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INTRODUCTION

Credit Where Credit Is Due

What I will talk about

https://developers.google.com/machine-learning/crash-course/production-ml-systems
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INTRODUCTION

Why Can’t I Just Use Excel?

https://www.nature.com/articles/d41586-021-02211-4
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INTRODUCTION

How with AI/ML Affect Me and My Science?

Silicon Valley

“People 
Who Do 

Research in 
ML”

“People 
Who Use 

ML in 
Research”
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INTRODUCTION

The Problems with Blind Modeling

https://christophm.github.io/interpretable-ml-book/agnostic.html
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INTRODUCTION

Our Approach

AutoML to optimize architecture, 

(nested) CV for hyperparameters

Python Machine Learning 2nd Ed., 

Raschka & Mirjalili (2017).

1. Collection 2. Analysis 3. (Feature-based) Explanations

Model Agnostic

https://shap.readthedocs.io



INTRODUCTION

Tools Should Be Simple to Use

This should be easy to 

change and compare 

over time.
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INTRODUCTION

Coding to a Standard API

Predictive Power

Conventional Chemometrics Topological Methods “Machine Learning”/AI

“Non-linear dimensionality reduction”

𝑇 = 𝑓(𝑋)

Local properties now consideredOnly global properties considered

“Embedding”

Often linear dimensionality reduction

e.g., Isomap, LLE, t-SNE, UMAP, PaCMAP

Explainability

Data Requirements

e.g., PCA, PCR, PLS(-DA), SIMCA

𝑋 = 𝑇𝑃𝑇 + 𝐸“Scores”

e.g., VAE, Deep NN, pyOD

N > 10 N > 100



Generic Machine Learning
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ANALYSIS TOOLS

Meaningful Representations and Explanations

(Linear) Projection Methods Manifold Learning (Non-linear)

Statistically meaningful latent space

Easy to explain with loadings
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Statistically meaningful latent space

Use, e.g., SHAP to explain

Calibrate to get meaningful latent space

Use, e.g., SHAP to explain

…

Xfg
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ANALYSIS TOOLS

A Multitude of Models and Explanations

A “Rashomon set” is an ensemble of almost 

equally high performing models.

• Can be very different black boxes with a 

different perspective or explanation of the 

same event or observation.

Which one(s), if any, is “correct”?

Large RS often appear when you have more 

information/measurements than you need.

• Large databases

• Correlated measurements

Under weak assumptions, a large RS must 

contain a simple (interpretable?) model.

Rudin et al., Statistics Surveys 16 (2022).

Best models are ~97% accurate
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ANALYSIS TOOLS

Our Community Resource in Development

https://colab.research.google.com/https://pychemauth.readthedocs.io/en/latest/

In 4th beta release

https://pychemauth.readthedocs.io/en/latest/


ANALYSIS TOOLS

Fundamentally Different Types of Models

Region 1

Region 2

Region 3

Unknown

Class Models

e.g., SIMCA,

“soft” PLS-DA,

one class SVM

Discriminative

Models

Traditional ML

Models (e.g., 

Decision Trees, RF)
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EXAMPLES

Interpretable Models of Pacific Seabirds

~98.7% 

accurate Linear method which 

requires 49 measurements

96.64% +/- 0.83% 

Accuracy

Mahynski et al., Env. Sci. & Tech. 56 (2022).
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EXAMPLES

Material Authentication using PGAA 

Mahynski et al., J. Radioanl and Nucl. Chem. 332 (2023).
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EXAMPLES

Determining the Authenticity of Slovenian Strawberries

Data courtesy of Prof. Nives Ogrinc and 

Ms. Lidija Strojnik

4 Stable Isotope Ratios (C, N, O, S)

19 Trace Elements (> LOD 80% of samples)

70/30 train/test split of the data

?
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EXAMPLES

Which Model is More Useful?

X

Authentic

𝑑2 = 𝑁ℎ
ℎ

ℎ0
+ 𝑁𝑞

𝑞

𝑞0

𝑑𝑐𝑟𝑖𝑡
2 = 𝜒−2(1 − 𝛼, 𝑁ℎ + 𝑁𝑞)

𝑓 = 𝑑𝑐𝑟𝑖𝑡 − 𝑑

Abroad

P   Na   Sr   Al   K   …   Zn   Mo   Rb 

222 2.97

1.54 3.83

Pomerantsev & Rodionova, J. Chemom. 28 (2014).

Lundberg & Lee, NIPS (2017).
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CONCLUSIONS

Looking into the Future

XAI as a Scientific Tool

Standardized APIs enable many pipelines or models 

(“black boxes”) to be easily compared.

• Enables continuous improvement of models and 

pipelines

• Ensures long-term interoperability as new models 

and techniques are developed

• Enables best-practices to be routinely evaluated

• Relies on continuous development of FAIR 

data(bases)

Chemical Informatics Group @NIST

https://www.nist.gov/mml/csd/chemical-informatics-group

https://www.nist.gov/mml/csd/chemical-informatics-group
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