
Feedback about the experience of
Frama-C in SATE VI

André Maroneze and Julien Signoles
Software Reliability & Security Lab

SATE VI Workshop
September 19th, 2019



What is Frama-C?

Framework for analyses of source code written in ISO 99 C
[Kirchner & al in J. of Formal Aspects of Computing 2015]

I developed by CEA LIST since 2005
I last open-source release aka 19-Potassium in June 2019

http://frama-c.com
I targets both academic and industrial usages

Several tools inside a single platform

I plug-in architecture à la Eclipse [Signoles @F-IDE 2015]
I plug-ins connected to a kernel

I provides an uniform setting and general services
I synthesizes results for analyzer combinations [Correnson &

Signoles @FMICS 2012]

http://frama-c.com


What is Frama-C?

Framework for analyses of source code written in ISO 99 C
[Kirchner & al in J. of Formal Aspects of Computing 2015]

I developed by CEA LIST since 2005
I last open-source release aka 19-Potassium in June 2019

http://frama-c.com
I targets both academic and industrial usages

Several tools inside a single platform

I plug-in architecture à la Eclipse [Signoles @F-IDE 2015]
I plug-ins connected to a kernel

I provides an uniform setting and general services
I synthesizes results for analyzer combinations [Correnson &

Signoles @FMICS 2012]

http://frama-c.com


Frama-C Main Plug-ins

Plug-ins

verification
Wp

Eva

E-ACSL PathCrawler

Dedicated

CaFE
Mthread

LTest

expressiveness

Clang
JCard

Aoräı

Rpp

Rte

Conc2Seq

MetACSL

SecureFlow

Variadic

Volatile

simplification
Constfold

SecuritySlicing

Slicing

Sparecode

understanding

Metrics
Nonterm

Callgraph & Users

Occurrence

From & InOut

Impact
Scope

support

Pre

Cfp

Loop

Pilat

PostCounter-Examples

StaDy

Report



SATE Ockham and Frama-C

I Frama-C focuses on sound, semantic analyses

I Juliet: annotated, extensive, high-quality set of examples
I Non-regression testing
I Performance evaluation

I Frama-C in SATE Ockham: Value analysis plug-in
I Automatic analysis based on abstract interpretation
I Identifies undefined behaviors (UBs), based on C99/C11

I No direct CWE identification, but correlated

I Main changes since SATE V
I Value → Eva (Evolved Value Analysis)

I More precise and extensible abstract domains
I Improved handling of several libc functions



Informal classification of Juliet’s CWEs

I Informal because CWEs not mathematically exact

I “Optional”-UB: underspecified behaviors

I Typestate: can be found using typestate analyses
I e.g. input sanitization, access control

I Syntactic: require external (non-ISO C99) input
I e.g. blacklists, coding conventions

I Miscellaneous: not directly related to UBs
I e.g. weak PRNG, logic time bombs



Some technical challenges encountered

I Balancing between automation and configurability
I Typical industrial use case for Eva: large monolithic analysis

I Dozens of options to customize precision/efficiency
I For SATE VI Ockham: a single set of options for all tests

I Scaling up to 40k+ tests
I Frama-C initialization time usually negligible (0.x seconds)
I Juliet: 77k C tests, 60% handled by Frama-C (46k)

I Custom option added to Frama-C, to improve startup



Issues found in Frama-C and by Frama-C

I Issues in Frama-C
I Documentation: clarifications and reproduction instructions
I A few edge cases related to string handling

I Code patterns not seen outside Juliet
I Fixes applied to Frama-C 18

I Standard library issues

I Improvements arriving on Frama-C 20 (Calcium)

I Issues found by Frama-C
I Accidental CWE: some tests in CWE843 containing CWE562

(out-of-scope use)
I Unintentional overflow in a test designed to prevent UB



Quick look at SATE 6 Classic track

I Wireshark: library dependencies (glib, epan, etc.) require
substantial stubbing effort or integration of several files

I DARPA CGC tests: issues with custom standard library
I cgc libc requires substantial (and repetitive) renaming and

stubbing to use Frama-C’s standard library
I Inclusion of specifications for functions equivalent to

read/write, etc. requires rewriting to enable reuse
I Each test case has its (incompatible) own version

I Still, some bugs were found in test cases
I Started reporting them to TrailOfBits



Conclusion and Perspectives

I SATE Ockham (and Classic track, via DARPA CGC)
contributed to Frama-C (test cases, scalability, usability,
documentation)

I Frama-C contributed (a bit) to Juliet and SATE
I Reproducible results at:

https://github.com/Frama-C/SATE-VI
I Perspectives

I Better precision and CWE coverage
I SARIF integration
I Extension to dynamic analysis tools?

I Experimentation done on SARD-100 with Frama-C/E-ACSL,
Google’ sanitizers, and RV-Match
[Vorobyov, Kosmatov & Signoles @TAP 2018]

https://github.com/Frama-C/SATE-VI

