SASCalc Periodic Boundary Conditions

Ian Hunt-Isaak, Joseph E. Curtis, Steven C. Howell

Why are concentrated proteins so viscous?

Small-Angle Scattering (SAS) Measures

Form factor

Structure factor

SAS measures protein interactions

SAS measures protein interactions

Co-solutes modulate protein interactions

Change in scattering is not dominated by P (q) or S(q) alone.

Molecular Simulation

Molecular Simulation

http://nmschneider.com/blog/2014/5/9/nearest-image-for-particle-simulations-in-matlab

Fourier Transform: $g(r) \rightarrow S(Q)$

$$S(Q) = 1 + 4\pi\rho \frac{1}{q} \int (g(r) - 1) \cdot r \sin(qr) dr$$

• Limited to spherical systems

Finite size effects

$$S(Q) = 1 + 4\pi\rho \frac{1}{q} \int (g(r) - 1) \cdot r \sin(qr) dr$$

Finite size effects

$$S(Q) = 1 + 4\pi\rho \frac{1}{q} \int (g(r) - 1) \cdot r \sin(qr) dr$$

Desired Features of Calculator

- Simultaneously calculate both P(Q) and S(Q)
- Avoid finite size effects
- Fast

Debye Formula

$$I(q) = \sum_{j=1}^{N} \sum_{k=1}^{N} f_i(q) f_j(q) \frac{\sin(qr_{ij})}{qr_{ij}}$$

Not universally applicable:

Explicit Fourier Transform

- Most general
 - Contains P(Q) and S(Q)

$$I(q) = I_1(q) \left\langle \sum_{j=1}^N \sum_{k=1}^N e^{-iqr_{jk}} \right\rangle = I_1(q) \left\langle \sum_{j=1}^N \sum_{k=1}^N \sin qr_{jk} \right\rangle$$

First Test System - Lennard Jones Particles

Verify Radial Distribution of Simulation

Radial Distribution Function for Liquid Argon at 85 K - Yarnell, et al.

Solution

- Fancy Stat Mech g(r)
 - Limited to spherical systems
- Bigger Box
 - Num Atoms ~ (Box Length)³
- Calculate Box scattering and remove

Removing Box Effects

Removing Box Effects

Next Steps

- Apply this to a periodic box of proteins (lysozyme, mAb)
- Automate algorithm to subtract box effects
- Parallelize using GPUs

Thank you!

Backup Slides

Existing Calculators

Experiment

Simulation

Watch out $S(Q) \neq I(Q)$.

S(Q) via Fourier Transform

S(Q)

 g(r) simple to calculate

h(r) = g(r) - 1

-h(q)

 Can extend g(r) to large r

Sascalc - Golden Vector

$$I(\mathbf{q}) = \left[\sum_{j}^{N} b_{j} \cos\left(\mathbf{q} \cdot \mathbf{r}_{j}\right)\right]^{2} + \left[\sum_{j}^{N} b_{j} \sin\left(\mathbf{q} \cdot \mathbf{r}_{j}\right)\right]^{2}$$

- Multiple Molecules?
- Separation of S and P?

Two questions:

- Can Extract S?
- Periodic Boundary Conditions effects?

$$\int_{0}^{\infty} (g(r) - 1) \cdot r \sin(qr) dr$$

How do we study?

Experiment

Simulation

Small-Angle Neutron Scattering Study of a Monoclonal Antibody Using Free-Energy Constraints. Clark Et. Al (2013)

Current Limitations

	10 mg/ml	100 mg/ml
Of Medical interest?	YES	YES
Can we calculate Scattering?	YES	NO (somewhat)

Simulation Boxes:

Methods to Calculate S(Q)

- Pair Distance Distribution
- Debye Formula
- Explicit Fourier Transform

First Test System - Lennard Jones Particles

Taken from Structure Factor and radial Distribution Function for Liquid Argon at 85 K - Yarnell, Et al.

Verify Pair Distance Distribution of Simulation

