determining optimal designs for robustness experiments. Assembled 
designs are very useful to study a process in which batches are produced and samples are 
made. In this case, the batch-to-batch (between-batch) variance and the sample-to-sample 
(within-batch) variance are known as the variance components. The goal of robustness 
experiments is to find the settings of the factors so that the process mean is on target and the 
variance is minimized. Location effects are effects on the response mean and dispersion 
effects are effects on the response variance. The model used in these scenarios is a linear 
mixed-effects model with two variance com ponents (between -batch variation and within-
batch variation).  
 
The concept of the Precision Plot has been developed to help the scientist determine the 
expected effectiveness of a design. This is accomplished by identifying how large the 
dispersion effects and variance components must be in order for the design to detect them. 
That is, if smaller effects must be detected, then the experimental budget must be increased 
(i.e., need a larger design) or the level of confidence in our results is decreased (for this 
design).  Similarly, resources could be saved by running a smaller experiment if it is 
determined that the estimation capacity of a design is greater than what is practically 
needed. The work done this summer includes both refining the Precision Plot method and 
improving the presentation of the outputted results. Precision Plots are calculated using 
normal theory and asymptotic approximations. Research done in the future will include 
establishing the adequacy of the approximation when sample sizes are much smaller.  
 
 
Firouzeh Jalilian  
Developing a Graphical User Interface for the Mass Calibration Program  
 
The Statistical Engineering Division and the Manufacturing and Metrology Division are 
rewriting the Masscomp program that is used to assign mass values to weights submitted to 
NIST for calibration. The current production software was written in the 1970s using the 
programming language Fortran 66. The code is being modernized to Fortran 90. However, 
the program could only be run in a shell such as MS DOS. My project has been to develop a 
Graphical User Interface for this calibration program in order to make it easier to use. 
Different approaches were investigated and it was decided that the programming language 
Visual Basic would be most suitable for developing this interface. In addition to learning 
Visual Basic (VB) and Fortran 90, I also had to learn Fortran/Visual Basic Mixed-Language 
programming. The project involved creating a Fortran Dynamically Linked Library (DLL) 
and exporting its routines into VB. These routines could be called by VB during execution of 
the graphical user interface. The next stage of the project is to add a feature that plots the 
results at the end of the program. Once completed, this graphical user interface will make it 
significantly easier and faster to use the Masscomp program. In addition, Visual Basic 
proved to be a versatile tool for developing a graphical user interface.  
 
 
Van Molino  
Markov Chains and MCMC Methods  
 
The concept of a Markov chain was introduced in 1906 by A. A. Markov. The usefulness of 
the Markov chain as a modeling tool was quickly realized and by the 1960's so much work 
had been done that many considered the field to be an unlikely source of new research. 
However, when Markov chain Monte Carlo (MCMC) algorithms were introduced, the field 
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enjoyed a spectacular revival and exciting new work is being done using MCMC in many 
different disciplines ranging from mathematical logic to ecology.  
 
Because of the wide applicability, my advisors and I have developed a two-day course on 
these topics that will be taught to NIST scientists in late August. The first day will cover 
Markov chain theory, which is both powerful in its own right and should be understood in 
order to utilize MCMC algorithms intelligently. The second day will cover MCMC methods 
and some of the interesting problems to which these methods have been applied. This talk 
will survey some basic Markov chain theory, emphasizing the theory's versatility by applying 
it to several simple problems in different fields of  study. MCMC methods will be introduced 
briefly. To illustrate the power of these simulation tools, this talk will discuss how this 
machinery can be applied to the satisfiability problem of mathematical logic, a famous 
problem shown to be NP-complete by Stephen Cook in 1971.  
 
 
Accolades of Appreciation  
 
“I'd like to thank everyone in the SED for all their help and hospitality throughout this great 
summer program. The SED was a great place to work because everyone was both easy and fun 
to work with. Whenever I needed help with something, whoever I asked was always willing to 
take time out of their schedule to make sure that I resolved my issues. Being able to work with 
researchers one-on-one was really a great opportunity for me because of my interest in 
pursuing an advanced degree. I definitely gained a solid amount of valuable experience and 
information relating to the field of research. Most of all I'd like to thank my own advisor 
Ivelisse Aviles for her devotion to my project and my summer experience. Whatever I needed 
she always helped me find. I hope everyone in the division continues to prosper with their 
work and thanks again for a great summer!”  

-  Brian Cordes  
 
 
“This has been my second summer working with the Statistical Engineering Division at NIST 
and, once again, I have nothing but good things to say about the experience. Everyone in this 
division that I have ever interacted with has been great. They are always willing to take time 
out of their busy days to explain the research in which they are involved or even to discuss 
things like my academic interests or my future career plans. It is clear that Dr. Sedransk takes 
great interest in making sure that the students placed in this division have an enlightening 
and enjoyable summer.  
 
Last summer I learned that members of the SED not only perform world-class research in the 
field of statistics, but that they also help scientists all around NIST design good experiments 
and analyze their data effectively. This summer I experienced some of this second aspect of the 
SED when I was allowed the opportunity to help develop and teach a course along with Dr. 
Andrew Rukhin and Stefan Leigh. Both Andrew and Stefan have been very helpful 
throughout the summer and have given me excellent guidance. I would especially like to thank 
Stefan for all the time he spent with me making sure I understood and enjoyed my work. Once 
again, I appreciate what you have all done for me and wish you success in your future 
research. I hope we have the opportunity to interact more  
in the future.”  

- Van Molino 
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8  Conferences and Standards Activities 
 
 
8.1  International Organization for Standardization (ISO) 
 
Nien Fan Zhang 
Statistical Engineering Division, ITL 
 
ISO/TC69 on Applications of Statistical Methods is an international standards group that 
develops generic statistical standards. The technical committee (TC) has four active 
subcommittees that develop documents in the following subject areas: 
 
SC1-Vocabulary, 
SC4-Process Control, 
SC5-Acceptance Sampling, and 
SC6-Measurement Methods. 
 
Within each subcommittee, there are working groups for different areas. Each member 
country of the TC has a Technical Advisory Group (TAG) that sends a delegation to the 
international meetings; develops strategies and positions for advancing the interests of 
national industry via the standards arena; and coordinates the dissemination and critiquing 
of standards under development. The Statistical Engineering Division (SED) has a long 
history of supporting the development of international standards, particularly those that 
impact measurement science.  SED participates at ISO/TC69 and its SC 6 on Measurement 
Methods and SC 4 on Process Control. Nien Fan Zhang of the SED is a member of US TAG. 
  
The document ISO/TC69/SC 6 TS 21749: "Measurement uncertainty for metrological 
applications - Repeated measurements and nested experiments" has been approved and is 
being published by ISO as a Technical Specification of ISO. The document is intended for 
metrological and scientific laboratories that are capable of collecting data to evaluate both 
short-term and long-term sources of error in the measurement process and have the 
capability of performing statistical analyses. The document was originally initiated by 
Carroll Croarkin of SED. Nien Fan Zhang is the current project leader.  
 
During the 2004 TC69 meeting held in Stockholm, ISO/TC 69/SC 6 resolved to develop a 
stronger working relationship with the Joint Committee for Guides in Metrology (JCGM) of 
the International Bureau for Weights and Measures (BIPM) regarding works related to the 
evaluation and use of uncertainty of measurement. Two draft documents prepared by JCGM: 
Revision of International Vocabulary of Basic and General Terms in Metrology (VIM) and 
Guides to the Expression of Uncertainty in Measurement Supplements 1: Numerical 
Methods for the Propagation of Distribution were sent to ISO/ TC69 for comments. For the 
second draft, SED supplied comments on GUM Supplement to TC 69/SC 6. In another 
resolution, SC 6 resolved to change the title of SC 6/WG 7 to “Statistical methods to support 
measurement uncertainty evaluation.” 
 
During the SC 6 meetings, Nien Fan Zhang was elected to be the Convenor of TC69/SC 6/WG 
4, which is for Statistical Aspects of the Preparation and Use of Reference Materials.  
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8.2  ASA/IMS Spring Research at NIST 
 
Will Guthrie  
Statistical Engineering Division, ITL 
 
Karen Kafadar and Dana Franklin  
Mathematics Department, University of Colorado - Denver 
 
Tom Loughin 
Statistics Department, Kansas State University 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Front cover of the conference program and photos of the student scholarship winners, 
conference attendees discussing one of the plenary talks, and James J. Filliben closing the 
conference with a talk titled, “The World Trade Center Collapse: The Critical Role of 
Statistics in the Diagnosis of a Failure of an Engineering Marvel.” 
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The Spring Research Conference (SRC) is an annual conference sponsored jointly by the 
Institute of Mathematical Statistics and the Section on Physical and Engineering Sciences of 
the American Statistical Association.  It provides a forum for promoting statistics in 
engineering, technology, industry, information and physical sciences. The SRC attracts an 
international group of statisticians, engineers and physical scientists from universities, 
industry, and government.  
 
The 11th annual Spring Research Conference on Statistics in Industry and Technology was 
held May 19-21, 2004, in Gaithersburg, Maryland and was hosted by the NIST Statistical 
Engineering Division.  The theme of the conference was “Statistics on Data Streams for 
Scientific Research and Implementation.” 
 
Edward Wegman (George Mason Univ.) opened the conference with the keynote address, 
“Visualization of Internet Traffic Data.” He emphasized that new data types historically have 
inspired new developments in statistics, and massive data sets and streams are new data 
types that present such opportunities.  Subsequent plenary speakers at the conference who 
described other problem areas where large data sets are demanding new ways of visualizing 
and analyzing data included: Robert Jacobsen, Lawrence Berkeley Laboratory (high-energy 
physics), Donna Stroup, Centers for Disease Control (public health), Vijay Nair, University of 
Michigan (internet tomography), and James Filliben, NIST (computational modeling of the 
WTC). Invited sessions were also organized around these themes; e.g., internet traffic 
modeling (organized by James Landwehr), physics (Kevin Coakley), clock synchronization 
(William Notz), data visualization (Barbara Bailey), business applications (Bonnie Ray), 
computer experiments (Michael Trosset and Lisa Moore), and data mining (David Banks). 
 
The conference also had an excellent contributed program with a wide range of talks and 
active student participation. The twenty-seven contributed talks included “Dynamic Profiling 
of Online Auctions Using Curve Clustering” by Wolfgang Jank and Galit Shmueli, which 
described an application of functional data analysis to eBay auction data to display different 
types of bidding behavior, “Empirical Bayes Estimation of Crash Reduction Factors” by Peter 
Hovey and Mashrur Chowdhury, which described the use of empirical Bayes methods for 
reducing the impact of regression to the mean when evaluating crash reduction factors 
computed for roadway improvements made at sites chosen by crash prevalence, and “Brain 
Activity at Nine Million Bytes per Second: Synchronizing Video Data and Physiological 
Recordings to Reveal Brain Function” by Kary Myers, which explored the use of covariates 
such as blood pressure and expired carbon dioxide to “clean” video data of the brain activity 
of laboratory animals of physiological fluctuations unrelated to the brain stimulus of interest. 
 
Among the student participants at the conference were six winners of scholarships that 
supported student attendance. This year’s winners, pictured from left to right in the first row 
of the upper -right photograph on the preceding page, were Deng Huang (Ohio State), Shiling 
Ruan (Ohio State), Kary Myers (Carnegie Mellon), Gavin Richards (Ohio State), and 
Tirthankar Dasgupta (Georgia Tech). David Hutchison (Johns Hopkins) is not pictured. 
 
Active participation by NIST staff in conferences like the SRC helps maintain an awareness 
of current trends in statistical research and fosters recognition of the Division outside of 
NIST. 
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8.3  NIST Quality System  
 

Adriana Hornikova, Stefan Leigh, Nien Fan Zhang 
Statistical Engineering Division, ITL 
 
David Evans  
Manufacturing Metrology Division, MEL 

 
 
NIST simultaneously with other National Metrology Laboratories has undertaken the 
implementation of a formal agency-wide Quality System for its measurement services to 
document compliance with ISO/IEC 17025.  The NIST Measurement Services Advisory 
Committee formed a Working Group under the leadership of Willie May to draft a NIST 
Quality Manual detailing the requirements and procedures for documentation and 
assessment of calibration services.  Nien Fan Zhang served on the Working Group and held 
special responsibility for statements of requirements dealing with uncertainty computation 
and certification.  A second group of measurement scientists constituted as a Task Force, 
convened to address the Quality System requirements for Standard Reference Materials 
(SRMs), with Nien Fan Zhang appointed to the working group and responsible for statistical 
issues.  The completed NIST manuals were adopted formally and the ambitious assessment 
process was implemented immediately for NIST measurement services.  At the Regional 
Metrology Organization meetings, quality assessments for NIST measurement services have 
been approved for international acceptance, effectively certifying acceptance of NIST’s stated 
measurement capabilities for the specific listed measurement services.  
 
At the practical level, the Statistical Engineering Division also provided statistical expertise 
to metrologists to establish formal process control and quality monitoring procedures and/or 
to characterize and document measurement system performance to meet the reporting 
guidelines for the NIST Quality System and ISO 17025. 
 
For vibration measurements made in the Acoustics and Vibration Laboratory, the quality 
assessment process included the statistical analysis and validation of measurement 
uncertainties associated with several different calibration systems (all using sinusoidal 
excitation) that are used for vibration measurements at NIST.  These systems use both 
primary and secondary methods to generate measurements of the sensitivity of 
accelerometers in terms of electrical output per unit of applied acceleration.  An additional 
high-precision calibration system, the “Super Shaker,” is not typically used to provide 
calibrations for NIST customers, but has been used as a benchmark device for high-precision 
internal calibration and for calibrations with special requirements such as international 
intercomparisons in support of the MRA. 

 
NIST calibration records for the past decade provided the data for examining the  
performance of the several systems in terms of stability, sensitivity of sensors used in the 
measurement devices, and recalibrations over that time. Graphical tools for displaying 
analytical results also show control limits and interventions (recalibration, etc.). 
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Control limits of ± 2 % are shown in magenta and in black for two of the measurement 
systems with their calibration values plotted in red and blue, respectively.  A single point in 
green for the supershaker serves to confirm the calibration of the red measurement device.
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8.4  Conferences 
 
 
• On January 12-13, Will Guthrie and Hung-kung Liu gave a "Hands-on Workshop on 

Estimating and Reporting Measurement Uncertainty" to metrologists at the 2004 
Measurement Science Conference in Anaheim, CA.  Adriana Hornikova served as a 
teaching assistant.  The workshop, attended by sixteen participants from industry and 
government, described the statistical framework and methods needed to develop 
uncertainty statements based on the "ISO Guide to the Expression of Uncertainty in 
Measurement." Methods for uncertainty estimation were illustrated with many practical 
examples from different metrological areas, including mass, temperature, and chemical 
measurements. The workshop also included hands-on examples to be analyzed by the 
participants. The hands-on examples wer e done using both propagation of uncertainty 
formulas and the Kragten spreadsheet, an easy-to-use computational tool for propagation 
of uncertainty.  Jack Wang also attended the conference. 

 
• Nell Sedransk, Nien Fan Zhang, and Will Guthrie participated in the National 

Nanotechnology Initiative (NNI) Workshop on Instrumentation and Metrology for 
Nanotechnology, held January 27-29, 2004 at NIST in Gaithersburg, Maryland. The 
purpose of this workshop was to convene a wide range of scientists and engineers 
working in the fields of instrumentation, metrology, and nanotechnology to identify 
needs and opportunities for nanometrology research. This workshop was one of a series 
of workshops being sponsored by the NNI member agencies to address the NNI's "grand 
challenges." Workshop attendees participated in open discussions of grand challenges in 
nanotechnology and contributed to the drafting of the final report from the workshop. 

 
• The article “The Recognition Problem of Biometrics” by Andrew Rukhin was published in 

the issue of Chance magazine dedicated to statistical issues in counter-terrorism  This 
paper discusses the use of statistical measures of dependence for biometric algorithms 
and techniques for their fusion.  Dr. Rukhin was invited to present these results at the 
Spring Biometrics Meeting in Pittsburgh in March 2004. 

 
• Kevin Coakley attended the International Conference on Precision Measurements with 

Slow Neutrons held at NIST in Gaithersburg, MD on April 5-7, 2004.  The conference 
served as a forum for highlighting progress in the field of fundamental physics using cold 
and ultracold neutrons, and development of new neutron sources. “Measuring the 
neutron with magnetically trapped neutrons” and “Development of a long wavelength 
neutron monochromator for superthermal production of ultracold neutrons” were talks 
that were presented based on the work of a collaborative research team, which included 
Coakley and G.L. Yang of SED. 

 
• On May 18, 2004, Ivelisse Aviles offered a Symposium on Statistical Methods for 

Analyzing Color Differences at the ASTM E12, Color and Appearance Meeting, which 
was held at NIST on May 17-20, 2004.  Other presenters included Maria Nadal, Cameron 
Miller, and Ted Early from the Optical Technology Division, Physics Laboratory.  The 
objective of this meeting was to advance the development of standards for characterizing 
color and appearance attributes. 

 
• The 11th annual Spring Research Conference on Statistics in Industry and Technology 

was held May 19-21, 2004, in Gaithersburg, Maryland and was hosted by the Statistical 
Engineering Division.  The theme of the conference was “Statistics on Data Streams for 
Scientific Research and Implementation.”  All SED staff attended the conference and 
served different roles:  Will Guthrie was the local chairperson; Kevin Coakley organized 
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and chaired a session on “Design and Analysis for Fundamental Physics and Metrology”; 
Ivelisse Aviles was the discussant of a session on “Data Mining”; and Jim Filliben closed 
the conference with a talk entitled, “The World Trade Center Collapse: The Critical Role 
of Statistics in the Diagnosis of a Failure of an Engineering Marvel.” 

 
• The 36th Symposium on the Interface: Computing Science and Statistics was held in 

Baltimore, May 26-29, 2004.  John Lu organized a session “Statistical and Metrological 
Issues in Proteomics Using Time-of-Flight Mass Spectrometry.”  Because the presenting 
author could not attend, Adriana Hornikova (SED) presented the first paper, “Exploring 
Bioinformatics in Serum Proteomic Analysis for Early Detection of Prostate Cancer.”  
Walter Liggett (SED) presented the second paper, “Data-Driven and Peak-Based Feature 
Selection in Serum Protein Mass Spectrometry.”  John Lu (SED) presented the third 
paper, “SVD-based Functional ANOVA for Measurement Evaluation of MALDI-TOF 
Mass Spectrometry.”  Zhen Zhang (Johns Hopkins) presented the fourth paper, 
“Bioinformatics for Clinical Proteomics: Usage and Abuseage.” 

 
• Kevin Coakley, Sarah Streett, and Jolene Splett attended the short course “Applied 

Spatial Statistics,” presented by Dr. Jay Ver Hoef on June 16, 2004, and the Graybill 
Conference: Spatial Statistics on June 17-18, 2004.  Both were held in Fort Collins, CO. 

 
• Blaza Toman and Will Guthrie attended the NCSLI Conference in Salt Lake City from 

July 11-15, 2004.  They participated in the organization and presentation of a panel 
discussion “GUM and Supplements: Conventional vs. Bayesian Methods” with colleagues 
from the Navy Calibration Laboratories, Duke University, and ITRI, the Taiwanese 
Metrology Institute. The panel session was very well attended and drew many questions 
and comments. Blaza also organized an invited session on Bayesian methods in 
metrology, where Will presented a paper titled  “MCMC in STRD” and Blaza presented 
the paper “A Bayesian Approach to the Estimation of a Key Comparison Reference 
Value”. 

 
• Kevin Coakley attended the 2004 Meeting of the International Federation of 

Classification Societies held at Chicago, IL on July 15-18, 2004 and presented an invited 
talk “Classification Problems in Neutrino Physics”.  The conference hosted leading 
researchers working in the fields of classification, clustering, and data mining. 

 
• In July 2004, Jack Wang, John Lu, and Nien Fan Zhang of the Statistical Engineering 

Division (SED) participated in the 2004 Summer Topical Meeting of the American Society 
for Precision Engineering (ASPE) at State College PA.  The topic of the meeting was 
"Uncertainty Analysis in Measurement and Design".  The meeting focused on 
measurement uncertainty in engineering and manufacturing. Many of the presentations 
dealt with standards issues for geometric objects. The first SED presentation described a 
simulation procedure for uncertainty evaluation in measurement results. The proposed 
method is relevant since a draft of the supplement (Numerical Methods for the 
Propagation of Distributions) to the ISO Guide to the Expression of Uncertainty in 
Measurement (GUM) by the Joint Committee for Guides in Metrology (JCGM) of the 
International Bureau of Weights and Measures (BIPM) is being circulated for final 
comments. The second SED presentation discussed the Bayesian statistics approach and 
how Bayesian statistics provides a unifying approach to uncertainty analysis.  The 
presentation also discussed a full Bayesian approach to combining means from multiple 
methods. The third SED presentation described a statistical analysis of Key Comparisons 
-- a special type of interlaboratory study with linear trends. 
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• In August, eight staff members from the Statistical Engineering Division participated in 
the 2004 Joint Statistical Meetings (JSM) in Toronto.  Presentations by SED staff 
included "Statistical Process Control on Biochemical QC Data" by Nien Fan Zhang, 
"Generalized Prediction Intervals" by Jack Wang, "An Update on the NIST Statistical 
Reference Datasets for MCMC" by Hung-kung Liu, "A Survey of Design, Analysis, and 
Reporting of Results in Key Comparisons" by Adriana Hornikova, and "Ranking the 
Sources of Numerical Error in MCMC Computations" by Will Guthrie. Ivelisse Aviles 
chaired a session on the design and analysis of experiments for complex biological 
experiments run on 96 well plates.  Several staff members were also involved in 
Committee activities, including Ivelisse Aviles who is currently serving as Awards Chair 
for the Section on Physical and Engineering Sciences (SPES) and as ASA Representative 
to the American Association for the Advancement of Science (AAAS), Section P - 
Industrial Sciences.  Adriana Hornikova, Will Guthrie, and Sarah Streett served on the 
Awards Committee for SPES.  In addition, Nell Sedransk completed her term on the 
Deming Lectureship Committee and Will Guthrie completed his term as Secretary of the 
Quality and Productivity (Q&P) Section.  Highlights of the conference included the 
Deming Lecture, "Deming and Bell Labs" by Colin Mallows, the Presidential Address, 
"Bayesians, Frequentists, and Scientists" by Brad Efron, and the President's Invited 
Address, "The Romance of Hidden Components" by David Donoho. Two SED members, 
Jack Wang and Will Guthrie, were also recognized by the Section on Physical and 
Engineering Sciences for their presentations at the 2003 Joint Statistical Meetings. 

 
• James Yen collaborated in a geochemical investigation, whose results were presented by 

Andrew Grosz of the U.S. Geological Survey at the 32nd International Geological Congress 
at Florence, Italy on August 22, 2004.  The one-hour talk, "Arsenic in Surficial Sediments 
of North America," co-authored by scientists at the U.S, Canadian, and Mexican 
Geological Surveys as well as NIST, was part of the Geological Congress's Workshop on 
Global Geochemical Baselines. The study analyzed the distribution of arsenic and other 
elements in North American soils and stream sediments.  The data analysis uncovered 
patterns and anomalies that can be interpreted in terms of both the underlying geology 
of the regions and anthropogenic land-use effects. 

 
• Jeffrey Fong (Mathematical and Computational Sciences Division) and Jim Filliben 

participated in a DOD-sponsored workshop, Foundations '04: A Workshop for VV&A 
(Verification, Validation, & Accreditation) in the 21st Century in Tempe, AZ on October 
13-15.  Prior to that conference, they visited Southwest Research Institute (San Antonio) 
to learn of the V&V work of Ben Thacker (author of “NESSUS: a probabilistic analysis 
tool for improving safety and reliability of complex systems”) and Chris Freitas (whose 
fellow staff member showed them the SWRI on-site test results for the Columbia foam 
impact disaster). Immediately after the conference, Fong and Filliben visited Lawrence 
Livermore to give a talk and learn of Livermore's V&V work.  

 
• During October 24-25, 2004, Nien Fan Zhang attended the INFORMS annual meeting in 

Denver, Colorado. INFORMS stands for the Institute for Operations Research and the 
Management Sciences.  This society with 12,000 members is playing an important part 
in making decisions.  Models that are based on the core foundations of operations 
research are assisting governments around the world in tackling issues of utmost 
importance, such as those related to intelligence, emergency systems and the 
environment.  Nien Fan Zhang was invited to give a presentation entitled “Statistical 
Process Monitoring for Autocorrelated Data” in the invited session, Process Monitoring 
and Diagnosis for Autocorrelated data.  In the session there were four speakers from 
academia and government, including an associate editor of Technometrics. 
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• On October 25-29, 2004, John Lu attended a one-week meeting that is part of the NSF-
funded UCLA/IPAM (University of California at Los Angeles/Institute of Pure and 
Applied Mathematics) workshop on multiscale structures in the analysis of high-
dimensional data, which ran from September 7 - December 17, 2004.  The UCLA/IPAM  
workshop is one of a series of workshops on mathematical, computation al and statistical 
issues related to multiscale geometry, machine learning, and statistical theory.  For 
example, the workshop contains a big segment on recent developments in 3-D image 
analysis and low-dimensional structure embedding, which can be traced back to 
multidimensional scaling in psychometrics in the 1930s. Some exciting developments on 
support vector machines (SVM) were also presented, such as kernel methods for 
canonical correlation analysis and dimension reduction, a Laplacian operator approach to 
geometric structure in high-dimensional data analysis, and SVM methods for unlabeled 
and partly labeled data. 

 
• On November 8-9, 2004, a NIST/DOD Workshop entitled Verification and Validation of 

Computer Models for Design and Performance Evaluation of High-Consequence 
Engineering Systems was held in Gaithersburg.   This workshop was well-attended with 
excellent representation from government, DOD, and industry.  Among the many 
presentations at the workshop, SED was well represented with talks by Nell Sedransk, 
Will Guthrie, and Jim Filliben.  The workshop demonstrated clearly that V&V as a 
discipline has many potential directions, with diverse technical needs/desires by the 
various members of the large V&V community.  Feedback from this workshop served (in 
a very constructive way) to enumerate and focus the many challenges and opportunities 
existent for NISTSED/MACD  to  beneficially accelerate the national V&V effort.  

 
• Will Guthrie and Dean Ripple (CSTL Process Measurements Division) were invited to 

give a seminar on the use of guardbands in thermocouple calibration by the members of 
the ASTM Committee E20 on Temperature Measurement. The talk, titled "Validating the 
Temperature-EMF Response of Thermocouples with Confidence", was given on 
November 9, 2004 as part of an ASTM Committee Week held in Washington, DC.  The 
talk was followed by a lively discussion of calibration issues facing thermocouple 
manufacturers and their suppliers. Based on this introduction to the use of guardbands, 
the Committee agreed to investigate further the impact that guardbanding would have 
on thermocouple calibration procedures  to determine if current thermocouple calibration 
standards should be updated to mandate the use of guardbands.  

 
• Jolene Splett attended the Second Symposium on Pendulum Impact Machines:  

Procedures and Specimens on November 10, 2004 in Washington D.C., and presented the 
paper, “Analysis of Charpy Impact Verification Data: 1993-2003”, which was co-authored 
by Chris McCowan of the Materials Reliability Division (MSEL). Jolene and Chris also 
contributed to a second conference paper, “International Comparison of Impact Reference 
Materials,” which was the result of a joint effort by four national measurement 
institutes. 

 
• John Lu attended the Critical Assessment of Microarray Data Analysis  (CAMDA 2004) 

workshop at Duke University on November 10-12, 2004.  This is the fifth international 
conference of this series organized by Duke University on microarray data analysis.  The 
participants included about 80-120 researchers and students from all over the world from 
both academia and industry.  The goal of the workshop was to discuss the most useful 
and important statistical and computational techniques for some pre-selected microarray 
data sets released early every year, given in about 20 papers chosen by the scientific 
committee in July.  This year's data was on the gene expression levels during the four-
stage development cycles of Plasmodium falciparum, measured by the P. falciparum 
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specific DNA microarray using long oligonucleotides. The dataset is essentially a large 
spatial-temporal dataset, for which analysis techniques using spatial correlation, time 
series, Bayesian methods, and graphical network modeling were employed. 

 
• On November 22-23, 2004, Ivelisse Aviles attended the MR Workshop on Translational 

Research in Cancer - Tumor Response, in Bethesda MD.  NIST’s interest for partnership 
in working with the medical imaging community in standardization and infrastructure of 
imaging databases was acknowledged.  Dr. Aviles briefly introduced NIST and the 
response was very positive since NIST can help standardization, development of novel 
statistical design and analysis techniques, and infrastructure on the imaging databases.  
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9  Staff and Professional Activities  
 
 

9.1  New Staff 
 
9.1.1  Abderahman Cheniour 
 

 
 
 
BIOGRAPHICAL SKETCH 
 
Abderahman Cheniour has been a guest researcher in the Statistical Engineering Division at 
NIST since June 2004.  He carried out his internship at the end of his studies to obtain his 
M.S. degree from the ISTIL (Institut des Sciences et Techniques de l’Ingénieur de Lyon) at 
the French University Claude Bernard in Lyon.  His M.S. is in the area of modeling and 
computer science and he also has a background in statistics.  This is the first time that he 
has visited the USA. 
 
STATISTICAL RESEARCH 
 
The main project that he is working on is the implementation of a Bayesian algorithm for 
Image Reconstruction.  The primary objective of the 3D chemical study is to understand the 
3D spatial distribution of chemical species in materials at the nanoscale level.  The 
information available for doing this is in the form of nondestructive, transmission electron 
microscopy measurements.  To achieve this objective, the dual aim of the study is to extend 
Bayesian methods of tomographic reconstruction from 2D to 3D and to utilize all electron 
microscope information pertinent to chemical species identification, such as the electron 
energy loss spectra and X-ray spectra.  After developing a new 3D Bayesian algorithm, the 
next step is to evaluate its properties under a variety of conditions. This project specifically 
evaluates how well a proposed Bayesian method can reconstruct images (both 2D and 3D) 
using known inputs. The results of this testing will be useful in improving the proposed 
method and for assessing its computational efficiency. 
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9.1.2  Sarah Streett    
 
BIOGRAPHICAL SKETCH   
 
Sarah Streett has been a mathematical statistician in the Statistical Engineering Division at 
NIST in Boulder, Colorado since January 2004.  She received her Ph.D. degree in Statistics 
from Colorado State University in August 2000, an M.S. degree in Mathematics from 
Northern Arizona University in May 1994 and a B.A. in Mathematics with emphasis in 
Computer Science from Hendrix College in May 1992. 
 
Prior to joining SED, Sarah was a postdoctoral researcher at the National Center for 
Atmospheric Research in Boulder, Colorado.  While at NCAR, she gained valuable experience 
in working with large data sets and interdisciplinary collaboration.  Her research interests 
include time series, stochastic processes and spatial statistics. 
 
STATISTICAL RESEARCH 
 
Sarah’s main area of statistical research is with the Time and Frequency Division.  She is 
currently working on  a project involving clock error uncertainty.  She continues to build 
collaborative relationships with members of the Time and Frequency Division.  
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9.2  Publications 
 
9.2.1  Publications in Print 
 

1. C. F. Ferraris, V. A. Hackley, and A. I. Aviles (2004), “Measurement of Particle Size 
Distribution in Portland Cement Powder: Analysis of ASTM Round-Robin Studies,” 
Cement, Concrete and Aggregate Journal, 26(2). 

2. J. M. Irvine, C. Fenimore, D. Cannon, J. Roberts, S. A. Israel, L. Simon, C. Watts, J. 
D. Miller, A. I. Aviles, P. F. Tighe, R. J. Behrens (2004), “Feasibility Study for the 
Development of a Motion Imagery Quality Metric,” Proceedings of the 33rd Applied 
Imagery and Pattern Recognition Workshop: Image and Data Fusion, IEEE 
Computer Society, Washington, 13-15 October 2004. 

3. K. J. Coakley, D. S. Simons, A. M. Leifer (2004), “Secondary Ion Mass Spectrometry 
Measurements of Isotopic Ratios: Correction for Time Varying Count Rate,” The 
International Journal of Mass Spectrometry. 

4. D. K. Walker, K. J. Coakley, J. D. Splett (2004), “Nonlinear Modeling of Tunnel Diode 
Detectors,” Proceedings of the 2004 IEEE Geosciences and Remote Sensing Society 
Symposium, Anchorage, Alaska, September 20-24, 2004. 

5. K. J. Coakley, D. J. McKinsey (2004), “Spatial Methods for Event Reconstruction in 
CLEAN,” Nuclear Instruments and Methods in Physics Research A, 522, 504-520. 

6. D. Dey, Y. Wang (2004), “Wavelet modeling of priors on triangles,” Journal of 
Multivariate Analysis. 

7. A. Micheas, D. Dey (2004), “Modeling shape distribution and inferences for assessing 
differences in shapes,” Journal of Multivariate Analysis. 

8. A. Rupp, D. Dey, B. Zumbo (2004), “To Bayes or not to Bayes: Application of Bayesian 
methodology to item response modeling,” Structural Equations Modeling. 

9. M. H. Chen, D. Dey, J. Ibrahim (2004), “Bayesian criterion based model assessment 
for categorical data,” Biometrika. 

10. G. A. Klouda, J. J. Filliben, H. J. Parish, J. C. Chow, J. G. Watson, R. A. Cary (2004), 
“Reference Material 8785: Air Particulate Matter on Filter Media,” Proceedings of the 
Symposium on Air Quality Measurement Methods and Technology 2004, Research 
Triangle Park, NC, April 2004, CD-ROM ISBN 0-923204-62-8. 

11. A. Cope, K. Gurley, S. Hamid, J. P. Pinelli, C. Subramanian, L. Zhang, E.  Simiu, J. 
J. Filliben (2004), “Hurricane Damage Prediction Model for Residential Structures,” 
Journal of Structural Engineering 130, 1685.  

12. S. J. Wetzel, C. M. Guttman, K. M. Flynn, J. J. Filliben (2004), “The Optimization of 
MALDI-TOF-MS for Synthetic Polymer Characterization by Factorial Design,” 
Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, 
May 2004, Nashville, TN. 

13.  W. F. Guthrie, H.-K. Liu, D. Malec, G. Yang (2004), “MCMC in StRD,” Proceedings of 
the 2004 NCSLI Conference. 

14. H. Liu, W. F. Guthrie, D. Malec, G. L. Yang (2004), “MCMC in StRD,” Proceedings of 
the 2003 Quality and productivity Conference. 

15. Z. Q. Lu, W. F. Guthrie (2004), “Bayesian Methods for Statistical Inference on the 
Common Mean from Multiple Data Sources,” Proceedings of ASPE 2004 Summer 
Topic Meeting - Uncertainty Analysis in Measurement and Design, 95-99.  

16. W. F. Guthrie, C. D. Simon, F. W. Wang (2004), “Cell Seeding into Calcium 
Phosphate Cement,” Journal of Biomedical Materials Research, 68A, 628-639. 

17. W. Liggett, P. E. Barker, O. J. Semmes, L. H. Cazares (2004), “Measurement 
Reproducibility in the Early Stages of Biomarker Development,” Journal Disease 
Markers, 20, 295-307. 
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18. H. Liu, C. R. Hagwood, N.F. Zhang (2004), “Comparisons of Bayesian approaches to 
combining results from multiple methods,” Proceedings of the 2004 Measurement 
Science Conference. 

19. H. Iyer, C. Wang, T. Matthew (2004), “Models and confidence intervals for true 
values in interlaboratory trials,” Journal of the American Statistical Association, 99, 
1060-1071.  

20. H. Iyer, C. Wang, D. F. Vecchia (2004), “Consistency tests for key comparison data,” 
Metrologia, 41 (4), 223-230. 

21. S. Leigh, D. L. Poster, M. M. Schantz, S. A. Wise (2004), “Standard Reference 
Materials (SRMs) for the Calibration and Validation of Analytical Methods for PCBs 
(as Aroclor Mixtures),” NIST Journal of Research, 109, 245-266. 

22. R. B. Marinenko, S. Leigh (2004), “Heterogeneity Evaluation of Research Materials 
for Microanalysis Standards Certification,” Microscopy and Microanalysis, 10, 491-
506. 

23. R. B. Marinenko, J. R. Sieber, L. L. Yu, T. A. Butler, S. Leigh (2004), “A New NIST 
SRM for Microanalysis and X-ray Fluorescence, TiAl(NbW) Alloy,” Proceedings of 
Microscopy and Microanalysis Conference, Savannah Ga. 

24. S. Leigh (2004), Review of Statistics for the Quality Control Chemistry Laboratory by 
Eamonn Mullins, Journal Anal Bioanal Chem. 

25. H. Liu, “High-dimensional empirical linear prediction,” Advanced Mathematical 
Tools in Metrology III, 79-90.   

26. N.F. Zhang, H. Liu, N. Sedransk, W. E. Strawderman (2004), “Uncertainty Analysis 
of Interlaboratory Studies with Linear Trends, Proceedings of ASPE 2004 Summer 
Topic Meeting - Uncertainty Analysis in Measurement and Design, 100-105. 

27. H. Liu, G. N. Stenbakken (2004), “Empirical modeling methods using partial data,” 
IEEE Transactions on Instrumentation and Measurement, 53, 271-276. 

28. N.F. Zhang, H. Liu, N. Sedransk, W. E. Strawderman (2004), “Statistical Analysis of 
Key Comparisons with Linear Trends,” Metrologia, 41, 231-237. 

29. Z. Q. Lu (2004), “Functional ANOVA with Applications to MALDI-TOF Mass 
Spectrometry in Polymers,” Proceedings of the 36st Symposium on the Interface: 
Computational Biology and Bioinformatics.   

30. Z. Q. Lu (2004), Review of Nonlinear Time Series: Nonparametric and Parametric 
Methods by J. Fan, Q. Yao, Technometrics, Vol.46, No.1, 114-115. 

31. A. L. Rukhin (2004), “Gamma-Distribution Order Statistics, Maximal Multinomial 
Frequency and Randomization Designs,” Journal of Statistical Planning and 
Inference.  

32. A. L. Rukhin, I. Malioutov (2004), “Fusion of Biometric Algorithms in the Recognition 
Problem,” Pattern Recognition Letters. 

33. A. L. Rukhin, A. Osmoukhina (2004), “Nonparametric Measures of Dependence for 
Biometric Data Studies,” Journal of Statistical Planning and Inference. 

34. A. L. Rukhin (2004), “The Recognition Problem of Biometrics,” Chance, 17, 30-34. 
35. A. L. Rukhin (2004), “Limiting Distributions in Sequential Occupancy Problems,” 

Sequential Analysis, 23, 141-158.  
36. T. P. Ryan (2004), Review of Semiparametric Regression by David Ruppert, Matt 

Wand and Ray Carroll, Journal of Quality Technology, 36(2), 242-243. 
37. T. P. Ryan (2004), Review of Planning, Construction, and Statistical Analysis of 

Comparative Experiments by Francis G. Giesbrecht and Marcia L. Gumpertz, 
Journal of Quality Technology, 36(4), 454-457.  

38. T. P. Ryan (2004), Review of Handbook of Statistics 22 by R. Khattree and C. R. Rao, 
eds., Journal of Quality Technology, 36(3), 339-341.  

39. L. F. Goodrich, T. C. Stauffer, J. D. Splett, D. F. Vecchia (2004), “Unexpected Effect 
of Field Angle in Magnetoresistance Measurements of High-Purity Nb,” Proceedings 
of the Applied Superconductivity Conference, Jacksonville, Florida. 
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40. J. A. Jargon, J. D. Splett, D. F. Vecchia, D. C. DeGroot (2004), “Modeling Warm-Up 
Drift in Commercial Harmonic Phase Standards,” Conference on Precision 
Electromagnetic Measurements Digest, London, England, 612-613. 

41. L. F. Goodrich, T. C. Stauffer, J. D. Splett, D. F. Vecchia (2004), Measuring Residual 
Resistivity Ratio of High-Purity Nb,” Advances in Cryogenic Engineering: 
Transactions of the International Cryogenic Materials Conference, Vol. 50, pp. 41-48. 

42. A. Katsis, B. Toman (2004), “A Bayesian Double Sampling Scheme for Classifying 
Binomial Data,” The Mathematical Scientist. 

43. B. Toman (2004), “Bayesian Approach to the Estimation of a Key Comparison 
Reference Value,” NCSLI.  

44. G. L. Yang, S. Y. He, K. T. Fang, J. F. Widmann (2004), “Estimation of Poisson 
intensity in the presence of dead time,” Journal of the American Statistical 
Association. 

45. A. E. Grosz, J. N. Grossman, J. H. Yen, et al (2004), “Arsenic in Surficial Sediments 
of North America,” Global Geochemical Baselines Workshop (DWO 16) of the 32nd 
International Geological Congress, Florence, Italy.  

46. P. D. Over, J. H. Yen (2004), “An Introduction to DUC 2004 Intrinsic Evaluation of 
Generic New Text Summarization Systems,” Document Understanding Workshop at 
the Human Language Technology conference / North American chapter of the 
Association for Computational Linguistics annual meeting. 

47. J. M. Brown Thomas, J. H. Yen, M. M. Schantz, B. J. Porter, K. S. Sharpless (2004), 
“Determination of Caffeine, Theobromine, and Theophylline in Standard Reference 
Material 2384, Baking Chocolate Using Reversed-phase Liquid Chromotography,” 
Journal of Agriculture and Food Chemistry. 

48. N.F. Zhang, P. Winkel (2004), “Statistical Process Control on Biochemical and 
Hematological Quality Contorl Data,” Proceedings of Section on Quality and 
Productivity of Americal Statistical Society.  

49. N.F. Zhang, P. Winkel (2004), “Serial Correlation of Quality Control Data on the Use 
of Proper Control Charts,” Scandinavian Journal of Clinical and Laboratory 
Investigation, 64, 195-204. 

 
9.2.2  NIST Technical Reports 
 

1. K. J. Coakley, J. D. Splett, M. D. Janezic, R. K. Kaiser (2005), “Relative Permittivity 
and Loss Tangent Measurement Using the NIST 60 mm Cylindrical Cavity,” NIST 
Special Publication. 

2. C. R. Hagwood, K. L. Stricklett, O. Petersons (2004), “Operating Characteristics of 
the Proposed Sampling Plans for Testing Distribution Transformers,” NIST 
Technical Note 1456. 

3. W. J. Rossiter, B. Toman, M. E. McKnight, I. Emenanjo (2004), “Ultrasonic 
Extraction/Anodic Stripping Voltammetry for Determining Lead in Dust: Analyses of 
Field-Sampled Wipes,” NISTIR 7109.  

4. W. J. Rossiter, B. Toman, M. E. McKnight, I. Emenanjo, M. B. Anaraki (2004), 
“Ultrasonic Extraction/Anodic Stripping Voltammetry for Determining Lead in Dust: 
A Laboratory Evaluation,” NISTIR 6998. 

5. D. Williams, P. D. Hale, T. S. Clement, C. Wang (2004), “Uncertainty of the NIST 
Electrooptic Sampling System,” NIST Technical Note 1535. 

6. S. Laskowski, M. Autry, J. Cugini, B. Killam, J. H. Yen (2004), “Improving the 
Usability and Accessibility of Voting Systems and Products,” NIST Special 
Publication 500-256. 
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9.2.3   Publications in Process 
 

1. A. I. Aviles, B. E. Ankenman, J. C. Pinheiro (submitted), “Robustness Experiments 
with Two Variance Components,” Journal of Quality Technology. 

2. D. J. McKinsey, K. J. Coakley (to appear), “Neutrino Detection in CLEAN,” 
Astroparticle Physics.  

3. S. N. Dzhosyuk, K. J. Coakley, J. M. Doyle, R. Golub, E. Korobkina, S. K. Lamoreaux, 
A. K. Thompson, G. L. Yang, L. Yang, P. R. Huffman (submitted), “Determination of 
the Neutron Mean Lifetime Using Magnetically Trapped Neutrons,” NIST Journal of 
Research. 

4. K. J. Coakley, J. M. Doyle, S. N. Dzhosyuk, L. Yang, P. R. Huffman (submitted), 
“Chaotic Scattering and Escape Times of Marginally Trapped Ultracold Neutrons,” 
NIST Journal of Research. 

5. J. J. Filliben, R. R. Zarr (submitted), “Collaborative Thermal Conductivity 
Measurements of Fibrous Glass and Expanded Polystyrene Reference Materials,” 
Proceedings of International Thermal Conductivity Conference. 

6. J. J. Filliben, R. R. Zarr (submitted), “An International Study of Guarded Hot Plate 
Laboratories Using Fibrous Glass and Expanded Polystyrene Reference Materials,” 
ASTM Special Technical Publication.  

7. G. A. Klouda, J. J. Filliben, H. J. Parish, J. C. Chow, J. G. Watson, R. A. Cary (to 
appear),  “Reference Material 8785: Air Particulate Matter on Filter Media,” Aerosol 
Science and Technology. 

8. F. H. Sadek, R. Wilcox, E. Simiu, J. J. Filliben (to appear), “Wind Speeds in ASCE 7 
Standard Peak-Gust Map: Assessment. Closure,” Journal of Structural Engineering.  

9. S. J. Wetzel, C. M. Guttman, K. M. Flynn, J. J. Filliben (submitted), “Significant 
Parameters in the Optimization of MALDI-TOF-MS for Synthetic Polymers,” 
Analytical Chemistry. 

10. A. Hornikova, W. F. Guthrie (2005), “A Survey of Key Comparisons,” Proceedings of 
the 2005 Measurement Science Conference.  

11. A. Hornikova, W. F. Guthrie (2005), “Troubleshooting Key Comparisons (A Survey of 
Design, Analysis, and Reporting of Results in Key Comparisons),” Proceedings of the 
2004 Joint Statistical Meeting.  

12. C. R. Hagwood, W. F. Guthrie (2005), “Combining Data in Small Multiple Method 
Studies,” Technometrics.  

13. C. Wang, H. Iyer (submitted), “Propagation of uncertainties in measurements using 
generalized inference,” Metrologia.  

14. C. Wang, H. Iyer (submitted), “Detection of influential observations in the 
determination of the weighted-mean KCRV,” Metrologia. 

15. S. Leigh, C. Beauchamps (to appear), “Best Measurement Practice Guide: Using 
Magnetic Methods for the Determination of Nonmagnetic Coating Thickness on 
Magnetic Substrates,” US DOC Publication. 

16. W. Liggett, C. Buckley (2005), “System Performance and Natural Language 
Expression of Information Needs,” Information Retrieval 8(1), 101-128.  

17. D. Malec, B. Toman (submitted), “A Bayesian Approach to Gas Chromatography 
Calibration and Prediction for Multiple Laboratory Experiments with Corrupted 
Material,” Journal of the American Statistical Association. 

18. A. L. Rukhin (submitted), “Nonparametric Inference for Balanced Randomization 
Designs,” Journal of Statistical Planning and Inference. 

19. A. L. Rukhin (submitted), “Recognition Problem in Biometric Data Studies: 
Nonparametric Dependence Characteristics and Aggregated Algorithms,” Statistical 
Methods in Counter-Terrorism, A. Wilson and D. Olwell, eds. 

20. T. P. Ryan, W. H. Woodall (2005), “The Most-Cited Statistical Papers,” Journal of 
Applied Statistics. 
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21. C. McCowan, G. Roebben, Y. Yamaguchi, S. Lefranois, J. D. Splett, S. Takagi, A. 
Lamberty (2005), “International Comparison of Impact Reference Materials,” Journal 
of ASTM International.  

22. J. D. Splett, C. Wang (submitted), “Uncertainty in reference values for the Charpy V-
notch verification program,” ASTM Journal of Testing and Evaluation.  

23. J. D. Splett, C. McCowan (2005), “Analysis of Charpy Impact Verification Data: 1993-
2003,” Journal of ASTM International.  

24. B. Toman (submitted), “A Bayesian Approach to Assessing Uncertainty and 
Calculating a Reference Value in Key Comparison Experiments,” Technometrics. 

25. L. A. Muth, C. Wang, T. Conn (submitted), “Robust separation of background and 
target signals in radar cross section measurements,” IEEE Transactions on 
Instrumentation and Measurement. 

26. P. D. Hale, C. Wang, D. Williams, K. A. Remley (submitted), “Compensation of 
random and systematic timing errors in sampling oscilloscopes,” IEEE Transactions 
on Instrumentation and Measurement. 

27. G. L. Yang, J. F. Widmann, S. He, K. T. Fang (to appear), “Estimation of Poisson 
intensity in the presence of dead time,” Journal of the American Statistical 
Association. 

28. F. W. Wang, S. Hirayama, J. H. Yen, S. Takagi (2005), “Physical Properties of 
Composite Bone Grafts Consisting of Calcium Phosphate Cement and Chondroitin 
Sulfate,” Proceedings of Biomaterials Society Meeting, Memphis. 

29. N.F. Zhang (submitted), “The Batched Moving Averages of a Stationary Process and 
Their Applications,” Communication in Statistics: Theory and Methods. 

 
9.2.4  Working Papers 
 

1. A. I. Aviles, B. Cordes, “Developing a Graphical Tool to Determine the Estimation 
Capacity of an Experimental Design.” 

2. D. Dey, J. Liu, J. Soto, B. Toman, “Prior Elicitation from Expert Opinion: An 
Interactive Approach.” 

3. A. Hornikova, S. Leigh, “Report on the CCPR S2.” 
4. A. Hornikova, N.F. Zhang, “Statistical Approaches to Evaluate the Uncertainty for 

NIST SRM 1508a.” 
5. F. R. Guenther, S. Leigh, A. L. Rukhin, “Errors in Variables as Applied to Gas 

Standard Calibration.” 
6. W. R. Kelly, B. S. MacDonald, S. Leigh, “A 'Designer' Calibration Standard Method 

for Determination of Sufur in Fossil Fuels: User Prepared NIST Traceable CRMs 
with Known Concentrations and Uncertainties.” 

7. N. Sedransk, A. L. Rukhin, “Statistics in Metrology: International Key Comparisons 
and Interlaboratory Studies.” 

8. A. L. Rukhin, Z. Volkovich, “Testing Randomness via Aperiodic Words.” 
9. R. A. Davis, W. T. Dunsmuir, S. B. Streett, “Maximum Likelihood Estimation for an 

Observation Driven Model for Poisson Counts.” 
10. S. D. Phillips, B. Toman, W. T. Estler, “Uncertainty due to Finite Resolution 

Measurements.” 
11. B. Toman, “Linear Statistical Models with Type B Uncertainty: A Bayesian View of 

Annex H.3 and H.5 of the Guide to the Expression of Uncertainty in Measurement.” 
12. S. Hirayama, S. Takagi, J. H. Yen, F. W. Wang, “Physical Properties of Moldable, 

Resorbable, Composite Bone Graft.” 
13. C. Khatri, G. Du, E. S. Wu, J. H. Yen, F. W. Wang, “Focal Adh Focal Adhesions of 

Osteoblast-like Cells on Films of Poly(d,l-lactide)/Poly(vinyl alcohol) Blends.” 
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14. L. C. Sander, K. S. Sharpless, M. B. Satterfield, K. W. Phinney, J. H. Yen, S. A. Wise, 
et al. “Determination of Ephedrine Alkaloids in Dietary Supplement Standard 
Reference Materials.” 

 
 
9.3  Talks 
 

1. A.I. Aviles, Statistical Methods for Analyzing the Particle Size Distribution of 
Portland Cement, ASTM C01 Meeting on Fineness, Washington, DC, December 2004. 

2. A.I. Aviles, Statistics for Experiments, University of Puerto Rico, Mayagüez, PR, 
January 2004. 

3. A.I. Aviles, Symposium on Statistical Methods for Analyzing Color Differences, 
ASTM E12 - Color and Appearance Meeting, Gaithersburg, MD, May 2004. 

4. A.I. Aviles, Careers, Choices & Opportunities, NSF/CISE Maryland REU-Sites, First 
Annual Meeting, NIST, Gaithersburg, MD, June 2004. 

5. K.J. Coakley, Classification Problems in Neutrino Physics, invited talk at the 2004 
Meeting of the International Federation of Classification Societies, Chicago, IL, July 
2004. 

6. K.J. Coakley, Nonlinear Modeling of Tunnel Diodes, (with D.K. Walker and J.D. 
Splett), poster session at the 2004 IEEE Geoscience and Remote Sensing Society 
Symposium (IGARSS), Anchourage, AK, September 2004. 

7. K.J. Coakley (with D.S. Simons (CSTL), K.J. Coakley,  A. Leiffer), Application of 
Time Interpolation to SIMS Isotopic RatioMeasurements, Americal Vacuum Society 
51st International Symposium, Anaheim, CA, November 2004. 

8. K.J. Coakley, (with D. McKinsey, W. Lippincott, J.Nikkel, A. Hime, M. Boulay, J. 
Lidgard, E. Kearns), Neutrino and WIMP Detection with CLEAN, 2004 Meeting of 
American Physical Society, Denver, C0, May 2004.  

9. K.J. Coakley, (with D.S. Simons and A.M. Leiffer), Application of Time Interpolation 
to SIMS Isotopic Ratio Measurements, 17th Annual Secondary Ion Mass 
Spectrometry Workshop, Westminister, C0, May 2004.  

10. K.J. Coakley (with K. Ehara, N. Fukushima, K. Worachotekamjorn), Analysis and 
Improvement of the Temporal Response of the Aerosol Mass Analyzer, European 
Aerosol Conference, Budapest, September 2004. 

11. J.J. Filliben, World Trade Center Analysis of Structural Failure, NRC Panel 
Informal Assessment of Division  Activities, NIST, Gaithersburg, MD, April 20, 2004. 

12. J.J. Filliben, Statistical Analysis of Influential Parameters, NIST WTC Working 
Group, NIST, Gaithersburg, MD, April 27, 2004. 

13. J.J. Filliben, The World Trade Center Collapse: The Critical Role of Statistics, Spring 
Research Conference, NIST, Gaithersburg, MD, May 21, 2004. 

14. J.J. Filliben, Design of Numerical Experiments, a part of Jeffrey Fong's Talk: A 
Metrology-based Uncertainty Analysis Approach to V&V of Computer Models of 
High-Consequence Engineering Systems, Southwest Research Institute, October 11, 
2004. 

15. J.J. Filliben, Design of Numerical Experiments, a part of Jeffrey Fong's Talk: A 
Metrology-based Uncertainty Analysis Approach to V&V of Computer Models of 
High-Consequence Engineering Systems, Foundations '04: A Workshop for V&V in 
the 21st Century, Tempe, AZ, October 13, 2004. 

16. J.J. Filliben, Design of Numerical Experiments, a part of Jeffrey Fong's Talk: A 
Metrology-based Uncertainty Analysis Approach to V&V of Computer Models of 
High-Consequence Engineering Systems, Lawrence Livermore Laboratories, 
Livermore, CA, October 18, 2004. 

17. J.J. Filliben, World Trade Center Analysis, SED/ITL Program Review, NIST, 
Gaithersburg, MD, November 2, 2004. 
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18. J.J. Filliben, A Structured Roadmap for Verification and Validation--Highlighting the 
Critical Role of Experiment Design, 2004 Workshop of Verification and Validation of 
High-Consequence Engineering Systems, NIST, Gaithersburg, MD, November 8, 
2004. 

19. J.J. Filliben, Basketballs, Funnels, and Designed Experiments, Adventures in 
Science, NIST, Gaithersburg, MD, November 20, 2004. 

20. J.J. Filliben, Statistical Approaches in the NIST World Trade Center Collapse 
Analysis, University of Maryland, December 2, 2004. 

21. W.F. Guthrie, A Bayesian Approach to Combining Results From Multiple Methods, 
Workshop on the Verification and Validation of Computer Models for the Design and 
Performance Evaluation of High-Consequence Engineering Systems. NIST, 
November 2004. 

22. W.F. Guthrie, Hands-on Workshop on Estimating and Reporting Measurement 
Uncertainty, Anaheim, California, January 2004. 

23. W.F. Guthrie, Introduction to Nonparametric Regression, NIST Administration 
Building, Lecture Room D, Gaithersburg, Maryland, September 2004. 

24. W.F. Guthrie, MCMC in StRD, Salt Lake City, Utah, July 2004. 
25. W.F. Guthrie, Ranking the Sources of Numerical Error in MCMC Computations, 

Toronto, August 2004. 
26. W.F. Guthrie, Validating the Temperature-EMF Response of Thermocouples with 

Confidence, Washington, DC, November 2004. 
27. C. Hagwood, An application of stochastic differential equations to sizing ultrafine 

particles, 2nd International  Work Shop in Applied Probability, Pireaus, Greece, 
March 2004. 

28. C. Hagwood, Dynamic Calibration, Talk at George Mason University, Farifax, 
Virginia, February 2004. 

29. C. Hagwood, An Application of Stochastic Differential Equations to Sizing Ultrafine 
Particles, Talk at Department of Statistics, University of Delaware, May 2004. 

30. A. Hornikova, A Survey of Design, Analysis, and Reporting of Results in Key 
Comparisons, Room 152, NIST North, Gaithersburg, Maryland, October 2004. 

31. D.D. Leber, NIST-SEMATECH e-Handbook of Statistical Methods and DATAPLOT: 
An Interactive Demonstration ACSL Conference Room, Gaithersburg, Maryland, 
September 2004. 

32. H.K. Liu, Comparisons of Bayesian approaches to combining results from multiple 
methods, Measurement Science Conference, Anaheim, CA, January 2004. 

33. H.K. Liu, Weighing Designs for Mass Calibration, Spring Research Conference, 
Gaithersburg, MD, May 2004. 

34. H.K. Liu, An update on the StRD for MCMC, Joint Statisitical Meetings, August 
2004. 

35. H.K. Liu, G. L. Yang, Statistical Analysis of Incomplete Data for Scientists & 
Engineers, NIST Administration Building, LRB & LRE, Gaithersburg, Maryland, 
December 2004. 

36. W. Liggett, Data-Driven and Peak-Based Feature Selection in Serum Protein Mass 
Spectrometry, invited talk in Interface 2004: Computational Biology and 
Bioinformatics, 36th Symposium on the Interface, Baltimore, Maryland, May 2004. 

37. Z.Q. Lu, Statistics and Standards for High-Throughput Measurements, Invited talk 
ICSA 2004 Applied Statistics Symposium in Bio-tech Research and Computing 
Intensive Methodologies, in San Diego, California, June 2004. 

38. Z.Q. Lu, Bayesian Statistics in Uncertainty Analysis, Combining Multiple Methods, 
and Inter-laboratory Studies, State College, Pennsylvania, June 2004. 

39. Z.Q. Lu, Statistical and Metrological Issues in Proteomics using Time-of-flight Mass 
Spectrometry, invited talk in Interface 2004: Computational Biology and 
Bioinformatics, 36th Symposium on the Interface, Baltimore, Maryland, May 2004. 
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40. T.P. Ryan, The Role of Modern Experimental Design in Quality Improvement, 
Southeastern Quality Conference, Atlanta, Georgia, October 2004. 

41. A.L. Rukhin, Statistics in Metrology: International Key Comparisons and 
Interlaboratory Studies, 11th Spring Research Conference on Statistics in Industry 
and Technology, NIST, Gaithersburg, MD, May 2004. 

42. A.L. Rukhin, Balanced Randomization Designs and Classical Probability 
Distributions, NIST North, Room 145, Gaithersburg, Maryland, February 2004. 

43. A.L. Ruhkin, Nonparametric Dependence Characteristics in Recognition Problem of 
Biometrics, ENAR-IMS Spring Meeting, Pittsburgh, PA, March 2004. 

44. A.L. Rukhin, Introduction to Markov Chains: Markov Chain Monte Carlo for 
Scientists & Engineers, Lecture Room B, Administration Building, Gaithersburg, 
Maryland, August 2004. 

45. A.L. Rukhin, Issues of Trend and Linkage in Interlaboratory Studies, International 
Workshop "Longevity, Aging and Degradation Models in Reliability, Medicine and 
Biology," St.-Petersburg, Russia, June 2004. 

46. N. Sedransk, Potential Roles for Statistics in NanoScience, NNI Interagency 
Workshop: Instrumentation and Metrology for Nanotechnology - Grand Challenges, 
January 2004. 

47. N. Sedransk, Role of Statistics in International Metrology: Role of SED at NIST, 
presentation at BIPM Visit to NIST, April 2004. 

48. N. Sedransk, Statistics in Metrology: International Key Comparisons and 
Interlaboratory Studies, Spring Research Conference, NIST, Gaithersburg, MD 

49. N. Sedransk, A Statistical Metrologist Looks at Computational System Models, V&V 
Conference at NIST, November 2004. 

50. N. Sedransk, Statistical Engineering and SRM Certification, ASTM  E01 at NIST, 
November 2004. 

51. J.D. Splett, Analysis of Charpy Impact Verification Data: 1993-2003, Second 
Symposium on Pendulum Impact Machines: Procedures and Specimens, Washington, 
DC, November 2004. 

52. B. Toman, Bayesian Approach to Calculating a Key Comparison Reference Value 
2004 NCSL Workshop and Symposium, Salt Lake City, Utah, July 2004. 

53. C. Wang, Consistency tests for key comparison data, Measurement Science 
Conference, Anaheim, California, January 2004. 

54. C. Wang, Generalized prediction intervals, Joint Statistical Meetings, Toronto, 
Canada, August 2004. 

55. C. Wang, Structural inference for uncertainty evaluation with application to 
calibration experiments, ASPE Summer Topical Meeting, State College, 
Pennsylvania, June 2004. 

56. C. Wang, Structural approach for propagating uncertainties, International 
Microwave Symposium, Fort Worth, Texas, June 2004. 

57. G.L. Yang, Statistical Analysis of Incomplete Data for Scientists & Engineers, 
Administration Building, Gaithersburg, Maryland, December 2004. 

58. N.F. Zhang, Statistical Analysis of Interlaboratory Studies with Linear Trends, 
ASPE Summer Topic Meeting, Penn State University, PA, July 2004; University of 
Science and Technology of China, Hefei, China, November 2004; and Department of 
Mathematical Statistics, East China Normal University, Shanghai, China, November 
2004. 

59. N.F. Zhang, Statistical Process Monitoring for Autocorrelated Data, INFORMS 
Annual Meeting, Denver, Colorado, October 2004. 

60. N.F. Zhang, Statistical Process Control on Biochemical and Hematological Quality 
Control Data, Joint Statistical Meetings, Toronto, Canada, August 2004. 
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9.4  Professional Activities 
 
9.4.1  NIST Committee Activities 
 

1. A. I. Aviles, Member, ITL Awards Committee.  
2. A. I. Aviles, Member of NIST Employees Concerned with Disabilities (ECD).  
3. A. I. Aviles, Advisor to the ITL coordinators, SURF/NSF program.  
4. A. I. Aviles, Chair, Yellow Book Team; Editor, SED Report of Activities. 
5. S. Bailey, Member, ITL Diversity Committee.  
6. Carroll Croarkin, Member, US TAG for ISO TC69. 
7. W. F. Guthrie, ITL Representative to the Washington Editorial Review Board. 
8. S. Leigh, ITL Representative to the Washington Editorial Review Board. 
9. S. Leigh, SED liaison for NIST/NRC postdoctoral associateship program.  
10. W. Liggett, Member, NIST Institutional Review Board. 
11. N. Sedransk, Member of Measurement Services Group. 
12. N. Sedransk, Member of MSAG Task Force on SRM Business Practices.  
13. N. Sedransk, WSS Planning Committee on Statistics for Homeland Defense and 

Security.  
14. N. Sedransk, Leader of Task Force on Statistical Methodology for Key Comparisons.  
15. C. Wang, EEEL MCOM Technical Subcommittee on relative permittivity and loss 

tangent SRM..  
16. N.F. Zhang, Member, EEEL, MCOM subcommittee on AC-DC Difference of Voltage.  
17. N.F. Zhang, Member of Task Force for reviewing NIST Quality Manual, QM-1. 
18. N.F. Zhang, Convenor of ISO TC69/SC6/WG4.  
19. N.F. Zhang, EEEL MCOM Technical Subcommittee on NIST Measurement Service 

for DC Standard Resistor.  
20. N.F. Zhang, Invited Panel Discussion on Statistical Process Control in 23th Decision 

Science Institute Meeting. 
 
9.4.2  Standards Committee Memberships 
 

1. A. I. Aviles, Member, ASTM International, E12 - Color and Appearance. 
2. K. J. Coakley, Telecommunications Industry Association International 

Electrotechnical Commission, TIA/EIC, Working Group 4, TC-86. 
3. N.F. Zhang, Member, ASC Z1 Subcommittee on Statistics. 
4. N.F. Zhang, US TAG member on ISO TC69. 
5. N.F. Zhang, Project Leader of ISO/CD/TS 21749 of ISO TC69/SC6. 

 
9.4.3  Other Professional Society Activities 

 
1. A. I. Aviles, Chair, SPES Awards Committee. 
2. A. I. Aviles, ASA Representative to AAAS, Section P- Industrial Sciences. 
3. A. I. Aviles, Member, American Council of the Blind (ACB). 
4. Carroll Croarkin, Chair, Mary Natrella Scholarship Committee for ASA. 
5. D. Dey, Member, editor selection committee of the Institute of Mathematical 

Statistics.  
6. D. Dey, Member, archive committee of the American Statistical Association.  
7. K. J. Coakley, NIST representative to National Institute of Statistical Sciences 

(NISS). 
8. Z. Q. Lu, Organizer of an Invited Session at Interface 2004: Computational Biology 

and Bioinformatics, May 26-29, 2004.  
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9. T. P. Ryan, Chair of the Committee to Nominate Fellows of the Quality and 
Productivity Section of ASA. 

10. T. P. Ryan, Member, Editorial Review Board. 
11. A. L. Rukhin, Monitored Gordon Research Conference on Statistics in Chemistry, 

Mount Holyoke College.  
12. N. Sedransk, Member, ASA Subcommittee on Publications Marketing. 
13. N. Sedransk, Member, ASA-ENVR Committee on Fellows. 
14. N. Sedransk, Vice Chair, ASA Publications Committee. 

 
 

9.5  Professional Journals 
 
9.5.1  Editorships  
 

1. D. Dey, Associate Editor of Journal of Statistical Planning and Inference. 
2. W. Liggett, Board of Editors of the NIST Journal of Research. 
3. T. P. Ryan, Book Review Editor of the Journal of Quality Technology (JQT). 
4. A. L. Rukhin, Associate Editor of Statistics and Probability Letters.  
5. A. L. Rukhin, Associate Editor of Mathematical Methods of Statistics. 
6. A. L. Rukhin, Associate Editor of Applicationes Mathematicae.  
7. A. L. Rukhin, Coordinating Editor of Journal of Statistical Planning and Inference.  

 
9.5.2  Refereeing 
 

1. A. I. Aviles, Technometrics. 
2. A. I. Aviles, Statistics and Probability Letters. 
3. A. I. Aviles, Washington Editorial Review Board (WERB).  
4. K. J. Coakley, Boulder Editorial Review Board.  
5. K. J. Coakley, Biometrics. 
6. J. J. Filliben, Washington Editorial Review Board (WERB).  
7. C. Hagwood, Statistics and Probability Letters. 
8. C. Hagwood, Washington Editorial Review Board (WERB). 
9. S. Leigh, Washington Editorial Review Board (WERB).  
10. S. Leigh, IEEE Transactions. 
11. S. Leigh, Analytical and Bioanalytical Chemistry. 
12. Z. Q. Lu, IEEE Transactions on Signal Processing.  
13. T. P. Ryan, IIE Transactions. 
14. T. P. Ryan, JQT. 
15. T. P. Ryan, Statistics in Medicine. 
16. T. P. Ryan, Technometrics. 
17. A. L. Rukhin, Technometrics. 
18. A. L. Rukhin, Journal of Computational and Graphical Statistics. 
19. A. L. Rukhin, British Journal of Mathematical and Statistical Psychology.  
20. N. Sedransk, Metrologia. 
21. J. Soto, Journal of Statistical Planning and Inference. 
22. W. Strawderman, Annals of Statistics. 
23. W. Strawderman, Bernoulli. 
24. W. Strawderman, JSPI. 
25. W. Strawderman, Statistics and Probability Letters. 
26. W. Strawderman, Statistical Science. 
27. W. Strawderman, Journal of Multivariate Analysis. 
28. B. Toman, Technometrics.  
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29. B. Toman, Washington Editorial Review Board (WERB). 
30. J. Wang, Psychometrika. 
31. G. L. Yang, Journal of Statistical Planning and Inference. 
32. G. L. Yang, Journal of Nonparametric Analysis. 
33. G. L. Yang, John Wiley Publ. Co. 
34. N.F. Zhang, Technometrics. 
35. N.F. Zhang, Metrologia. 
36. N.F. Zhang, Mathematical Methods of Statistics. 
37. N.F. Zhang, International Journal of Production Research.  

 
9.6  Review Panels 

 
1. C. Hagwood, National Science Foundation. 
2. N. Sedransk, National Science Foundation. 
3. G. L. Yang, National Institute of Health. 

 
9.7  Honors 
 
A. I. Aviles received the SROP Alumni Achievement Award by the Committee on 
Institutional Cooperation (CIC).  It was presented at the SROP (Summer Research 
Opportunity Program) Conference held at the University of IOWA on July 10, 2004. 
 
W. F. Guthrie and J. Wang:  Honorable Mention - Outstanding Presentation Award for 
Contributed Paper at JSM 2003 by the Section on Physical and Engineering Sciences. 
 
The Silver Medal Award in the category of Scientific and Engineering Achievement was 
awarded to W. F. Guthrie and N. F. Zhang for development and provision to industry of a 
long-sought two-dimensional (2-D) grid standard (SRM 5001).  The Silver Medal Award is 
bestowed for “exceptional performance characterized by noteworthy or superlative 
contributions that have a direct and lasting impact within the Department.”  This award 
recognizes scientific/engineering or technological breakthroughs that resolve long-standing 
problems, radically advance the state of the art, significantly impact the Department of 
Commerce or the economy, or significantly advance the understanding, knowledge, or 
mastery of a given discipline.  The Silver Medal Award is the second highest honor awarded 
by the Department of Commerce.   
 
ITL Outstanding Contribution Award to C. Hagwood for his work in managing student 
programs, including the minority student program in the Statistical Engineering Division. 
 
A. Hornikova:  ITL Thank you Award for her energetic and creative support with the 
publication of the Statistical Engineering Division Brochure and Report of Activities 2003. 
 
Outstanding achievement in poetry to A. Hornikova by the International Society of Poets, 
on August 15, 2004. 
 
The Bronze Medal Award in the category of Scientific and Engineering Acievement was 
awarded to S. Leigh for exemplary leadership in expert application and dissemination of 
statistical metrology for the chemical, physical and information sciences.  The Bronze Medal 
award is the highest honorary recognition available for Institute presentation.  The award, 
approved by the Director, is given for significant contributions affecting major programs, 
scientific accomplishments within the Institute, and superior performance of assigned taks 
for at least five consecutive years. 



Accolades of Appreciation

• “This summer has been a great experience for me.  The SURF program is 
excellent and allowed me the opportunity to participate in some of the 
world-class research that takes place here at NIST.  At first, I was a little 
disappointed with my placement in the Statistical Engineering Division.  
I thought there would be little overlap between my academic strengths 
and interests and what I would be doing over the summer.  I couldn't 
have been more wrong and my placement in SED turned out to be a 
blessing in disguise.  Not only did I get to work on two very interesting 
and challenging projects with two excellent advisors (thanks Dr.
Hagwood and Dr. Rukhin), but I also experienced a bit of the consulting 
nature of SED.  I was allowed to tag along with Stefan Leigh as he 
helped various scientists all around NIST handle the statistical problems 
that arise in their research.  All in all, I had an extremely enjoyable and 
educational summer.  Thanks SED!”

-Van Molino

• “My internship experience this summer at NIST is one of the most
memorable experiences of my life. I learned a lot about research at NIST 
and the importance of statistics. Before my internship, I had no idea why 
research at NIST is important. After my internship, I have a greater 
appreciation of the importance of standards and accurate measurements. 
I realize that research at NIST is improving our everyday lives. In the 
beginning of my internship, when I found out about being placed in the 
SED, Statistical Engineering Division, I did not know what to expect. I 
had only taken one course in statistics, so I didn't have a strong 
background or interest in statistics. At the end of my internship at NIST, I 
am very glad that they placed me in the SED. I learned a lot about 
statistics, and I understand that many statisticians in the SED are 
applying their knowledge to help solve real-world problems. Although I 
probably will not dedicate myself to the field of statistics as a career, I 
am very impressed with the work that statisticians in the SED have done. 
My experience in the SED has given me a new perspective about 
statistics. Overall, my internship experience this summer at NIST was 
very valuable and enjoyable.”

- Chiu Yeung




