

Magnetic SANS Summer School 2020 (Held February 2021)

Instructors: Kathryn Krycka, Julie Borchers, Jonathan Gaudet, and Peter Beaucage

Polarization Analysis Cheat Sheet For Horizontal Magnetic Field

Coordinate Axes Simplification (horizontal magnetic field)

GHIRNS

If sample is structurally isotropic, we can determine M^2_{\parallel}

Non Spin-Flip Scattering

 $N^2 = (I_X^{\uparrow\uparrow} + I_X^{\downarrow\downarrow})$

$$M_{||}^2 = (I_Y^{\uparrow\uparrow} + I_Y^{\downarrow\downarrow}) - (I_X^{\uparrow\uparrow} + I_X^{\downarrow\downarrow})$$

 $M_{_{\rm H}}^2$ (from NET moment parallel H) = $(I_Y^{\downarrow\downarrow} - I_Y^{\uparrow\uparrow})^2/8N^2$

Spin-Flip Scattering

Here $\perp OP$ (out-of-plane) means $Z \perp H$, and $\perp IP$ (in-plane) means $Y \perp H$.

$$M_{\perp H}^{2} = \left(I_{X}^{\uparrow\downarrow,\downarrow\uparrow}\right) = 2/3\left(I_{X}^{\uparrow\downarrow,\downarrow\uparrow} + I_{Y}^{\uparrow\downarrow,\downarrow\uparrow}\right)$$

Calculation of SLD

- SLD stands for Scattering Length Density. SLD of $CoFe_2O_4 = 6.07 \times 10^{-6} \text{\AA}^{-2}$.
- SLD calculator: https://www.ncnr.nist.gov/resources/activation/ (to use for SLD purposes fill in Material and Absorption and Scattering sections).
- The precursor to the above link, <u>https://www.ncnr.nist.gov/resources/sldcalc.html</u>, gives some information on how SLD is derived if you're curious.
- magnetic SLD, $\rho_m = M (in A/m) \times 2.853 \times 10^{-6} m/(A Å^2)$, where 1000 A/m = emu/cc. Magnetic SLD of CoFe₂O₄ = 1.42 x 10⁻⁶Å⁻².
- In a modeling program like SasView, the scale would be the volume fraction when the measured scattering is corrected to *intensity per cm thickness of sample*. In the case of a powder, for example, the true sample thickness is difficult to know and this becomes a simple scaling factor.

Coordinate Axes Simplification [$\cos(\theta)$ and $\sin(\theta) \rightarrow 1$ or 0]

1.2 Tesla CoFe₂O4: Log Scale