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Section Outline

1. Non-Constant Variation

2. Outliers
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Non-Constant Variation

Non-constant variation across the levels of the
predictor variables violates one of the usual
assumptions of least squares regression.

However non-constant variation is often found
in data used for building regression models as
an inherent part of the measurement or other
type of process.

Because non-constant variation is frequently
encountered, techniques to improve the validity
of the standard assumptions and techniques
based on alternative assumptions have been
developed to lessen the impact of this problem.
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Effect of Non-Constant Standard Deviation on
Function Fitting

If all of the other assumptions for the analysis
are met, except for constant standard
deviation across all combinations of the
predictors, the usual parameter estimates will
still be correct on average, or unbiased.

However, the deviation of the fitted function
from the true function will be larger, on
average, than that from other techniques,
unlike the case of constant standard deviation.
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Eftect of Non-Constant Standard Deviation on
Function Fitting

The least squares estimates are found by
minimizing the sum of the squared differences

of the predicted values and the observed y’s,
Q, to find the 3’s.

Q= 3 [yi—f(x1s, 2, - - -, Tis B, Bos -, Bp)]

I M3

1=1

All deviations count the same using the LSS
fitting criterion, even if the variation differs
across the data.

However, where the variation is larger, the
deviations of the data from their corresponding
means will also be larger, indicating that the
regression function should not be constrained
to be as near that data as it is to data that
varies less.
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Effect of Non-Constant Standard Deviation on
Prediction

In addition to increasing the variance of
estimating the regression function,
non-constant standard deviation impacts the
uncertainty of predictions, if unaccounted for.

Predictions made where variation is relatively
low, will tend to have larger stated
uncertainties than necessary. Predictions made
where uncertainty is relatively large will have
smaller stated uncertainties than necessary.
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Heteroscedastic Data
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Improved Fitting Methods

There are basically two approaches to getting
improved parameter estimates for data with
non-constant standard deviations:

1. transformation of the data so it meets the
standard assumptions, and

2. use of weights in parameter estimation to
account for the unequal standard
deviations.
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Comparison of Fitting Procedures
for Data with Non-Constant Variation
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Transformations

The basic steps for using transtormations to
handle data with unequal subpopulation
standard deviations are:

1. Transtorm the response variable to equalize
the variation across the levels of the
predictor variables

2. Transform the predictor variables if
necessary to attain or restore a simple
functional form for the regression function.

3. Fit and validate the model in the
transformed variables.

4. Transform the function back into the
original units, if necessary, using the inverse
of the transformation originally applied to
the response variable.
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Transformations

Appropriate transformations to stabilize the
variability may be suggested by scientific
knowledge or selected using the data.

Three transtormations that are often effective
is equalizing the standard deviations across the
values of the predictor are:

1. /7

2. log(y), and
3. 1/y.
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Non-Constant Variation

Transformed Response vs Predictor in Original Units
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Transformed Response vs Basic Tranformations

of the Predictor Variable
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Non-Constant Variation

Transformed Response vs Transformed Predictor
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Residuals From Fit to Transformed Variables
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Residuals From Fit to Transformed Variables
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Weighted Least Squares

Weighted least squares estimates are found by
minimizing:

" o
Q = 2 w;|Yi— (14, 29, - - -, Thgs B1, B2, - - - ﬁp)]Q

where

1
w; X —5
i 022

These relative weights give optimal results,
when known.
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Weighted Least Squares

Unfortunately the true weights are rarely
known, so they have to be estimated.

The obvious way to estimate the w;, if there
are replicates in the data, is
L1 [Z?il(yij - @i)Q]—1

n; — 1

for the it set of replicates in the data set.

However, this rarely works well because the
weights are extremely variable when estimate
this way:.
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Weighted Least Squares

A better strategy for estimating the weights is
to find a function which relates s? to ;.

If
5
85 o f(X14, Ty - - 5 Thj)
then use
1
w; =
f(x15, 204, - o, Thy)

as the weights.

One model that often works well for modeling
the variances is

Si OC.CCZ'
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Estimation of the Weights - Replicates
Available

To estimate the weights using the power
function shown above, fit the function

log(s?) = B1 + B log(x;)

to the variances from each set of replicates in
the data.

The use ¢ = 3 (the slope of the fit) to
estimate ¢, and

w; =

N.Q) }_k

X

to as the weights.

Check the residuals from the fit used to
estimate ¢ just to make sure everything looks
reasonable. The fit does not have to meet the
standards usually used, however.
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Estimation of the Weights - No Replicates
Available

If there are few or no replicates in the data,
divide the data into several ranges in which the
responses have fairly similar means.

Treat each range as replicates and compute x;
and s for each range.

Then fit

log(s7) = B1 + B2 log(;)
and define the weights by
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Estimation of the Weights
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Output from Fit for Weight Estimation

N =10

Residual Standard Error = 0.7821

Multiple R-Square = 0.8046

F-statistic = 32.9428 on 1 and 8 df, p-value = 4e-04
coef std.err t.stat p.value

Intercept 0.5554 1.3785 0.4029 0.6976
X 2.0414 0.3557 5.7396 0.0004
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Residuals from Estimation of Weights
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Weighted Least Squares Fit
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Weighted Residuals

One complication with weighted analyses is
the fact that the distribution of the residuals
can vary substantially with the different values
of the predictor variables.

This necessitates the use of weighted residuals
when plotting residuals.

The weighted residuals are given by

ey

e; = VWi (yi — f(x1is - 2i; B, - -+ Bp)
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Weighted Residuals
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Alaska Pipeline Ultrasonic Calibration Data
with Unweighted Line
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AK Pipeline Data Residuals - Unweighted Fit

\o
. S ° h
* * % ® . .
. . °
. 4 O.‘. ¢ °
S * % ¢ * . _. .
o o ° LY *
..' e o ® L) s
. ° ® “
kN
.'o
I I I I
20 40 60 80

Lab Defect Size



Non-Constant Variation

AK Pipeline Data
Output from Unweighted Fit

N = 107

Residual Standard Error = 6.080924

Multiple R-Square = 0.8941251

F-statistic = 886.7366 on 1 and 105 df, p-value = 0
coef std.err t.stat p.value

Intercept 4.9936799 1.12565780 4.436233 2.263517e¢-05
X 0.7311111 0.02455195 29.778123 0.000000e+00
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Transformations of Response Variable
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Transformations of Predictor Variable
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Transformed Alaska Pipeline Data with Fit
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Residuals
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Residuals From Fit to Transformed Data

Run Order Plot
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AK Pipeline Data
Output from Fit on Transformed Variables

N = 107

Residual Standard Error = 0.1682604

Multiple R-Square = 0.9337104

F-statistic = 1478.958 on 1 and 105 df, p-value = 0
coef std.err t.stat p.value

Intercept 0.2813838 0.08092894 3.476924 0.0007390395
X 0.8851754 0.02301714 38.457221 0.0000000000
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Fit for Estimating Weights
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Residuals From Weight Estimation Fit
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AK Pipeline Data
Output from Weight Estimation Fit

N =27

Residual Standard Error = 0.8545392

Multiple R-Square = 0.6286482

F-statistic = 42.32161 on 1 and 25 df, p-value = 8.178602e-07
coef std.err t.stat p.value

Intercept -2.696496 0.8250090 -3.268444 3.140569e-03
X 1.522101 0.2339712 6.505506 8.178602e-07



150 Non-Constant Variation

Data with WLS Fit - Weights 1/LDS"1.5
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Weighted Residuals From WLS Fit to Original Data
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AK Pipeline Data
Output from Weighted Fit

N = 107

Residual Standard Error = 0.3646

Multiple R-Square = 0.9235

F-statistic = 1267.024 on 1 and 105 df, p-value = 0
coef std.err t.stat p.value

Intercept 2.3523 0.5431 4.3312 0
X 0.8064 0.0227 35.5953 0
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Ultrasonic Response
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Ultrasonic Calibration Data Residuals - Unweighted Fit
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Ultrasonic Calibration Data
Output from Unweighted Exp/Linear Fit

Parameters:

Value Std. Error t value
bl 0.19027400 0.021938300 8.67312
b2 0.00613137 0.000345001 17.77200
b3 0.01053100 0.000792818 13.28300

Residual standard error: 3.36167 on 211 degrees of freedom
Correlation of Parameter Estimates:
bl b2

b2 0.839
b3 -0.950 -0.949
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Transformations of Response Variable
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Transformations of Predictor Variable
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Transformed Data with Fit
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Residuals From Fit to Transformed Data
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Residuals From Fit to Transformed Data

Run Order Plot Lag Plot
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Ultrasonic Calibration Data
Output from Fit to Transformed Data

Parameters:

Value Std. Error t value
bl -0.0154274 0.00861101 -1.79159
b2 0.0806725 0.00150574 53.57670
b3 0.0638570 0.00288001 22.17250

Residual standard error: 0.29715 on 211 degrees of freedom
Correlation of Parameter Estimates:
bl b2

b2 0.793
b3 -0.960 -0.899
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Residuals
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Ultrasonic Calibration Data
Output from Weight Estimation Fit

N =22

Residual Standard Error = 0.6099457

Multiple R-Square = 0.6712342

F-statistic = 40.83357 on 1 and 20 df, p-value = 3.10602e-06
coef std.err t.stat p.value

Intercept 2.536866 0.1919360 13.217253 2.421219e-11
X -1.112763 0.1741382 -6.390115 3.106020e-06
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Data with WLS Fit - Weights 1/MD"-1.1
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Weighted Residuals From WLS Fit to Original Data
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Weighted Residuals From WLS Fit

Run Order Plot Lag Plot
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Ultrasonic Calibration Data
Output from Weighted Fit

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N = 214
MODEL--Y =EXP (-B1%*X)/(B2+B3*X)
REPLICATION CASE

REPLICATION STANDARD DEVIATION

0.3281762600D+01

REPLICATION DEGREES OF FREEDOM = 192
NUMBER OF DISTINCT SUBSETS = 22
FINAL PARAMETER

ESTIMATES (APPROX. ST. DEV.) T VALUE
1 Bl 0.143378 (0.1476E-01) 9.7
2 B2 0.518479E-02 (0.4191E-03) 12.
3 B3 0.125719E-01 (0.7508E-03) 17.

RESIDUAL STANDARD DEVIATION
RESIDUAL DEGREES OF FREEDOM 211

REPLICATION STANDARD DEVIATION 3.2817625999
REPLICATION DEGREES OF FREEDOM = 192

LACK OF FIT F RATIO = 8.6545 = THE 100.0000% POINT OF THE
F DISTRIBUTION WITH 19 AND 192 DEGREES OF FREEDOM

4.2653684616
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Data with Unweighted Fit, WLS Fit,
and Fit Using Transformed Variables
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Outliers

In a broad sense, outliers are points that do
not follow the general pattern or structure in
the data.

If present in the data, outliers can unduly
affect the model-building process and
invalidate predictions or calibrations.
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More Specifically . . .

outlier - an observed value of the response
variable that appears to be unusually large
or small relative to its apparent population.

high leverage point - a point from the
observed set of predictor variables that is
unusual in size or structure relative to the
other predictor variable points.

influential observation - an observation
that has a large effect on the model derived
from the data.

Note: Not all outliers or high leverage points
are influential observations.



174

Dataset with an Outlier and
a Straight Line Fit Using All n Points

Dataset with an Outlier and
a Straight Line Fit Without the Outlier
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Regression Output for Data with Outlier

N =10

Residual Standard Error = 2.6986

Multiple R-Square = 0.9252

F-statistic = 98.9308 on 1 and 8 df, p-value = 0
coef std.err t.stat p.value

Intercept 6.6162 1.8435 3.5889 0.0071
X 2.95562 0.2971 9.9464 0.0000

Regression Output for Data with Outlier
Omitted

Residual Standard Error = 1.4547

Multiple R-Square = 0.9803

F-statistic = 349.0913 on 1 and 7 df, p-value = 0
coef std.err t.stat p.value

Intercept 5.6882 1.0146 5.6063 8e-04
X 2.9974 0.1604 18.6840 0e+00



176
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10

20 30 40 50 60

10

Dataset with a High Leverage Point and
a Straight Line Fit Using All n Points

0 5 10 15 20
X

Dataset with a High Leverage Point and
a Straight Line Fit Without the HL Point

Outliers
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Regression Output for Data with Leverage

N =10

Residual Standard Error 1

Multiple R-Square = 0.9934

F-statistic 1199.086 on 1
coef std.err t.
Intercept 5.5567 0.7175 7.

X 3.0020 0.0867 34.

Point

.4046

and 8 df, p-value 0
stat p.value
7444 le-04
6278  0e+00

Regression Output for Data with LP Omitted

Residual Standard Error 1

Multiple R-Square = 0.9717

F-statistic 240.0134 on 1
coef std.err t.
Intercept 5.5512 1.0909 5.

X 3.0032 0.1939 15.

.5016

and 7 df, p-value = 0
stat p.value
0888 0.0014
4924 0.0000
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Dataset with an Influential Point and
a Straight Line Fit Using All n Points
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Dataset with an Influential Point and
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Regression Output for Data with Influential
Point

N =10

Residual Standard Error = 6.5626

Multiple R-Square = 0.9512

F-statistic = 156.0045 on 1 and 8 df, p-value = 0
coef std.err t.stat p.value

Intercept -3.8147 3.3524 -1.1379 0.2881
X 5.0591 0.4050 12.4902 0.0000

Regression Output for Data with IP Omitted

Residual Standard Error = 1.5016

Multiple R-Square = 0.9717

F-statistic = 240.0134 on 1 and 7 df, p-value = 0
coef std.err t.stat p.value

Intercept 5.5512 1.0909 5.0888 0.0014
X 3.0032 0.1939 15.4924 0.0000
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Why Outliers Affect LS Regression

As we've seen before, the least squares
estimates are found by minimizing the
quantity @ to find the 3’s.

Q= % [yi—f(@15 Tis - - -, Thi; B1, B2y - -, )

1=1

However, when a few deviations are much
larger than the rest (in absolute value), and all
of the deviations are squared and added up,
the few large deviations tend to dominate the
total.

As a result, the values of the B 's that minimize
of the least squares criterion are often the
values that eliminate large deviations from the
model.
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Why Outliers Affect LS Regression

The LSS estimates for the straight line
regression function y = 81 + Box show in
detail how both outliers and high leverage
points affect the parameter estimates.

> (@ — )y — 9)
=" (a2

B1 =19 — Pox

Bg 1s a linear combination of the deviations of
the data points, y;, from their sample mean, ¥,
‘weighted’ proportional to the deviation of z;
from Z. Large values of either (x; — Z) or

(y; — g) will impact the estimates of both (5

and 52.

The effects of leverage points and outliers are
analogous in more complicated models.
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General Steps for Handling Outliers

The basic steps for dealing with outliers in
regression analysis are:

1. identity the outlying and influential points

2. determine the reason each of these points
was observed, if possible

3. eliminate any points that can be shown to
be irrelevant to the analysis

4. reanalyze the data, both with and without
any remaining influential points

Steps 1 and 4 in this general procedure are
statistical in nature, while steps 2 and 3
require knowledge of specific experimental
details and a thorough understanding of the
underlying science.
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Outliers Detection Methods

Fortunately, outliers can usually be found
using standard model validation procedures.
However, in complicated, multivariate data,
they can be sometimes be diflicult to pick out.

Use of more specialized outlier detection
procedures in linear regression problems can
help ensure that all outliers are found, and can
lead to a deeper understanding of the data and
model.

The use and interpretation of the specialized
outlier detection methods is harder in
nonlinear least squares, though logically
possible. As a result, residual plots are the
primary means of identifying influential points
in nonlinear problems.
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Two Classes of Specialized Outlier Detection
Methods

There are basically two classes of outlier
detection methods:

1. methods that rely on the usual LS model
fitting criteria, but may (effectively) delete
observations from the fit, one-at-a-time, to

help determine their influence (LS
Methods), and

2. methods in which the model fitting criterion
is changed to reduce the effect of outliers on
model estimation (Robust Methods)
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Advantages and Disadvantages of LS Methods

Advantages:

1. use the same software as for regular
regression analysis

2. work reasonably well with small and large
data sets

3. provide a relatively large amount of
information about unusual data points

4. are part of a relatively well-developed area
of statistical research

5. are computationally eflicient

Disadvantages:

1. do not work well with clusters of unusual
points

2. require use of many different diagnostic
statistics



186 Outliers

Advantages and Disadvantages of Robust
Methods

Advantages:

1. work well with arbitrary numbers and
clusters of unusual points

2. identify influential points in one step

Disadvantages:

1. require specialized software
2. require medium-sized to large data sets

3. may not identify non-influential outlying
points

4. are part of a relatively new area of
statistical research

5. can be computationally difficult
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.S Methods for Outlier Detection

Four of the main LS statistics tor outlier
detection are:

leverages - which are used to identify high
leverage points (unusual predictor variable
values), regardless of their influence,

studentized deleted residuals - which are
used to identify outliers (unusual response
variable values) which may or may not be
influential,

Cook’s distances - which are used to
identify points that influence one or more of
the estimated parameters, and

DFFITS - which are used to identify points
which influence one or more of the
predicted values.
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Leverage Values (aka Hat Values)

Leverage values are the diagonal values of the
Hat matrix, H, which is given by:

H=xx"x)"1x!

where X 1s the matrix with n rows and

p = k + 1 columns, the first of which is a
column of 1’s for the intercept term, and each
of the other columns given by the values of one
of the k variables in the model,

X = [lz1|za]. .. |zg]

For the straight line model

1 (z; — T)°
his = —+ Z Y
n it (z; —T)

Leverages for more complicated models are
conceptually analogous to the straight line
case.
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Leverage Values (aka Hat Values)

The sum of the leverage values is p, the
number of parameters in the model, for all
multivariable linear regression functions.

Therefore, when an individual leverage value is
much larger than the mean leverage p/n, it
indicates a high leverage point.

A good cut-off for leverage values is 2.5p/n.
Points with values larger than this are likely to
be contributing to the fitted model more
heavily than most.

High leverage doesn’t necessarily indicate an
influential point, however. A high leverage
point with a y value that is right on target will
produce a fit that is similar to one using only
low leverage points.
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Studentized Deleted Residuals

The " studentized deleted residual is
conceptually obtained by:

1. deleting the jth point from the data,

2. fitting the model with the other n — 1
observations,

3. computing the deleted residual, which is the
difference of the it" response and
corresponding prediction from the fit made
without the 7¢" response.

4. computing the residual standard deviation
using the fit to the n — 1 other points, and

5. dividing the deleted residual by its standard
deviation, which depends on the residual
standard deviation with the t" point
deleted and the t" leverage value computed
using all of the data.
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Studentized Deleted Residuals

The conceptual formula for the ith studentized
deleted residual is

A

Vi — G(—i)(T1i, - - Thy)

S(—iy/ V1 — hij

where §(_;y(@14; . . ., @k;) 18 the predicted value

based on the fit without the it" point, and
S(—i) is the corresponding residual standard
deviation.

T; =

The computational formula is:

n—p—1
(n —p)s?(1 — hy) — e

[/

T; = e

where the computations are done using all of
the data.
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Studentized Deleted Residuals

Technically, T; has a t distribution with

n — p — 1 degrees of freedom, and t
distribution cut-oft values can be used to
determine if a particular point is an outlier.

Practically speaking, studentized deleted
residuals greater than 2.5 in absolute value
indicate that a point is likely to be an outlier.

Remember, however, that large studentized
deleted residuals do not necessarily offer any
information about the influence of the outlier
on the fit of the model.
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Cook’s Distance

Conceptually, the ith Cook’s Distance
measures the difference between the values ot
the parameters estimated using all n
observations and the values of the parameters
estimated without the 7" observation.

It provides an aggregate measure of the
difference for all of the parameters
simultaneously.

The computational formula for Cook’s
Distance 1is:

hii e 9
C; =
"op (3(1 — hii))

computed using all of the data.
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Cook’s Distance

Points with Cook’s Distance values greater
than the 50% F distribution cut-off with p and
n — p degrees of freedom are likely to influence
the estimated parameters in the model.

That 1s, if a point with a large Cook’s Distance
is eliminated from the data set, the values of
one or more of the parameters will change
significantly.

Influential points should be studied caretully to
determine if they are valid data points. If not,
they should be excluded from the analysis. If
there is no evidence that the influential points
are invalid, further work will be required to
obtain conclusive results from the data.
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DFFITS

195

Conceptually, the ith DFFITS value measures
the difference between the 7" predicted value

estimated using all n observations and
estimated without the 5" observation.

The conceptual formula for DFFITS is:

i(@1is - i) — U@,

5 L)

DFFITS,; =
Z LN

The computational formula for DFFITS is:

hii
— i

DFFITS; = T; -

computed using all of the data.
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DFFITS

Points with DFFITS values greater than
2.5/p/n are likely to influence the predicted
values from the model.

That is, if a point with a large DFFITS value
is eliminated from the data set, the value of
the one or more of the predicted values will
change significantly.

As with influential points identified using
Cook’s Distance, the validity of points picked
out by DFFITS should be examined caretully.
If assignable causes are found that indicate the
point is not valid, it should be dropped from
the analysis. If not, further work will required
to obtain conclusive results.
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Multivariable Dataset #1 with Potential Outlier
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Residuals

Residuals
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Residual
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Leverages
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Regression Output Using n Points

N = 30
Residual Standard Error = 0.1859
Multiple R-Square = 1

F-statistic = 1121069 on 2 and 27 df, p-value = 0

coef std.err t.stat p.value

Intercept 4.7251 0.2153  21.9480 0
x1 -11.9502 0.0345 -346.3767 0
x2 10.0313 0.0674 148.9384 0

Regression Output Using with the High
Leverage Point Deleted

N = 29
Residual Standard Error = 0.1895
Multiple R-Square = 1

F-statistic = 1065271 on 2 and 26 df, p-value = 0

coef std.err t.stat p.value
Intercept 4.6989 0.3511 13.3843 0
x1 -11.9458 0.0577 -206.9284 0

x2 10.0405 0.1181  85.0499 0
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Difference in Predicted Values
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Multivariable Dataset #2 with Potential Outlier
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Residuals

Residuals

Residuals From Fit with n Points
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Residual
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Regression Output Using n Points

N = 30

Residual Standard Error = 1.2939

Multiple R-Square = 0.9994

F-statistic = 22959.24 on 2 and 27 df, p-value = 0

coef std.err t.stat p.value

Intercept 14.3252 1.4980 9.5630 0
x1 -13.5540 0.2401 -56.4605 0
x2 6.6670 0.4686 14.2261 0

Regression Output Using with the Influential
Point Deleted

N = 29
Residual Standard Error = 0.1895
Multiple R-Square = 1

F-statistic = 1065271 on 2 and 26 df, p-value = 0

coef std.err t.stat p.value
Intercept 4.6989 0.3511 13.3843 0
x1 -11.9458 0.0577 -206.9284 0

x2 10.0405 0.1181  85.0499 0
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Difference in Predicted Values
from Fits with and without the Influence Point
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Outliers

Ultrasonic Calibration Data
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Residuals From Fit to Transformed Data
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Residuals From Fit to Transformed Data
with Potential IP’s Eliminated
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Ultrasonic Data Regression Output:
n Points

Formula: sqrt(ur) ~ exp( - bl * md)/(b2 + b3 * md)
Parameters:
Value Std. Error t value
bl -0.0154274 0.00861101 -1.79159
b2 0.0806725 0.00150574 53.57670
b3 0.0638570 0.00288001 22.17250

Residual standard error: 0.29715 on 211 degrees of freedom

Ultrasonic Data Regression Output:
n-2 Points

Formula: sqrt(ur) ~ exp( - bl * md)/(b2 + b3 * md)
Parameters:
Value Std. Error t value
bl -0.0155610 0.00799912 -1.94533
b2 0.0803004 0.00140502 57.15260
b3 0.0644030 0.00268723 23.96630

Residual standard error: 0.276145 on 209 degrees of freedom
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Data with Predicted Values
From Fits With and Without Potential IP’s

——  Fit with n Points
,,,,,,,,,,,, Fit with n-2 Points

8
\

sqrt(Ultrasonic Response)
6
|

4
|

Metal Distance



216

Section 2: Summary

Two problems that often occur when carrying
out a regression analysis are:

1. finding non-constant standard deviations
across different predictor variable values,
and

2. finding outliers, high leverage points,
and /or influential points in the data.

Outliers, leverage points and influential points
can be identified using either graphical residual
analysis or more specialized detection methods.

Non-constant standard deviation across the
predictors can be corrected using either
transtformation of the data or weighted least
squares.



