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Abstract:  
Estimating error rates for firearm evidence identification is a fundamental challenge in forensic 

science. This paper describes the recently developed Congruent Matching Cells (CMC) method 

for image comparisons, its application to firearm evidence identification, and its usage and initial 

tests for error rate estimation. The CMC method divides compared topography images into 

correlation cells. Four identification parameters are defined for quantifying both the topography 

similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. 

An identification (declared match) requires a significant number of CMCs, i.e., cell pairs that meet 

all similarity and congruency requirements. Initial testing on breech face impressions of a set of 

40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation 

between the distributions of CMC numbers observed for known matching and known non-

matching image pairs. Another test on 95 cartridge cases from a different set of slides 

manufactured using the same process also yielded widely separated distributions. The test results 

were used to develop two statistical models for the probability mass function of CMC comparison 

scores. The models were applied to develop a framework for estimating cumulative false positive 

and false negative error rates and individual error rates of identifications and exclusions for this 

population of breech face impressions. The CMC method can provide a statistical foundation for 

estimating error rates in firearm evidence identifications, thus emulating methods used for forensic 

identification of DNA evidence. 
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1. Introduction 

 

Tool marks are permanent changes in the topography of a surface created by forced contact with 

a harder object (the tool). When bullets and cartridge cases are fired or ejected from a firearm, the 

parts of the firearm that make forcible contact with them create characteristic tool marks called 

“ballistic signatures” [1]. By examining these ballistic signatures side-by-side in a comparison 

microscope, firearm examiners can determine whether a pair of bullets or cartridge cases was fired 

or ejected from the same firearm. Firearm examiners can then connect a recovered firearm or other 

firearm evidence to criminal acts.  

 

Successful identification requires that the relevant firearm surfaces have individuality and that the 

tool marks are reproducible [1]. In general, tool marks have so-called “class characteristics” that 

are common to certain firearm designs and manufacturing methods, and “individual 
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characteristics” arising from random variations in firearm manufacturing and wear [1]. While class 

characteristics can be used to exclude a firearm as a source of a recovered cartridge case or bullet, 

only the individual characteristics, which are unique for individual firearms, can form the basis for 

identification [1]. 

 

Side-by-side tool mark image comparisons for firearm identification have more than a hundred-

year history [1]. However, the scientific foundation of firearm and tool mark identification has 

been challenged by recent reports and court decisions. As stated in a 2008 National Academies 

Report [2], “The validity of the fundamental assumptions of uniqueness and reproducibility of 

firearms-related tool marks has not yet been fully demonstrated.” and “Since the basis of all 

forensic identification is probability theory, examiners can never really assert a conclusion of an 

‘identification to exclusion of all others in the world,’ but at best can only assert a very small 

(objective or subjective) probability of a coincidental match.”  

 

The legal standard for the acceptance of scientific evidence contained in the U.S. Supreme Court 

decision, called the Daubert standard [2], “places high probative weight on quantifiable evidence 

that can be tested empirically and for which known or potential error rates may be estimated, such 

as identification using DNA markers”[2]. However, as stated in a 2009 National Academies Report 

[3], “But even with more training and experience using newer techniques, the decision of the 

toolmark examiner remains a subjective decision based on unarticulated standards and no 

statistical foundation for estimation of error rates.”  

 

Since the 1980’s, estimates of Coincidental Match Probability (CMP) have been used for 

specifying uncertainty of DNA identifications [3]. “The courts already have proven their ability 

to deal with some degree of uncertainty in individualizations, as demonstrated by the successful 

use of DNA analysis (with its small, but nonzero, error rate)” [3]. It is therefore a fundamental 

challenge in forensic science to establish a scientific foundation and statistical procedures 

providing quantitative error rate reports to support firearm identifications, in the same way that 

reporting procedures have been established for forensic identification of DNA evidence [3]. A 

number of experimental and theoretical efforts have been pursued along this line including the 

computer learning approach of Petraco et al. [4,5], the work on likelihood ratio by Riva and 

Champod [6], the study of examiner error rates by Baldwin et al. [7], the feature-based matching 

algorithm of Lilien et al. [8,9], and the work on image cross correlation and congruent matching 

cells (CMC) of Song et al. [10-15].  

 

In this paper we apply the CMC method of Song et al [12-14] to estimations of error rates for false 

identifications and exclusions for two sets of topography image data of breech face impressions 

from fired cartridge cases. We review the CMC method in Section 2, then describe validation tests, 

error rate estimation procedures and initial results in Sections 3 to 5, and provide some concluding 

observations in Section 6.   

 

2. Congruent Matching Cells (CMC) Method   

 

We begin with pairs of measured 3D topography images of breech face impressions whose 

similarity we wish to quantify (see Fig. 1). A common approach would be to calculate the value 

of the normalized cross-correlation function (Pearson’s correlation coefficient) for the pair of 

images as a whole [10,11] when they are registered at a position of maximum correlation. Instead, 
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the CMC method divides the reference image into a rectangular array of cells as shown in Fig. 2. 

For each cell on the reference image, a search is made on a compared image for a matching cell-

sized area. The cell-by-cell analysis is done because a firearm often produces characteristic marks, 

or individual characteristics [1], on only a portion of the bullet or cartridge case surface. Carrying 

over the terminology from our previous research in firearms identification [12,13], a region of the 

surface topography is termed a “valid correlation region” if it contains individual characteristics 

of the ballistic signature that can be used effectively for firearm identification. Conversely, a region 

of the surface topography that does not contain individual characteristics of the firearm’s ballistic 

signature is termed an “invalid correlation region” and should be eliminated from consideration 

for firearm identification. Invalid correlation areas can occur, for example, due to insufficient 

contact between the firearm surface and the bullet or cartridge case during firing. 

 

 
Fig. 1.  Topography images of breech face impressions obtained from a pair of cartridge cases 

ejected from slide 3 in the Fadul data set [16] discussed here. The images have a number of 

features in common. The diameter of each image is about 3.5 mm. The topography contrast is 

rendered with a virtual light source from the left. 

 

 
Fig. 2.  Conceptual diagram of a topography image from Fig. 1 overlaid by a 7 ×7 grid, dividing 

the image into cells. The drag mark at the 3 o’clock position in Fig. 1 and the central hole and 

surrounding bulge from the firing pin impression are masked out of the images before the cell 

division step. Only cells with a sufficient fraction of measured pixels are used for the correlation 

analysis. Also shown is a schematic diagram of the search procedure to find an area in the 

compared (right) image that has a strong correlation with one of the cells in the reference (left) 

image. Here the topography is represented by a color map.  
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Assuming that two ballistic topographies A and B originate from the same firearm, both will likely 

contain valid and invalid correlation regions. When A and B are compared with each other, their 

common valid correlation region is the overlap of the individual valid correlation regions of A and 

B, which comprise only part, sometimes even a small part, of the entire areas of A and B. If a 

quantitative measure of correlation is obtained from the entire images of A and B, the correlation 

accuracy may be relatively low because large invalid regions may be included in the correlation. 

If the correlation areas are divided into cells, the valid correlation regions can be more likely 

identified and the invalid correlation regions can be eliminated from correlations. This procedure 

can significantly increase the correlation effectiveness and accuracy. Furthermore, the use of a 

statistically large number of congruently matched cells identified by multiple parameters can 

facilitate the estimation of an error rate from a well characterized population [13]. 

 

A correlation cell is a rectangular sub-region of the surface topography image that contains a 

sufficient quantity of distinguishing peaks, valleys, and other topographic features so that an 

assessment of topography similarity can be made. If topographies A and B originating from the 

same firearm are registered at their position of maximum correlation (Fig. 3), the cell pairs located 

in their common valid correlation regions can be identified, as shown by the solid cell pairs located 

in (A1, B1), (A2, B2), and (A3, B3). These cell pairs are necessarily characterized by [12,13]:  

 

1) High pairwise topography similarity as quantified by a high value of the normalized cross 

correlation function maximum CCFmax; 

2) Similar registration angles θ for all correlated cell pairs in regions A and B; and 

3) “Congruent” x-y spatial distribution patterns for the correlated cell arrays (A1, A2, A3…) 

and (B1, B2, B3…) or nearly so. 

  

On the other hand, if the registered cell pairs are located in the invalid correlation regions of A and 

B, such as the dotted cells (a', a", a'") and (b', b", b'") in Fig. 3, or if they originate from different 

firearms, their maximum cross correlation value CCFmax would be relatively low, and their cell 

arrays would show significant variation in their x-y distribution patterns and registration angles θ. 

 

 
Fig. 3.  Schematic diagram of topographies A and B originating from the same firearm and 

registered at the position of maximum correlation. The six solid cell pairs in each image are located 

in three valid correlated regions (A1, B1), (A2, B2), and (A3, B3). The dotted cell pairs (a', b'), (a", 

b"), and (a'", b'") are located in the invalid correlation region.   
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Congruent matching cell pairs, or CMCs, are therefore determined by three sets of identification 

parameters for quantifying both the topography similarity of the correlated cell pairs and the 

pattern congruency of the cell distributions. The former is quantified by the normalized cross 

correlation function maximum CCFmax with threshold TCCF; the latter is quantified by the 

registration angle θ and translation distances in x and y with corresponding thresholds Tθ, Tx, and 

Ty. A correlated cell pair is considered a CMC—that is, part of a congruent matching cell pattern—

when its correlation value CCFmax is greater than a chosen TCCF and the registration angle θ and x, 

y registration positions are within the chosen Tθ, Tx and Ty.  

 

How many CMC pairs are required so that the two surface topographies can be identified as 

matching? Ideally, this would be determined after carefully designed experiments and error rate 

estimations. As a starting point, we use a numerical identification criterion C equal to 6, taking a 

lead from the method of Consecutively Matching Striae (CMS) developed by Biasotti and 

Murdock [17] for identification of bullet striation signatures. This numerical criterion and 

objective method have been used internationally for bullet and striated tool mark identifications 

since 1984. Thus, when the number of CMC pairs of the compared topographies A and B is equal 

to or greater than C = 6, A and B are concluded to be a match. We demonstrate that this criterion 

works well for the tests that we present in the following sections. However, when applying similar 

algorithms to other tool marks, such as firing pin impressions [18], the identification criterion will 

depend on a number of factors such as the size of the tool mark, the total number of evaluated 

cells, and whether the tool marks are striated or impressed. For each type of population, C would 

be determined from the population statistics and from estimated targets for error rates. Calculation 

of error rates for a specific data set is discussed below.   

 

3. Validation Tests   

 

An initial validation test of the CMC method was conducted using a set of cartridge cases originally 

created by Fadul et al. at the Miami-Dade Crime Laboratory [16] for a study of visual firearm 

identifications by ballistics examiners. The set contains 40 cartridge cases ejected from handguns 

with ten consecutively manufactured Ruger 9 mm pistol slides. Three slides were used to fire three 

cartridge cases each, four slides were used to fire four cartridge cases each, and three slides were 

used to fire five cartridge cases each. The slide is a component of a semi-automatic pistol firing 

mechanism that absorbs the recoil impact of the cartridge case on its breech face. As a result, the 

surface topography of the slide’s breech face is impressed on the soft primer of the cartridge case 

upon impact.  

 

Comparisons involving a population of consecutively manufactured firearm parts represent a 

challenging scenario for accurately identifying bullets or cartridge cases as being fired or ejected 

from the same firearm. Consecutively manufactured parts can have similar topographic features 

arising from temporary imperfections in the manufacturing process, such as a worn tool. The 

presence of these sub-class characteristics can lead to false identifications [1]. For this studied set, 

the breech face was machined using a straight pull step broach [16]. However, the manufacturer 

finished the surfaces of the slides by sand and bead blasting, a process that should produce random 

surface topographies [19] with individual characteristics and mitigate the effect of sub-class 

characteristics. The task then for topography measurement and analysis is to distinguish the 

individual characteristics of the surface impressions from any underlying similarities in 

consecutively manufactured slides resulting from earlier phases of the manufacturing process. The 
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objective is to draw a correct conclusion of identification or exclusion with error rate estimation 

for any pair of topography images drawn from the 40 cartridge cases that were measured. 

 

The breech face impression topographies on the cartridge cases were measured by a disk scanning 

confocal microscope [20] operating with a 10× objective having a numerical aperture of 0.3, a 

nominal working distance of approximately 10.1 mm, and a single field of view of approximately 

1.6 mm × 1.6 mm, comprising 512 × 512 pixels. The topography images of the entire breech face 

impressions were achieved by stitching 3×3 fields of view and were approximately 3.9 mm × 

3.9 mm with approximately 1240 × 1240 pixels and a nominal pixel spacing of 3.125 µm. The 

images were down sampled to a pixel spacing of 6.25 µm to improve the speed of the subsequent 

image correlations. The root mean square instrument noise was approximately 7 nm as tested by 

measuring an optical flat at 10× with a long wavelength cutoff of 250 µm on a number of occasions. 

 

Before correlating, the images were trimmed to extract the breech face impression of interest, 

yielding, on average, an image size of 3.5 mm × 3.5 mm. The images were then bandpass filtered 

to attenuate noise with short spatial wavelengths and attenuate surface form and waviness with 

long wavelengths thus highlighting individual characteristics. The short wavelength cutoff of the 

Gaussian filter was 16 µm, and the long wavelength cutoff was 250 µm. Figure 4 shows a 

topography image of a breech face impression before and after trimming and filtering.   

 

 
Fig. 4.  Color coded topography image of one of the breech face impressions before (left) and after 

(right) trimming, leveling, and filtering. The prominent annular ridge on the left hand image is due 

to flow back into the firing pin aperture. This feature is trimmed away in the right hand image.  

 

The topography images were correlated using the CMC method. A total of 780 (= 40×39/2) image 

correlations were performed, comprising 63 (= 3×3 + 4×6 + 3×10) known matching (KM) and 717 

(= 780 – 63) known non-matching (KNM) image pair comparisons. The topography images were 

divided into arrays of 49 (= 7×7) cells. Each cell size for the set of correlation tests was chosen to 

be 75×75 pixels (nominally 468.75 µm × 468.75 µm), and the range of cell registration angles was 

restricted to ± 30° with respect to their initial orientation.  

 

Although the nominal number, Nnom, of compared cell pairs for each topography correlation equals 

49, the actual number N of effective cell pairs for each correlation depends on the number of cells 

in the reference image that contain a sufficient number of measured pixels for effective correlation. 
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For example, the empty center portion of the surface shown in Fig. 4, corresponding to the firing 

pin impression, leads to fewer effective correlation cells than Nnom. A cell was not used unless at 

least 10 % of its pixels represented measured data. For this study, the number of evaluated cell 

pairs in a comparison ranged from 24 to 30, with an average of 26.  

 

One set of validation test results is shown in Fig. 5 [14]. The cell size a, the pixel spacing, and the 

thresholds TCCF, Tθ, Tx and Ty are shown on the upper right side. The number of congruent matching 

cell pairs (CMCs) for the 63 KM topography pairs ranges from 9 to 26; while the number of CMCs 

for the 717 KNM topography pairs ranges from 0 to 2.  

 

+  

 

Fig. 5.  Relative frequency distribution of image pairs vs. CMC number for 63 KM and 717 KNM 

image pairs. The KM and KNM distributions are each scaled to their particular sample size. The 

solid blue and solid red curves represent binomial distribution models for the KNM and KM data, 

respectively, estimated from the data by Eq. 8 and Eq. 10, respectively. The dashed blue and red 

curves, the first of which is indistinguishable from the solid blue curve, represent the respective 

beta-binomial distribution models (see Section 5.1). Note that the distribution models are discrete 

histograms, with the connecting lines drawn for visualization. The number of image pairs having 

a particular CMC value is shown just above each bar in the histograms. 

 

Of the 717 KNM topography pairs, 651 pairs have CMC = 0 (no congruent matching cells). There 

are only five non-matching topography pairs that have as many as two congruent matching cells, 

i.e. CMC = 2 (Fig. 5); one of them is shown in Fig. 6A. For the 63 KM topography pairs, only one 

topography pair has a CMC number as low as 9. This topography pair is shown in Fig. 6B. All the 

other KM topography pairs have a CMC number ranging from 11 to 26 (Fig. 5). A close-up of one 
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pair of matching cells from Fig. 6B, cell A1 vs. cell B1, is shown in Fig. 7. Their topography 

similarity is quantified by the maximum value of the normalized cross-correlation function CCFmax 

= 67.6 %.   

 

The KM and KNM distributions of Fig. 5 show a significant separation. Additional tests using 

slightly different versions of the correlation software and different parameter values show similar 

results without an overlap [14]. Tests performed with optical intensity images of the breech face 

impressions, instead of 3D topography images, also show similar results without any false 

identifications or false exclusions [15]. In standard binary classifier terms, these results indicate 

both high sensitivity and specificity [21] and suggest the feasibility of using the CMC method for 

firearm identifications. The identification accuracy can likely be improved further by designed 

experiments to optimize the image processing, cell size, parameter threshold values, and 

registration intervals.  

 

 
Fig. 6.  Depiction of congruent matching cells for two sets of correlated topography pairs. For the 

717 KNM topography pairs, only five pairs have a CMC value as high as 2; one of these image 

pairs is shown in (A). For the 63 KM topography pairs, only one has a CMC value as low as 9; 

that pair is shown in (B). The cell pattern A1-A9 on the left of Fig. 6B is congruent with the cell 

pattern B1-B9 on the right. The filtered surface topographies of the breech face impressions are 

depicted by the color scale of the diagram. 
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Fig. 7.  Topography comparison of KM cell pair A1 and B1 from the KM image pair of Fig. 6B.  

Common topography features are apparent. The normalized correlation value, CCFmax, is 67.6 %. 

 

4. Error Rate Analysis  

 

4.1 A Statistical Framework 

 

We seek to develop an approach for estimating the expected error rates of ballistic identifications 

based on the CMC method. Generally speaking, error rates can be considered from two points of 

view [22,23]. The first point of view (or class) addresses the reliability of the identification 

procedure. This reliability is specified by the false positive and false negative error rates for a given 

set of KM and KNM samples. The false positive error rate represents the expected frequency or 

probability of obtaining an erroneous result of identification (declared match) when comparing 

samples from different sources (KNM). The false negative error rate represents the probability of 

obtaining an erroneous result of exclusion (declared non-match) when comparing samples from 

the same source (KM).  The false positive and false negative error rates can be used as a measure 

of the reliability of the identification procedure.  

 

The second point of view addresses the probability of an incorrect conclusion for an identification 

(declared match) or exclusion (declared non-match). It represents the expected frequency or error 

rate that a result of either identification or exclusion is false. This way of describing error rate is, 

in general, of great interest during legal proceedings. For example, when a firearms examiner 

concludes that the evidence and reference items are from the same source, the judge may ask: 

“What is the probability that these two items are actually from different sources?” However, error 

rates in this class depend not only on the reliability of the identification procedure, but also on the 

ratio of same-source image pairs to different-source image pairs in the population of comparisons 

relevant to the case [6] or (for this paper) relevant to the validation test (see Sec. 4.5).   

 

Another way to describe this second point of view is with a Bayesian approach, where the ratio of 

same-source to different-source populations is cast as prior odds. Multiplying this factor by the 

likelihood ratio [24,25] yields posterior odds, say, for an identification being correct. The 

likelihood ratio is the ratio of the probabilities of obtaining a specific comparison result, say a 

declared match, under the competing hypotheses of same source and different source samples.  

Thus, the likelihood ratio expresses the strength of the obtained evidence irrespective of the prior 

odds. It can be calculated from data and models such as those in Fig. 5. 
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Aside from the points of view discussed above, error rate estimations can also be defined either 

for the cumulative range of comparison scores associated with a conclusion of identification or 

exclusion, or defined for individual comparison scores of interest. In this paper we calculate both 

types of results from the distributions obtained with the CMC method. Thus, for example, the 

cumulative false positive error rate represents the probability of obtaining a CMC score larger than 

or equal to C, the identification criterion, when comparing samples from different sources (KNM). 

Alternatively, for a specific CMC comparison score, we calculate individual error rates of 

identifications and exclusions. Thus, for example, when CMC = 15, the individual identification 

error rate represents the probability that an identification based on a CMC score of 15 is a falsely 

declared match. 

 

The large number of cell correlations associated with the CMC method using multiple 

identification parameters facilitates a statistical approach to modeling error rates. The CMC 

method is based on pass-or-fail tests of individual cell pairs comprising an image pair of breech 

face impressions. In this section we develop statistical models for the probability distribution of 

the number of successful tests in a comparison, i.e., the CMC numbers of KM and KNM 

comparisons. After estimating model parameters from experimental results for KM and KNM 

comparisons, the models are applied to estimate potential error rates.  

4.2 A Binomial Probability Model for the Distribution of CMCs  

For a pair of images, N represents the number of correlated cell pairs. If, for example, there are 49 

cells in the array of the reference image, but nine of those have an insufficient fraction of pixels 

with measurement values, then N is reduced to 40. For a given correlated cell pair, a random 

variable X represents the outcome of the CMC method for that cell pair. When the CMC method 

determines that the cell pair is part of the set of congruent matching cells, i.e. when its correlation 

value CCFmax is greater than a chosen threshold TCCF and the registration angle θ and x, y 

registration positions are within the chosen threshold limits Tθ, Tx and Ty, then X = 1; otherwise 

X = 0. We use the symbol P to represent probability in general and the symbol p to represent the 

probability that X = 1. That is, P(X=1) = p, and P(X=0) = 1 – p. 

 

We now make two key assumptions that will be revisited in later sections: 1) the comparisons 

between cell pairs are independent from each other, and 2) each cell pair comparison for the KNM 

images has the same probability p = pKNM to qualify as a CMC, and each cell pair comparison for 

the KM images has the same probability p = pKM to qualify as a CMC (Note: this notation 

represents a change from that of a previous article [13]). Thus, for the first image pair with N1 

correlated cell pairs, we now have a sequence of Bernoulli trials [26], 
111 1,..., NX X , which are 

independent from each other but have a common probability, pKNM or pKM. We denote the number 

of successful trials, the CMC number, for the first image pair by Y1. That is, 
1

1 1

1

N

i

i

Y X


 . Under 

the stated assumptions, Y1 is a binomially distributed random variable [26], namely, 

Y1 ~ Bin (N1, p). The functional form of Bin is shown in Eq. 7. Similarly, for M KNM or KM image 

pairs, we have Y1,…,YM. Assuming {Yj, j = 1,…, M} are independent from each other, we have a 
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sequence of binomially distributed random variables, 
1

jN

j ji

i

Y X


 , for 1,...,j M  and 

Yj ~ Bin  (Nj, p). In addition, we can state 

1 1

~ ( , )
M M

j j

j j

Y Bin N p
 

  .     (1) 

For observed values of {Yj ; j = 1,…, M}, the maximum likelihood estimator of p  is given by 

[27]:  

1 1 1

1 1

ˆ

jNM M

j ji

j j i

M M

j j

j j

Y X

p

N N

  

 

 

 

 
     (2) 

Therefore, for the sub-population of KNM image comparisons, the false positive cell probability, 

denoted by 𝑝KNM, is the probability that a KNM cell pair comparison results in a CMC. Likewise, 

for the sub-population consisting of KM image pairs, the false negative cell probability is denoted 

by (1– pKM). 

To estimate pKNM and pKM from the data, we apply Eq. (2) to the sub-population of 717 KNM 

image pairs and the sub-population of 63 KM image pairs. For each sub-population, we estimate 

p by counting all the CMC cell pairs that pass the four threshold criteria for a match:   

 

�̂�KNM =  
Number of KNM CMC cell pairs 

Total number of evaluated KNM cell pairs
  ,                                            (3a) 

 

�̂�KM =  
Number of KM CMC cell pairs 

Total number of evaluated KM cell pairs
  .                                                 (3b) 

 

 

For the test results depicted in Fig. 5, the estimates obtained from Eq. 3 are: 

 

�̂�KNM = 71/18859 = 0.003765, 

�̂�KM = 1207/1628 = 0.7414.           (4) 

To evaluate the model, we compare the observed frequency of comparisons with a particular 

CMC number h to the respective modeled frequency. For KM comparisons, the observed 

frequency is obtained as: 

𝑓KM (𝐶𝑀𝐶 = ℎ) =  
Number of KM image pair comparisons with 𝐶𝑀𝐶 = ℎ

Total number of KM image pair comparisons
.      (5)  
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In Fig. 5, the resulting frequency distribution is depicted by the red histogram. The respective 

modeled frequency distribution, depicted by the solid red curve, is obtained as: 

1
KM

KM

1

( | KM)

ˆ ( )
Total number of KM comparisons

ˆ( | , )

Total number of KM comparisons

M

j

j

M

j

j

P Y h

f CMC h

Bin h N p







 








    (6) 

where the summation of the binomial probability values is performed over all KM comparisons. 

If all comparisons have the same number of evaluated cells N, Eq. (6) would simplify to: 

𝑓KM(𝐶𝑀𝐶 = ℎ) = 𝐵𝑖𝑛(ℎ | 𝑁, �̂�KM) =  𝐶𝑁
ℎ ∙ �̂�KM

ℎ ∙ (1 − �̂�KM)𝑁−ℎ,  (7) 

where the binomial coefficient 𝐶𝑁
ℎ   is the number of possible combinations of h out of N elements.  

4.3 Distributions for Individual Identification Parameters 

It is instructive to plot the experimental frequency distributions of correlated KM and KNM cell 

pairs with respect to each CMC identification parameter and to estimate the respective cell trial 

success probabilities. Figure 8 shows the experimental frequency distributions of correlated cell 

pairs for KM (red) and KNM (blue) comparisons with respect to the four identification parameters: 

CCFmax (Fig. 8A), registration angle θ (Fig. 8B), and x-, y- registration distances (Figs. 8C and 

8D). The thresholds TCCF, Tθ, Tx, and Ty are also shown.   
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Fig. 8.  Experimental relative frequency distributions of the correlated cell pairs for the KM (red) 

and KNM (blue) comparisons with respect to the identification parameters: A) CCFmax with a 

threshold TCCF = 50%; B) θ with Tθ = ± 6º; C) x with Tx = ± 20 pixels (or ± 0.125 mm); and D) y 

with Ty = ± 20 pixels (or ± 0.125 mm). The KM (63 pairs) and KNM (717 pairs) distributions are 

each scaled to their particular sample size.  

 

Although there are large overlaps between the KM and KNM cell distributions for each parameter, 

combining all four parameters yields the significant separation between the CMC distributions of 

KM and KNM image pairs shown in Fig. 5. The combined false positive and false negative 

probabilities, pKNM and (1 – pKM), for each correlated cell pair can likewise be estimated by 

combining the estimated false positive and false negative frequencies associated with each of the 

four identification parameters (CCFmax, θ, x and y) taking into account any correlation between 

them. First, the number of KNM cell pairs that pass the TCCF threshold (CCFmax ≥ 50% for the 

test case) are counted and compared with the total number of cell pairs to derive an estimation for 

the individual probability pKNM (CCF) (see Table 1). Then only the cell pairs passing the TCCF test 

are included in the conditional frequency distribution for the next parameter θ, from which the 

conditional probability 𝑝KNM(𝜃|𝐶𝐶𝐹)is estimated, and so on [13]. The false positive and false 

negative cell trial probabilities associated with all thresholds estimated in this way are the same as 

those calculated by Eqs. 2 and 3 and are shown in Table 1.   

 

4.4 Error Rate Estimation with the Binomial Model 
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The estimated cell trial success probabilities, �̂�KNM and �̂�KM, are inserted into the binomial model 

to estimate potential error rates for cartridge cases fired from different source (KNM) and same 

source (KM) firearms under similar conditions. Figure 9 shows a conceptual diagram for two CMC 

probability mass functions, ΦCMC and ΨCMC, for KM and KNM topography pairs, respectively. As 

discussed in Section 4.2, the probability mass function ΨCMC for KNM comparisons is modeled 

as:   

 

𝛹(𝐶𝑀𝐶 = ℎ | 𝑁, �̂�KNM) =  𝐵𝑖𝑛(ℎ | 𝑁, �̂�KNM) = 𝐶𝑁
ℎ ∙ �̂�KNM

ℎ ∙ (1 − �̂�KNM)𝑁−ℎ. (8) 

 

 

Fig. 9.  Conceptual diagram of the CMC probability mass functions for KM and KNM 

comparisons, ΦCMC and ΨCMC. To illustrate clearly the listed quantities, the schematic depicts the 

discrete probability distributions as continuous density functions that overlap much more than they 

would be expected to in practice. The regions E1 and E2 under the curves represent cumulative 

false positive and false negative error rates. For each individual “matching” conclusion, h ≥ C, 

and “non-matching” conclusion, g < C, there are probabilities for both “True” and “False” 

conclusions as demonstrated by the black dashed bars and the solid red bars, respectively. 

 

The cumulative false positive error rate E1 is given by the sum of the probability mass function 

values ΨCMC for CMC values between C and N:  

𝐸1 = ∑ 𝛹(𝐶𝑀𝐶)

𝐶𝑀𝐶 = 𝑁

𝐶𝑀𝐶 = 𝐶

= 𝛹(𝐶𝑀𝐶=𝐶) + 𝛹(𝐶𝑀𝐶=𝐶+1) + ⋯ + 𝛹(𝐶𝑀𝐶=𝑁)

= 1 − (𝛹(𝐶𝑀𝐶=0) + 𝛹(𝐶𝑀𝐶=1) + ⋯ + 𝛹(𝐶𝑀𝐶=𝐶−1)).                                                     (9) 

The cumulative false positive error rate E1 is determined by three factors: the number of correlation 

cell pairs N in a comparison, the numerical identification criterion C of the CMC method (C = 6), 

and the combined false cell trial success probability �̂�KNM of each correlated cell pair estimated 

from Eq. 3a.   

 

Similarly, the probability mass function ΦCMC for KM correlations (Fig. 9) is modeled as: 
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𝛷(𝐶𝑀𝐶 = 𝑔 | 𝑁, �̂�𝐾𝑀) =   𝐵𝑖𝑛(𝑔 | 𝑁, �̂�𝐾𝑀) = 𝐶𝑁
𝑔

∙ �̂�𝐾𝑀
𝑔

∙ (1 − �̂�𝐾𝑀)𝑁−𝑔.  (10) 

 

The cumulative false negative error rate E2 is given by the sum of the probability mass function 

values ΦCMC for CMC values between 0 and (C – 1):  

 

𝐸2 = ∑ 𝛷(𝐶𝑀𝐶)

𝐶𝑀𝐶 = 𝐶−1

𝐶𝑀𝐶 = 0

= 𝛷(𝐶𝑀𝐶=0) + 𝛷(𝐶𝑀𝐶=1) + ⋯ 𝛷(𝐶𝑀𝐶=𝐶−1).                                     (11) 

 

We note again the assumptions underlying the binomial distribution model: 

(1) All cell pair evaluations of each compared image pair represent independent Bernoulli trials 

with the same success probability, and 

(2) The image pair comparisons are independent from each other but have the same cell trial 

success probability for cell pair comparisons within each image pair.  

Note that Condition 1 implies a binomial distribution for the number of CMCs in an image pair 

comparison and Condition 2 implies that the whole set of KM or KNM comparisons consists of a 

sequence of independent binomial random variables corresponding to image pair comparisons with 

the same p value, but allowing for variable N. The error rates estimated from the value of p̂  are 

random variables themselves and their uncertainties should also be assessed [4,5].  

The cumulative false positive and false negative error rates E1 and E2 may be estimated from Eqs. 

8 and 10 using the known number of effective cells N, the CMC identification criterion C = 6 and 

the estimated false positive and false negative cell trial success probabilities �̂�KNM and (1 − �̂�KM) 

shown in Eq. 3. The results are shown in Table 2 for N = 26, the average number of evaluated cells 

in the image comparisons. For the 717 KNM comparisons, the cumulative false positive error rate 

is E1 = 6.2×10-10, which represents the sum of the ΨCMC probabilities between 6 and N. The 

cumulative false negative error rate is E2 = 7.4×10-09 which represents the sum of the ΦCMC 

probabilities between 0 and 5. These error rates will vary depending on the specific data 

population, the distribution models, and all the parameters chosen for the calculation, such as the 

cell size.  Error rates for different models are discussed briefly below. 

  

4.5 Individual Error Rates for Identifications and Exclusions 

 

Figure 9 also illustrates the probabilities of true and false conclusions by the dashed black bars and 

the solid red bars for specific CMC values h and g. These probabilities can be used to calculate 

likelihood ratios for various conclusions, that is, the ratio of the likelihoods of obtaining the 

conclusion under two competing hypotheses (matching or non-matching samples) [23-25]. 

Alternatively, we define here the individual probability R1 that an identification is false as the 

probability that an image pair is non-matching when its CMC value appears in the matching region 

with a specific score h (h ≥ C) and conversely the individual probability R2 that an exclusion is 

false as the probability that an image pair is matching when its CMC value appears in the non-

matching region with a specific score g (g < C). For our experiment, R1 can be estimated as:  
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𝑅1(𝐶𝑀𝐶=ℎ) =
𝐾 × 𝛹(𝐶𝑀𝐶=ℎ)

𝐾 × 𝛹(𝐶𝑀𝐶=ℎ) + 𝛷(𝐶𝑀𝐶=ℎ)
 , (ℎ ≥ 6)  ,                                    (12) 

 

where K is the ratio of the sample sizes of KNM and KM topography image pairs. In a Bayesian 

approach, K represents the prior odds against obtaining a match in the current population of 40 

breech face images before conducting the forensic test. For this study, K is equal to 717/63 under 

the condition that we randomly select two of the cartridge cases from our set before comparing 

their topographies to determine whether they are matching.   

 

Conversely R2 can be estimated by 

 

   𝑅2(𝐶𝑀𝐶=𝑔) =
𝛷(𝐶𝑀𝐶=𝑔)

𝛷(𝐶𝑀𝐶=𝑔) + 𝐾 × 𝛹(𝐶𝑀𝐶=𝑔)
 , (𝑔 < 6).                                                (13) 

The parameters, R1 and R2, could be useful when addressing questions, such as “given the 

conclusion of identification based on a CMC score h (h ≥ C), what is the probability that the 

cartridge cases were actually ejected from different firearms (individual false identification 

probability R1)?”, or “given the conclusion of exclusion based on a CMC comparison score g 

(g < C), what is the probability that the two cartridge cases were actually ejected from the same 

firearm (individual false exclusion probability R2)?” In Bayesian terms, R1 and R2 represent 

posterior probabilities of erroneous identifications and exclusions, respectively.   

 

Table 2 shows values of R1 for h = 9 and 26 and values of R2 for g = 0 and 2. The largest false 

identification probability for this set is R1(CMC = 9) = 2.3×10-10; the largest false exclusion probability 

is R2(CMC = 2) = 3.0×10-11. The small estimated value for the individual false identification 

probability is largely due to the rapid decline in the modeled probability mass function curve ΨCMC 

for KNM comparisons, which matches well with the experimental data (Fig. 5). However, the very 

small value for the individual false exclusion probability is questionable, as the observed CMC 

frequency distribution for KM comparisons is wider than the binomial distribution model (solid 

red line in Fig. 5). For realistic databases with a large number of entries of firearms and 

ammunition, even when compartmented according to model and manufacturer, the overlap of KM 

and KNM distributions can become significant and the error rates will likely increase significantly.  

 

It is both insightful and misleading to illustrate the calculation of R1 and R2 using the red and black 

bars in Fig. 9, which are values for the normalized distributions, ΨCMC and ΦCMC`. One can 

conveniently imagine R1 for a particular value of h to be given by the length of the red bar in Fig. 

8, i.e., the probability ΨCMC(h) of obtaining a CMC score h for two non-matching samples, divided 

by the total length of the red bar and dashed black bar together, i.e., the probability ΨCMC(h) + 

ΦCMC(h) of obtaining a CMC score of h. This would be neglecting the ratio K between the size of 

the KNM and KM populations, because the distributions, ΦCMC and ΨCMC, are conventionally 

shown normalized to unity. In fact, there are many more possible pairs of non-matching 

comparisons than matching comparisons, as taken into account by the factor K, which increases 

the probability of a wrong conclusion of identification. One could visualize this by plotting the 

ΨCMC distribution with a total area of K instead of unity. The red bar at CMC = h would then be K 

times as long as that shown in Fig. 9, as would the black dotted bar at g.  
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5. Re-assessing the Binomial Model 

 

The binomial model described above contains the assumption that a single value ( 𝑝KNM ) 

characterizes the probability that a pair of cells from KNM images will pass all criteria and qualify 

as a false positive CMC cell pair. The resulting model fits the KNM data quite well (see Fig. 5, 

blue line), and theoretically, we expect the use of a single false positive cell trial success probability 

pKNM to be a good approximation for KNM data. If two cells were from images of breech face 

impressions from different firearms, the fact that they appear to qualify as a CMC cell pair is likely 

driven by random, non-selective factors as long as subclass characteristics, the carry-over of pre-

fire tool marks, and systematic measurement errors are not significant factors in the evaluation.   

 

The situation is more complicated for cell pairs of KM images. Variations in firing conditions, 

firearm wear, and contaminants cause variations in the tool marks imparted on the cartridge case 

and the domain of the breech face impression area. These effects and others cause variations in the 

size and quality of the common valid correlation area of a KM image pair comparison, which, in 

turn, may cause variations in the probability 𝑝KM of a cell pair to be qualified as a CMC. For 

comparisons of KNM samples, these effects simply add additional random factors to a comparison 

result, which is already largely driven by random factors and which is unlikely to cause major 

variations in the cell trial success probability 𝑝KNM. Variations in the cell trial success probability 

𝑝KM would, to some extent, explain the higher dispersion of the observed CMC numbers for KM 

comparisons than predicted by the binomial model (solid red curve in Fig. 5), which is based on 

the assumption of a single value of 𝑝KM for all KM comparisons. To account for these observations, 

we relax the assumption of the same cell trial success probability 𝑝KM for all KM comparisons. 

 

5.1 A Beta-binomial Probability Model for the Distribution of CMCs 

 

In this approach, we still assume that a CMC image comparison can be modeled as a set of 

independent Bernoulli trials characterized by the same cell trial success probability. However, we 

now allow the cell trial success probability 𝑝 to vary from comparison to comparison. Here we 

assume that the parameter 𝑝 can be modeled as a random variable with a beta distribution. The 

choice of the beta distribution has several advantages. The beta distribution is defined by two 

parameters, 𝛼 and 𝛽, which allow for a wide range of distribution shapes. The domain of the beta 

distribution is restricted to the interval [0, 1], which makes it a convenient distribution to model 

probabilities. In a Bayesian framework, the beta distribution is a conjugate distribution of the 

binomial distribution, yielding an analytical expression for the resulting compound beta-binomial 

distribution [28]. Finally, the resulting beta-binomial distribution can approximate the binomial 

distribution to arbitrary precision when needed [29]. 

 

Similar to Section 4.1, we model an image comparison 𝑗 with 𝑁𝑗 evaluated cell pairs as a sequence 

of Bernoulli trials, 
1,...,

jj jNX X , which are independent from each other and have a common 

success probability 𝑝 = 𝑝𝑗. The CMC number of the comparison, i.e., the sum of the trial outcomes 

𝑋𝑗𝑖, is 𝑌𝑗, which for a given 𝑝 = 𝑝𝑗 has a binomial distribution 𝑌𝑗|𝑝𝑗 ~ 𝐵𝑖𝑛(𝑁𝑗, 𝑝𝑗). For 𝑀 image 

comparisons, we have 𝑌𝑗|𝑝𝑗 ~ 𝐵𝑖𝑛(𝑁𝑗, 𝑝𝑗), for j = 1 to M, where 𝑝𝑗 now has a beta distribution, 

i.e., 𝑝𝑗~𝐵𝑒𝑡𝑎(𝛼, 𝛽) with positive 𝛼 and 𝛽. The probability mass function of the resulting beta-

binomial random variable Y for given values of N,   and   is given by [29]: 
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𝑃(𝑌 = 𝑘|𝑁, 𝛼, 𝛽) = 𝐶𝑁
𝑘

𝐵(𝑘 + 𝛼, 𝑁 − 𝑘 + 𝛽)

𝐵(𝛼, 𝛽)
,                                               (14) 

 

where 𝐵(𝛼, 𝛽) is a beta function with parameters 𝛼 and 𝛽, and k is a CMC value.  

For the KM and KNM comparison results discussed in Section 3, we obtained maximum likelihood 

estimates of the parameters 𝛼 and 𝛽 using the algorithm described by Smith [29]. The respective 

values are: �̂�KNM = 2.15  and �̂�KNM = 569.1  for the KNM comparisons and �̂�KM = 6.55  and 

�̂�KM = 2.29 for the KM comparisons. The modeled frequency distributions for the KM and KNM 

CMC results are depicted by the dashed curves in Fig. 5. As expected, the beta-binomial model 

for the KNM comparisons is nearly indistinguishable from the respective binomial model. For the 

KM comparisons, on the other hand, the beta-binomial model shows a significant improvement in 

the ability to model the dispersion of the experimental results. The result is a significant increase 

in the estimated cumulative false negative error rate from E2 = 7.4×10-09 for the binomial model to 

E2 = 2.1×10-3  for the beta-binomial model. For the KNM comparisons, the estimated cumulative 

false positive cumulative error rate increases from E1 = 6.2×10-10 to E1 = 3.2×10-8.  

5.2 Software Development 

We repeated the analysis with several changes to the algorithms and correlation parameters. First, 

the images are no longer down sampled, resulting in an average pixel spacing of 3.125 µm instead 

of 6.25 µm. Second, the low-pass and high-pass filters are now, respectively, zeroth order and 

second order Gaussian regression filters [30] to attenuate filtering edge effects at the image domain 

boundaries. Their cutoffs are now, respectively, 25 µm and 250 µm. Third, cell registration was 

improved through a combination of Fourier-based and direct optimization of the normalized cross 

correlation value at overlapping image areas as a function of sample translation and rotation. 

Fourth, the effect of spurious local registration optima was reduced by increasing requirements for 

the minimum percentage of measured pixels in a cell from 10 % to 25 % and by decreasing the 

size of the search domain to ± 0.75 mm for sample translations. Finally, we optimized the initial 

placement of the cells on the donut shape of the reference image to ensure maximum coverage of 

the respective sample domain, resulting in an increase of the average number of evaluated cells. 

Figure 10 shows the results of the revised analysis. The chosen cell size remains the same, but now 

comprises 150 × 150 pixels. The x-y registration thresholds remain at ± 20 pixels (± 62.5 µm 

considering the pixel spacing is 3.125 µm). The search range of registration angles and x-y 

displacements was limited to ± 45° and ± 750 µm, respectively. The number of evaluated cells per 

comparison varies between 26 and 35 cells, with an average of 31 cells. For the 63 KM cartridge 

pairs, the number of CMCs ranges from 18 to 32, and for the 717 KNM cartridge pairs, the number 

of CMCs has the same range (0 to 2) as that of Fig. 5. For the beta-binomial model with 31 cells, 

the estimated cumulative false positive error rate decreases to E1 = 5.5×10-9 and the cumulative 

false negative error rate to E2 = 1.1×10-4. 
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Fig. 10.  Relative frequency distribution of CMC numbers for KM and KNM image pairs obtained 

with modified software and correlation parameters. The solid red and dashed red curves represent 

the binomial and beta-binomial distribution models for the KM data. The overlapping solid blue 

and dashed blue curves represent the two respective models for the KNM data. The models are 

estimated from the histogram data. Note that the distribution models are discrete, with the 

connecting lines drawn for visualization. 

5.3 Clustering 

It is important to note that the image comparisons in our experiments are not independent for two 

reasons. First, each firearm slide was used to mark more than one cartridge case. Second, each 

cartridge case was used in more than one comparison. This lack of independence can lead to 

clustering effects in the experimental frequency distributions. For example, if one cartridge case 

is poorly marked, several comparisons with this cartridge case are affected in a similar fashion. Of 

the five comparisons yielding a CMC number of 11 in Fig. 5, three involved the same cartridge 

case and four involved the same firearm slide. This clustering is currently not addressed by our 

models, which assume independence of the various comparisons in our set.  

 

The KM data of Fig. 10 are plotted again in Fig. 11 with the identity of the ten slides indicated by 

different colors.  In Fig. 11, the histogram abscissa represents the percentage of evaluated cells in 

a comparison that were classified as CMC cells. There is clearly a difference between images from 

different slides. For example, all KM image comparisons involving samples from slides 1 or 3 

yield CMC numbers exceeding 90 % of the number of evaluated cells. For slide 7, on the other 

hand, half the comparisons yielded CMC numbers between 55 % and 70 % of evaluated cells.  

a = 0.47 μm x 0.47 μm
Pixel spacing = 3.125 μm
TCCF = 50 %
Tθ = ± 6 degree
Tx and Ty = ± 20 pixel
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Fig. 11.  Frequency distribution of KM image comparisons for the fraction of evaluated cells that 

were classified as CMC cells.  

 

The differences are illustrated further in Fig. 12 by a scatter plot of the KM images’ CMC fractions 

for each slide. The differences in the spread of the CMC fractions from one slide to another suggest 

differences in the capacity of the slides to impress similar topographies on the breech faces.  

Clearly, the five images of slide 3 when paired off to yield the ten KM images’ CMC fractions on 

the right hand side of Fig. 12 have consistently higher similarity than the five images of slide 7 

whose ten KM CMC fractions are shown on the left hand side.  

 

 
Fig. 12.  Scatter plot of CMC fractions for different slides using the data shown in Fig. 11. The 

blue line represents the mean value for each slide. 
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Figure 13 shows the comparison of one breech face impression topography, image A, with two 

other cartridge case topographies, B and C, all fired from a firearm using slide 7. In the first 

comparison, A vs. B, all 32 evaluated cells were classified as CMC cells. In the second comparison, 

A vs. C, only 19 cells were classified as CMCs. Some of the failed cells can be explained by 

insufficient trimming of the firing pin impression area on the inside edge in the upper right 

quadrant of image C. However, overall, stronger matching features are present in comparison A-

B than A-C, as reflected by the difference in the average normalized CCF values of the CMC cells 

of 86 % vs. 66 %.  

 

 
 

 
 

Fig. 13.  Top--comparison of the breech face impression of cartridge cases A and B fired from a 

firearm using slide 7. Bottom--comparison of the breech face impression of cartridge cases A and 

C fired also from a firearm using slide 7. 

 

5.4 Testing the Models 

 

We evaluated the models derived in Sections 4 and 5 on a different set of cartridge cases created 

by Weller et al. [31]. The cartridge cases were obtained from another set of eleven firearm slides 

produced by the same manufacturer using the same manufacturing process as that of the Fadul set 

described in Section 3. The Weller set consists of 95 cartridge cases, 9 cartridge cases each for 10 

consecutively manufactured slides and 5 cartridge cases for one extra slide that was not 
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manufactured consecutively with the others. The measurement procedure and image processing 

parameters were the same as those discussed previously, and the CMC parameters were the same 

as those discussed in Section 5.2.  For this dataset, the domain of the trimmed breech face 

impressions typically consists of thicker “donut” areas. This resulted in a higher number of 

evaluated cells per comparison, ranging from 28 to 49 cells with an average of 42 cells.  

 

Figure 14 shows the relative frequency distribution of the observed CMC numbers for the 370 KM 

and 4095 KNM image comparisons. Once again, there are no false positive or false negative results, 

and the KNM and KM data are widely separated. For the 370 KM cartridge pairs, the number of 

CMCs ranges from 21 to 47; for the 4095 KNM cartridge pairs, the number of CMCs again ranges 

from 0 to 2. Also shown in Fig. 14 are the modeled frequency distributions for the CMC results. 

For the KM data, the binomial and beta binomial probability models are different, but less so than 

for the KM Fadul data, with the beta-binomial model providing a slightly better description of the 

data dispersion. For the average number of evaluated cells, 42, the cumulative false positive and 

false negative error rates obtained from the beta-binomial model are, respectively, E1 = 5.9×10-11 

and E2 = 3.8×10-11. 

  

 
Fig. 14.  Relative frequency distribution of CMC numbers for KM and KNM image pairs of the 

Weller dataset [31]. The solid red and dashed red curves represent the binomial and beta-binomial 

distribution models for the KM data. The nearly indistinguishable solid blue and dashed blue 

curves represent the two respective models for the KNM data. Note that the distribution models 

are discrete, with the connecting lines drawn for visualization. The right hand scale for the KNM 

data is magnified by a factor of four to show differences more clearly.  
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We have also compared the Weller data [31] with models using the pKNM, pKM, α, and β parameters 

estimated from the Fadul data set discussed in Section 5.2. Figure 15 shows good agreement 

between both models and the KNM data and reasonable agreement between the beta binomial 

model and the KM data. For both models, the predicted expected mean value for the number of 

CMCs in the Weller KM comparisons is approximately one CMC lower than that of the respective 

experimental data and models shown in Figure 14. This evaluation shows the consistency of the 

results and suggests the general applicability of the beta-binomial model for describing KM data 

and the applicability of both models for describing KNM data from these types of manufactured 

slides. For the average number of evaluated cells, 42, the cumulative false positive and false 

negative error rates obtained from the beta-binomial model are, respectively, E1 = 3.7×10-8 and E2 

= 1.8×10-5. 

 

 
Fig. 15.  Relative frequency distribution of CMC numbers for KM and KNM image pairs of the 

Weller dataset. The solid red and dashed red curves represent the binomial and beta-binomial 

distribution models for the KM data, whose parameters were estimated from the Fadul data. The 

nearly indistinguishable solid blue and dashed blue curves represent the two respective models for 

the KNM data. Note that the distribution models are discrete, with the connecting lines drawn for 

visualization.  

 

6. Summary and Discussion 

 

Reporting error rates for firearm identification is a fundamental challenge in forensic science. We 

have developed a practical statistical approach to estimating error rates based on the CMC 

identification method. Initial results for comparisons of the breech face impression topography on 

cartridge cases ejected from two different sets of pistols of the same brand, each with slides that 
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were consecutively manufactured using the same process, show wide separation between the CMC 

scores of KM and KNM samples. Models for the frequency distribution of the CMC scores show 

good agreement with the experimental data and yield very small error rates for erroneous 

classifications, in particular for false positive identifications.  

 

The error rate estimates are derived from models for the probability distribution of the similarity 

metric, the CMC score, for KNM and KM image comparisons. The initial binomial models were 

based on two key approximations: 1) the CMC cell trials in a comparison are statistically 

independent, and 2) all the KNM and KM cell pairs in our population have, respectively, the same 

false positive identification probability pKNM and the same true positive identification probability 

pKM. Barring the presence of sub-class characteristics, which is unlikely for sand-blasted breech 

face surfaces, these approximations seem reasonable for KNM image comparisons. The estimated 

binomial distribution ΨCMC for the respective CMC scores matches the experimental data quite 

well for both the Fadul and Weller datasets (blue lines in Figs. 5, 10, 14, and 15). From a legal 

perspective, the KNM distribution is critical for ballistics identifications as it describes the 

probability of false positives (false identifications), which are to be avoided at almost any cost. 

For these KNM data, the modeled beta-binomial distribution is virtually identical to the modeled 

binomial distribution. 

 

On the other hand, the binomial distribution for KM image comparisons shows a lower dispersion 

than the experimental data (solid red lines in Figs. 5, 10, 14, and 15), resulting in error rate 

estimates that are too low. This is not unexpected, as variations in firing conditions, wear, and 

contaminants cause variations in the tool marks imparted on the cartridge cases. These effects 

cause variations in the size and quality of the common valid correlation area of a KM image pair 

comparison, which, in turn, are likely to cause variations in the average probability pKM of a cell 

pair to be qualified as a CMC in a comparison. The beta-binomial model described in Section 5 

allows the average cell trial success probability 𝑝 to vary from comparison to comparison. This 

approach improves agreement between the modeled and experimental KM CMC distributions 

(dashed red lines in Figs. 5, 10, 14, and 15).  

 

We emphasize that the estimated error rates in this report are specific to the sets of firearms studied 

here and are not applicable to other firearm scenarios. Furthermore, the presented models do not 

address correlations between the experimental comparison results due to the use of a sample image 

or firearm slide in more than one comparison. Some differences between the modeled and 

experimental results, such as the CMC = 11 values in Fig. 5, can be attributed to this effect.  

 

On the other hand, the small error rates calculated form the models suggest the feasibility of 

applying the CMC method to a larger number of firearms manufactured under similar conditions 

and producing correlation results to support identification and exclusion decisions. The probability 

models for the CMC scores estimated from one firearm set were consistent with the distributions 

observed for the second set, indicating consistency of the estimated error rates. 

  

The work reported here is a demonstration of concept for the objective CMC method. Studies with 

larger databases, including direct comparisons with manual evaluations, will be required in order 

to demonstrate feasibility of the CMC method for crime lab casework. We are working to 

participate in black-box studies of firearms experts similar to that of Baldwin et al. [7], which was 

favorably reviewed by a recent government report of the President’s Council of Advisors on 
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Science and Technology [32]. This could yield a comparison of error rates of the CMC method 

and of subjective methods. 

 

We are also working to test the CMC method and error rate procedure on different sets of 

consecutively manufactured firearms, where the fabrication process leaves stronger common tool 

marks than the sand blasting process studied here, as well as on a statistically designed set of test 

fires comprising firearms and ammunitions from different manufacturers. Promising results for the 

application of the CMC method to conventional optical microscopy image data have been reported 

by Tong et al. [15]. We are also working on a procedure based on international standards [33] to 

incorporate uncertainty statements into the reported error rates, and we aim to scale the approach 

to be usable with databases of forensic samples. 

 

We expect that the estimated probability distributions and error rates are affected by the type of 

firearm, ammunition, measurement method, correlation parameters, and other factors. However, 

the error rate procedures based on the CMC method can be adapted, with refinements and model 

adjustments for specific situations, to provide scientific support and error rate estimates for other 

firearm identification scenarios, including large scale databases, in a manner similar to the 

Coincidental Match Probability (CMP) procedures developed for DNA identifications [3]. The 

CMC method may also serve as a foundation for manufacturers to develop next generation ballistic 

identification systems characterized by high accuracy and error rate reporting. An error rate 

procedure could also be used for laboratory assessment and accreditation in accordance with the 

ISO 17025 standard [34] and ASCLD/LAB procedures [35].  

 

We envision a time when ballistic examiners can input either topographies or optical intensity 

images into a program that automatically conducts correlations using the CMC method, and 

displays the correlation conclusion (identification or exclusion) with an error rate estimate. The 

CMC method and statistical procedure can provide a scientific foundation and a practical method 

to estimate error rates for supporting ballistic identifications in forensic science. 
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Table 1. The combined false positive and true positive CMC probabilities, �̂�KNM and �̂�KM, 

for each correlated cell pair are estimated from the individual false positive and true 

positive identification probabilities of each identification parameter, which are estimated 

from the experimental distributions of the correlated cell pairs of the KM and KNM 

topographies by a conditional probability test method (see Fig. 8).  

       

Correlation parameters   Individual false positive and true positive 

and thresholds identification probabilities 

CCFmax, TCCF = 50%  PKNM(CCF) =  0.0782 PKM(CCF) = 0.7678 

θ,           Tθ = ±6°  PKNM(θ|CCF) =  0.2673 PKM(θ|CCF) =  0.9800 

X,           Tx = ±125 μm (±20 Pixels) PKNM(x|CCF,θ) =  0.3604 PKM(x|CCF,θ) =  0.9902 

Y,           Ty = ±125 μm (±20 Pixels) PKNM(y|CCF,θ,x) =  0.5000 PKM(y|CCF,θ,x) =  0.9951 

Combined false positive and true positive       

CMC probability �̂�KNM and �̂�KM �̂�KNM =  0.003765 �̂�KM = 0.7414 

 

Table 2.  Estimated cumulative false positive and false negative error rates E1 and E2 based 

on the binomial model of Section 4 for the set of 780 cartridge image pairs with average 

effective cells N = 26 (Fig. 5). Also shown are the individual false identification probabilities 

R1 at selected CMC values of 9 and 26 and the individual false exclusion probabilities R2 at 

selected CMC values of 0 and 2.  

   

         

CMC         E1       E2* Φ(CMC)  ΨCMC)  R1(CMC)  R2(CMC)  

              

0    5.3×10-16 0.91   5.2×10-17 

2    1.4×10-12 4.2×10-03   3.0×10-11 

CMC < 6  7.4×10-09         

9     2.2×10-05 4.5×10-16 2.3×10-10  

26     0.00042 9.3×10-64 2.5×10-59  

CMC ≥ 6   6.2×10-10           

 

*Note: Both E1 and R1 are estimated by the binomial probability model. 

 


