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Introduction to SANS

Introduction to SANS

» Probes matter structure with neutrons
» Uses neutron’s special properties
» Model - Scattered pattern not invertible
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ZA. J. Jackson, Introduction to small-angle neutron scattering and neutron
reflectometry. 2008.
25ASView Documentation. 3/15



Introduction
oe

Introduction to SANS

SANS Data

» 1D pattern is integral over all § and ¢

(a) Detector setup.
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(b) 10 random cylinder models.
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Introduction to CNNs

Introduction to Convolutional Neural Networks

» Network of nodes (axons) and connections (synapses).
» Convolutional operation on input - spatial invariance.
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CNN Example

Input

Figure 3: A CNN with features shown.
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CNN Design

100 Size Size Size  Size Size Size
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Classification Task

Classification Task
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(a) 10 random sphere models. (b} 10 random cylinder models.
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Classification Task

Implementation

» Implemented random data generation, model training, &
model analysis

» Python 2.7, Tensorflow, Keras
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Figure 5: Data used in network.
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Results

Classification Results

» 54.9% validation accuracy on the 71 model set
» Ran for 34 epochs, 2 hours and 30 minutes

» Adam optimizer? using multinominal logistic regression”
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Figure 6: Accuracy and Validation graphs

3Kingma and J.Ba, "Adam: A method for stochastic optimization,” arXiv preprint.
4S. Menard, Applied logistic regression analysis, vol. 106. Sage, 2002. 10/15
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Conclusion

Conclusion & Next Steps

» Demonstrate CNN can make significant progress on model
classification problem

» Implemented network capable of 54.9% accuracy on 71
model set

» Found that network finds groups of models from raw data
» Current data unrealistic, expand model to real data ranges
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Questions

Any Questions? Thanks for listening!
More information can be found at sasnets.readthedocs.io.
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