Science Ex Machina: Extracting Science from Data Using Statistical Models

NIST Isotope Metrology Webinar Series

Nathan A. Mahynski Chemical Informatics Group Chemical Sciences Division National Institute of Standards and Technology (NIST) Gaithersburg, MD 20899

Credit Where Credit Is Due

https://developers.google.com/machine-learning/crash-course/production-ml-systems

Why Can't I Just Use Excel?

Autocorrect errors in Excel still creating genomics headache

Despite geneticists being warned about spreadsheet problems, 30% of published papers contain mangled gene names in supplementary data.

		The state		t,	AND AND	and all	and the second		TO.	ant all
	a stane	d in the for	Polo Contraction of the second	and the second	ne ine	, Parto		as anne	Nº COT	Por Co
θ	00	•	•	Ď	excel.gene2da	te.xls			•	•
0	A	B	C	DE	F	G	Н	1	J	K
1	APR-1	35885	1-Apr	OCT-1	36068	1-Oct		SEP2	36039	2-Sep
2	APR-2	35886	2-Apr	OCT-2	36069	2-Oct		SEP3	36040	3-Sep
3	APR-3	35887	3-Apr	OCT-3	36070	3-Oct		SEP4	36041	4-Sep
4	APR-4	35888	4-Apr	OCT-4	36071	4-Oct		SEP5	36042	5-Sep
5	APR-5	35889	5-Apr	OCT-6	36073	6-Oct		SEP6	36043	6-Sep
6	DEC-1	36129	1-Dec	OCT1	36068	1-Oct		SEPT1	36038	1-Sep
7	DEC-2	36130	2-Dec	OCT11	36078	11-0ct		SEPT2	36039	2-Sep
8	DEC1	36129	1-Dec	OCT2	36069	2-Oct		SEPT3	36040	3-Sep
9	DEC2	36130	2-Dec	OCT3	36070	3-Oct		SEPT4	36041	4-Sep
10	MAR1	35854	1-Mar	OCT4	36071	4-Oct		SEPT5	36042	5-Sep
11	MAR2	35855	2-Mar	OCT6	36073	6-Oct		SEPT6	36043	6-Sep
12	MAR3	35856	3-Mar	OCT7	36074	7-Oct		SEPT7	36044	7-Sep
13	NOV1	36099	1-Nov	SEP-1	36038	1-Sep		SEPT8	36045	8-Sep
14	NOV2	36100	2-Nov	SEP-2	36039	2-Sep		SEPT9	36046	9-Sep
15				SEP1	36038	1-Sep				
16	> > She	et1 Sheet2	<u></u>				_) 4 1
tead	iv	in _ mett	-		Sum=0		0.50	RL OCAPS	NUM	

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-5-80

NIST

A GROWING PROBLEM

A 2016 analysis found that 20% of papers featuring gene names had errors created by spreadsheet autocorrect functions, but a bigger survey now finds the proportion is up to 30%. Since 2014, the number of papers with errors has increased significantly.

https://www.nature.com/articles/d41586-021-02211-4

The Problems with Blind Modeling

NIST

https://christophm.github.io/interpretable-ml-book/agnostic.html

Our Approach

1. Collection

2. Analysis

3. (Feature-based) Explanations

INTRODUCTION

Tools Should Be Simple to Use

INTRODUCTION Coding to a Standard API N > 10 **(**N > 100) **Conventional Chemometrics Topological Methods** "Machine Learning"/AI Often linear dimensionality reduction "Non-linear dimensionality reduction" "Scores" $\longrightarrow X = TP^T + E$ "Embedding" $\longrightarrow T = f(X)$ e.g., Isomap, LLE, t-SNE, UMAP, PaCMAP e.g., PCA, PCR, PLS(-DA), SIMCA Only **global** properties considered **Local** properties now considered e.g., VAE, Deep NN, pyOD

Data Requirements	
Explainability	
Predictive Power	

ANALYSIS TOOLS

Meaningful Representations and Explanations

ANALYSIS TOOLS

A Multitude of Models and Explanations

A "**Rashomon set**" is an ensemble of almost equally high performing models.

• Can be **very different** black boxes with a different perspective or explanation of the same event or observation.

Which one(s), if any, is "correct"?

Large RS often appear when you have more information/measurements than you need.

• Large databases

NIST

Correlated measurements

Under weak assumptions, a large RS must contain a simple (interpretable?) model.

Our Community Resource in Development

Python-based Chemometric Authentication

Pre-commit enabled code style black imports isort Python application passing DOI 10.5281/zenodo.7255251
This is a toolkit to perform chemometric analysis, though it is primarily focused on authentication. These methods are designed to follow scikit-learn's estimator API so that they can be deployed in pipelines used with GridSearchCV, etc. and are compatible with workflows involving other modern machine learning (ML) tools.
Wikipedia defines chemometrics as "the science of extracting information from chemical systems by data-driven means." Unlike other areas of science, technology and engineering, many chemical systems remain difficult to collect measurements on making data more scarce than in other arenas. As a result, conventional statistical methods remain the predominant tool with which chemometric analysis is performed. As instruments improve, databases are developed, and advanced algorithms become less data-intensive it is clear that modern machine learning and artificial intelligence (AI) methods will be brought to bear on these problems. A consistent API enables many different models to be easily deployed and compared.

https://pychemauth.readthedocs.io/en/latest/ In 4th beta release

NIST

ANALYSIS TOOLS

ANALYSIS TOOLS

Fundamentally Different Types of Models

NIST

Interpretable Models of Pacific Seabirds

Mahynski et al., Env. Sci. & Tech. 56 (2022).

Material Authentication using PGAA

NIST

Mahynski et al., J. Radioanl and Nucl. Chem. 332 (2023).

13

Determining the Authenticity of Slovenian Strawberries

Which Model is More Useful?

Lundberg & Lee, NIPS (2017).

NIST

Looking into the Future

NIST

Standardized APIs enable many pipelines or models ("black boxes") to be easily compared.

- Enables continuous improvement of models and pipelines
- Ensures long-term interoperability as new models and techniques are developed
- Enables best-practices to be routinely evaluated
- Relies on continuous development of FAIR data(bases)

Chemical Informatics Group @NIST https://www.nist.gov/mml/csd/chemical-informatics-group

CONCLUSIONS

