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An Overview of Different Scattering Phenomena

Elastic scattering experiment measures the intensity change as a function of angle
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Scattering Fundamentals: Interference

® 29, &: unitvector of incident and scattered wave

‘® Path difference:

o= |AP|+|BP| =8ey-x1—8&-x1

~

¢ Phasedifference: ¢ = 27”5 =—q-x1

‘® Amplitude of the scattered waves (2):
rQ}fo
W

F(q) = Fo exp(iqx1)
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Scattered Intensity: N Particles

‘® Superposed amplitude of waves scattered by N particles

N
F(q) =) biexp(—ig-x) = /p(x) exp(—ig - x) dx
i=1

*b;: Scattering length (atomic scattering factor, f;, in X-ray scattering).
* p(x): Scattering length density (SLD, electron density in X-ray scattering).

‘¢ Scattered intensity due to N atoms
In(q) = [F(q)|* = F(q)F"(q)
= /p(x) exp(—iq - x) dx/p(x’)exp(iq-x’)dx’
:/P(r) exp(—igq-r)dr, where

P(r) = [ o +r)p(x') v
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Form Factor & Structure Factor
Intra- & Inter-Particle Interference

I(q) o [F(q)[* x S(q)
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A Roadmap Toward Scattering Function: A Refresher

o(z) —2 . F(q)
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Form Factor & Structure Factor: Dilute Solution

S(q) =1 Ig) «<|F(g)]?

‘¢ Total scattering is a summation of scattering from each individual particle.
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Dilute hard sphere suspension The scattering pattern
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Form Factor & Structure Factor: Concentrated Solution

S(q) #1;  1(g) < S(q)|F(9)]?

‘¢ Need to consider interference of the scattered waves from different particles.

Concentrated hard sphere suspension The scattering pattern
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Structure Factor: An Example of Hard-Shpere Model' >

1.]. K. Percus, G.]. Yevick; Phys. Rev.,110(1958) : 1-13. 2. M. S. Wertheim; Phys. Rev. Lett.,10(1963) :

321-323. 3. E.Thiele;]. Chem. Phys., 39(1963) : 474-479.
3.5

3.0

2.5

2.0

S(qR)

1.5

1.0

0.5

0.0 | | |
0 5 10 15 20

gR

Y. MAo UMD/NIST SAS PRINCIPLES €5 PRACTICE (10 /36) OcT.17-21,2022




X-Ray, Light, and Neutron

‘€ X-ray &visible light are electromagnetic waves

E = Egexp(iwt) E: EM field; w: angular frequency

‘® X-ray interacts with electrons, light with electron cloud

&2 /m p: induced-dipole moment
p=-——5"E e: elementary charge; e=1.6 x 10717 C
w§ — w?

m: electron mass; 7=9.1 x 10731 kg
¥ Neutrons are particles (mass=1.68 x 10~?" kg)

A: (particle) wavelength; /i: Planck’s constant
A=h/p p: (particle) momentum
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Schematics: propagation of a EM wave (A-B) and neutron beam (C-E).
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X-ray & Neutron as Complementary Probes

X-ray scattering cross section

D C (o) Al  Si

Neutron scattering cross section

*1llustration, not in absolute scale.
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Scatteri ng Len gth De nsity https://www.ncnr.nist.gov/resources/activation/

NIST Center for Neutron Research

_ Zi:l bl Home Instruments

Material
Vm 6420 ]

8 - H H (— Neutron Activation
p: scattering length density For rabbit system_Caaliie
. . . Thi 1/f:
@ D;: coherentscattering length of the i-th atom | quormar e  C9 ratio Thesmal/lask
[Les [o [o
8 le volume of the molecule Mass Time on beam Time off beam
| o iy
— Absorption and Scattering ———————————
. o Calculate
Scattering from H2O Ej"my ;ll"hu:kness
Source neutrons Source Xrays
Source neutrons: 1.000 A = 81.80 meV = 3956 m/s [TAng fcua

Source Xrays: 1.542 A = 8.042 keV
Sample in beam: H20 at 1.00 g/cm

1/e penetration depth | Scattering length density | Scattering cross section X—ra%SLD
(cm) a0%/4% (1/cm) (10°%74%)
abs 80.836 real -0.561 coh 0.004 real | 9.469
abs+incoh 0.178 imag -0.000 abs 0.012 imag | -0.032
abs+incoh+coh | 0.177 incoh 21.180 incoh 5.621

Neutron transmission is 0.358% for 1 cm of sample 5after absorption and incoherent scattering).
Transmitted flux is 3.576e+5 n/cm“/s for a 1e8 n/fcm“/s beam.

Questions? Last modified
Neutron activation: Dave Brown <david.brown@nist.gov>
Scattering calculations: Paul Kienzle <paul.kienzle@nist.gov>
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Contrast: Why Structures Can be Probed at All

‘@€ Structure: spatial variation of
some 'property’

‘¢ To examine a structure, there must be a
sufficient contrast between the objectives
and the surroundings.

© Interpret Ap = p, — ps;
what does p refers to?

- NS: scattering length density

8 XS: electron density

- LS: polarizability 'Density’ difference between the two phasess
makes the bi-continous structure 'visible’.
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A General Definition of Structure: The Essence of p(x)

‘@ Variation of some material property over space.

GWED-
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Scattering Function of Particulate System: General Features
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Influence of Polydispersity
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Guinier Approximation Sphere, & = 50mm
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Guinier Regions at
Multiple Length Scales
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Correlation function & Distance Distribution Functlon

I(q) = F[P(r)]

U =1) =¢* [ V)
where
P*V(r) = (P(1)w
Define
70(7) =V(r)/V(0)=V(r)/V
p(r) = 4rr*Voy(r)

99 €

Particles and their phantom identicals shifted by r, at the same r = |r|
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p(r): Distance Distribution Function
= /OO 0> Vyo(r)sinc(gr)drmr? dr = /oop(r)sinc(qr) dr
0 0

p(r) o /0 ooI(q)qrsin(qr) dq

3
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Obtaining p(7): Indirect Fourier Transform

N N
p(r) = ;CV(PV(”)} I(q) = ;CVCDV(Q); where @y (q) = Flou(r)]

Experiment ~ Geometry Radiation Scattering Spatial Average
——— ——
Tormination  Statistical  Termination sit- Wave- Fouri o
oS Width  Length  Length ourier ) Auto .
log I, e(h) Integral Integral Integral Transformation correlation
4 4logI
r ‘prrhrlr)-r’

O. Glatter; Small Angle X-Ray Scattering, Academic Press, 1982, Chapter 4.
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Computing 1D Scattering Curve: Rod
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Computing 1D Scattering Curve: Disk
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Debye Formula (Summation): Treating a Group of Particles

1tg) = (F@))q <ZZFPexpzq ")

—ZZPF smqr ZI +2.22E‘Fjsinqr

i7 7

Proteins Clusters Polymer Chains

Lysozyme (1DPX) Icosahedron (55 particle) Gaussian Chain
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Debye Function: Scattering from a Gaussian Chain

qr qr
= exp[—¢°R?/6]
3 \3/2 3 72
2y — 2
o~ (3 o (37)
13X IR 3
I(g) = N ZZexp [—q (li—j|)b /6} fu
i=0j=0 3
2 N 2 12 -
= I\?/o (N —n)exp(—q°nb”/6) dn oo

=2x 2(e ¥ 4+x—1) with x=4°R2/6
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Spherical Harmonic Expansion ﬁ % sin(qR;;)
b o IS
Acta Cryst. (1970). A26, 297

Interpretation of Small-Angle Scattering Functions of Dilute Solutions and Gases.
A Representation of the Structures Related to a One-Particle-Scattering Function

By HEINRICH B. STUHRMANN
University of Mainz, Germany

(Received 16 July 1969)

Small-angle scattering gives a much poorer resolution of the structure than does diffraction by perfect
crystals, i.e. the loss of information due to the random orientations of the scattering molecules is far
greater than that known from the phase problem. For a quantitative comparison the scalar field func-
tions in physical and reciprocal space are expressed as a series of spherical harmonics Yim. From
the rotational properties of spherical tensors it is deduced that the orientation of the partial structures
described by the sum of the multipole components belonging to the same / has no influence on small
angle scattering. There are no interference terms between these partial structures, i.e. the partial small
angle scattering functions arising from the partial structures superimpose independently. Structures
giving the same small angle scattering can be generated by displacing the coordinate system and rotating
the partial structures in an arbitrary manner and sequence.

The calculations are greatly facilitated by the properties of the 3-/ and 6+ coefficients widely used
in nuclear physics. The Hankel transformations of the multipole components are reduced to an algebraic
problem by the introduction of Laguerre polynomials.
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Spherical Harmonic Expansion
‘¢ Density (scalar field, real space) expansion

rﬁ‘: Zzplm Ylmﬁg)

=0m=-—1 ’ YO
21
O = / / (r,9,8)Y;, (8,&) sin 9 dd de
C Amplltudeexpanswn
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Spherical Harmonic Expansion: An Example Using CRYSOL

ATSAS by EMBL https://www.embl-hamburg.de/biosaxs/software.html

‘® Monodisperse system;

<

€ Atomic coordinates (finite number) are known. (Then, why bother?)

le+09

1e+08 |
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Spherical Harmonic Expansion: Approaching Fine Details

¢ Low-order terms are for overall shape; high-order terms are for fine details.

le+07
le+06
L=0
100000
_
= 10000
<
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2 1000 |
@ | D ——
g B
k= 100 + ) D R—
10 beP ‘:,’ L=6
1F g 1
i © L=15
0.1 . L ) ) ) ) ‘ b \
0.1 1 S

q (A
SAXS curves of egg-white lysozyme. Atomic coordinates are from PDB file 61yz. Spherical
harmonicexpansion algorithm isimplemented in CRYSOL; envelops are reconstructed using
MASSHA. Both belongs to EMBL solution-SAXS toolkits ATSAS.

Y. Mao UMD/NIST SAS PRINCIPLES & PRACTICE (31/36) OcT. 17-21,2022




Planning for Your Experiment

<

¢ Whatg-range doyou need?

# Can we carry out some microscopic study beforehand?
8 Perhaps a visual inspection of your sample can provide some hints?
# Can we do some simple calculation?

‘¢ Where does the scattering contrast come from?

e electron density, scattering length density, polarizability...

‘® What's the physical form of your sample?

@ Liquid, film, powder, gel, etc.
& Do | need to worry about radiation damage for biological samples?

<

¢ Iskinetics of interest? How fast is the kinetic process?

:8 Shall we carry out the experiment using an in-house machine orata
synchrotron beamline?

‘® What would be the scheme of scattering background manipulation?
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SDD: A Practical Thinking of the Reciprocal Relation
® tan20 = D,/SDD
1" SDD — Observed scattering angle |

® g="%Tsing =21

1o——sdt

® To have a full-q range data, different SDDs are used.

1

SDD2
SDD1

Sample position Detector position 2 Detector position 1

Y. Mao UMD/NIST SAS PRINCIPLES & PRACTICE (34 / 36) OcT. 17-21,2022



Detection Range of Different SAS Techniques
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Background Subtraction’

I() I() IO IO
o leor = 5 sam — Lak) — (1= @) 5~ (TIpur — Lak) — @5~ (Leet — Lark)
Lsam Lsam Ibuf Icel
I.or ©  Background subtracted/final corrected intensity

Lsam @ Scattering intensity in sample run (empty cell+solute+buffer)
Iyyp : Scatteringintensity in buffer run (empty cell+buffer)

Ie;:  Scattering intensity in empty cell run (empty cell)

Iy :  Detector response NOT due to scattering event
I, : Transmitted intensity in sample run (empty cell+solute+buffer)

Iguf: Transmitted intensity in buffer run (empty cell +buffer)

I°,:  Transmitted intensity in empty cell run (empty cell)

¢ :  volume fraction of solute

1 Koch, M. H., Vachette, P & Svergun, D. I. Quart. Rev. Biophys., 36,147-227 (2003).
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