

SATE VI
Ockham Sound Analysis Criteria

31 May 2017

https://samate.nist.gov/SATE6OckhamCriteria.html

William of Ockham
Source: Wikipedia

https://samate.nist.gov/SATE6OckhamCriteria.html

Certain trade names and company products are
mentioned in the text or identified. In no case

does such identification imply recommendation or
endorsement by the National Institute of

Standards and Technology (NIST), nor does it
imply that the products are necessarily the best

available for the purpose.

“… program testing can be a
very effective way to show
the presence of bugs, but

is hopelessly inadequate for
showing their absence”
 – Edsger W. Dijkstra

“The Humble Programmer”,
CACM, 15(10):864, October 1972.

What is “Sound”?

● Informally, we use “sound” to mean absolutely
correct reasoning, in contrast with heuristics.

● That is, you can depend on the tool’s findings.

Why Have An Ockham Track?

● Sound analyzers only handle moderate-sized
programs and a few weaknesses.

● But all findings are correct – you can depend on
them.

● The Ockham Criteria highlights the strengths of
sound analyzers.

The Criteria

1.The tool is claimed to be sound.

2.For at least one weakness class and one test
case the tool produces findings for a minimum
of 75% of buggy sites OR of non-buggy sites.

3.Even one incorrect finding disqualifies a tool for
this SATE.

Some Details of the Criteria

● No manual editing of the tool output is allowed. No automated filtering specialized to a test
case or to SATE is allowed, either.

● A finding is a definitive report. In other words, that the site has a specific weakness (is buggy)
or that the site does not have a specific weakness (is not buggy).

● Sound means every finding is correct.

● A tool may have optional settings that cause unsound analysis.

● The tool defines what is a class of weaknesses and what are sites.

● A test case may be one of the large programs. Small synthetic test cases may be grouped to
reach the threshold.

● There must be a minimum of 100 appropriate sites in the test case.

● We will determine that findings are correct (or incorrect) by simple programs.

● All reasoning is based on models, assumptions, definitions, etc. (collectively, "models"). If
there are unexpected findings, we (the tool maker and the Ockham committee) will decide if
they result from a reasonable model difference or whether they are incorrect. To satisfy the
SATE VI Ockham Criteria, any such differences must be publicly reported.

What is a “Finding”?

U – all sites in the code

What is a “Finding”?

● The code has some bugs and some good code.

U – all sites in the code

B – buggy sites

What is a “Finding”?

● The tool’s warnings may overapproximate,
because it must summarize program states.
Any location without a warning is definitely fine.

U – all sites in the code

B – buggy sites

W – tool warnings

What is a “Finding”?

● The tool’s findings are sites without warnings.

U – all sites in the code

B – buggy sites

F = U - W

W – tool warnings

What is a “Site”?

● A site is a location in code that a fault may occur.
– In other words, places to check for this bug.

● Examples:

● Buffer overflow (BOF) sites are:
– use of [] operator

– use of unary * (dereference) operator with arrays

– use of string library functions, such as strcpy() or strcat().

● Integer underflow sites are:
– use of -- or binary -

– use of * (multiply)

Flow Overview
test

cases
Sound
Tool

Warnings

Flow Overview

1. Decide what
constitutes a site

2. Find all sites
 U = set of all sites

test
cases

Sound
Tool

Warnings

UW 4. Check

 W ⊆ U

3. Extract the sites
W = set of notice sites

Find
Sites

Extract
Sites

--
--

--
--

--
--

-
R

ep
ea

t f
or

 e
ac

h
 c

la
ss

 o
f w

ea
kn

es
se

s
--

--
--

--
--

--
-

Flow Overview

1. Decide what
constitutes a site

2. Find all sites
 U = set of all sites

test
cases

Sound
Tool

Warnings

UW 4. Check

 W ⊆ U

3. Extract the sites
W = set of notice sites

Find
Sites

B
(or G)

Compute
Target

Findings

Extract
Sites 5. Find target sites

 B = set of buggy sites

 G = set of good sites

If test case is synthetic or
 injected, this is exact.
If it is production code, this
 is approximate.

6. Compute target findings
 e.g. from Warnings or
 F = U - W

7. Check Criteria 2
 |F| ≥ 0.75 ×|U|

8. Check Criteria 3

 e.g. F ∩ B = ø

--
--

--
--

--
--

-
R

ep
ea

t f
or

 e
ac

h
 c

la
ss

 o
f w

ea
kn

es
se

s
--

--
--

--
--

--
-

Find
Target
Sites

F

Selecting Test Cases

● Test cases must be large enough to matter.

● Tool maker selects their test cases from those we
offer.

● Some possibilities:
– SATE VI classic or mobile track cases

– Juliet 1.3 (16k cases)

– SV-COMP (2k cases)

– DARPA Cyber Grand Challenge/Trail of Bits (< 245
cases)

SV-COMP cases

● From the automatic Software Verification
challenge.

DARPA Cyber Grand Challenge
/ Trail of Bits cases

● Small, simple version of interactive services,
like news or messaging.

Drivers

Applications

Exploit

Possible Ockham Track Schedule

● Ockham test cases ready by 10 July 2017

● Tool reports returned by mid-August 2017

● Ockham team analysis begins by 1 September 2017
– Communicate with tool makers to understand weakness classes and

their sites.

● Finish analysis by January 2018

● Experience workshop March 2018

● Note: Classic track test cases will be available September 2017
at the earliest.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

