

Overview of Polarization Analysis for Neutron Scattering

(Originally given June 17, 2020 at the National School on Neutron and X-Ray Scattering)

Kathryn Krycka NIST Center for Neutron Research, Gaithersburg, MD

Support has been provided by the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under Agreement No. DMR-1508249.

<u>Outline</u>

- How to prepare and characterize a polarized neutron beam
- What magnetic information polarization analysis can provide, motivated by a nanoparticle sample
- Beam and sample depolarization considerations
- A more detailed look at the cross-terms and chiral structures
- Discussion of alternative geometries

Neutron Properties

• Hadron comprised of three quarks; no net charge (insensitive to electric fields)

• Free lifetime of 881.5±1.5 seconds (15 minutes)

• Spin ½ (fermion) that gives rise to a magnetic moment

• $\mu_n = -1.913 \ \mu_N$ (nuclear magneton) = -9.662 x 10⁻²⁷ J/T (or $\approx \mu B / 1000$)

 Spin and magnetic moment are oppositely oriented, complicating what "up" and "down" mean with respect to an applied field.

Neutron's Response to a Static Magnetic Field*

Neutron polarization

vector, **p**

Β

- A neutron can be represented by a spinor wave function with spin eigenstates "up" and "down" (+,- or ↑,↓):
- Polarization of a single neutron is the expectation value of the appropriate Pauli matrix
- Neutron beam polarization (many neutrons), $P \equiv (n^{\uparrow} n^{\downarrow})/(n^{\uparrow} + n^{\downarrow})$
- The time dependence a two-state quantum system can be represented by a classical vector, $\frac{d\vec{P}}{dt} = -\gamma_L \vec{P} \wedge \vec{B}$
- Gyromagnetic ratio $\gamma_L = -1.833E4$ rad/Gauss-sec and Larmor frequency $\omega_L = -\gamma |B|$

*Reproduced largely from Roger Pynn's Neutron Scattering Lectures

Neutron's Response to Varying Magnetic Field

Neutron adiabatically follows field (retains polarization) if

 $\omega_L = -\gamma |B| = -1.833E4$ rad/Gauss-sec

Neutron polarization

Otherwise, the neutron will precess about a new field direction

-> Beam depolarization
-> Controlled flipping devices
-> Spin flip from magnetic
moments (⊥Q and with
component ⊥ p) in sample of
interest

Neutron's Response to Material

- Neutrons are sensitive to changes in (structural) scattering length density, and this is independent of the neutron's spin direction and doesn't alter the resulting spin direction
- Only the component of the magnetic moment (or magnetic form factor), M, that is $\perp Q$ may participate in neutron scattering. This is embodied in the Halpern-Johnson vector (Phys. Rev. 55, 898 (1939)) as:

$$\Upsilon(\hat{\mathbf{Q}}) = \mathbf{M} - (\hat{\mathbf{Q}} \cdot \mathbf{M}) \,\hat{\mathbf{Q}} = |\mathbf{M}| \, [\hat{\mathbf{M}} - (\hat{\mathbf{Q}} \cdot \hat{\mathbf{M}}) \,\hat{\mathbf{Q}}]$$

Of M ⊥ Q (defined by Y), the portion || p contributes to non-spin flip (NSF), while the portion perp p contributes to spin-flip (SF) scattering -- Moon, Riste, Koehler (Phys. Rev. 181, 920-931 (1969)) where A || p and B x C = A:

$$\sigma_{\uparrow\uparrow}^{\downarrow\downarrow}(\mathbf{Q}) = \frac{1}{2} \left| N \pm \Upsilon_A \right|^2, \quad \sigma_{\downarrow\uparrow}^{\uparrow\downarrow}(\mathbf{Q}) = \frac{1}{2} \left| (-\Upsilon_B \mp i\Upsilon_C) \right|^2$$

General Experimental Set-Up (SANS example shown)

Front-End: Typically polarize , maintain polarization, and modify direction of neutrons for a non-divergent beam Sample Scattering: Often 1D analysis w/ B-field, but 3D analysis w/o field possible (spherical polarimetry)

Back-End:

Maintain polarization, analyze neutron spin direction for non-divergent (reflectivity, diffraction) or divergent (SANS, off-specular) beam

Beam Polarization

- In the presence of an applied field (B), half the neutrons precess about direction || B, and half precess anti-|| to B
- P ≡ (n[↑]- n[↓])/(n[↑]+ n[↓]), so the goal is to absorb or reflect away the undesired spin state
- Polarizing Monochromator (Heusler, Cu₂MnAl)
 -Good when monochromatic, non-divergent beam is required
- Supermirror (FeSi multilayers)

-Pros: Polarizes a range of wavelengths; high efficiency -Con: Beam must be non-divergent (or benders required)

- Spin Filter (³He)
 - Pro: can analyze wide range of angles, ability to flip neutrons -Cons: Needs to be repolarized over time; λ -dependent

Heusler

³He

Polarizing Crystal, Supermirror

Neutrons only scatter from moments <u>1</u> Q. Neutron with spins || B experience a decrease in potential, while those anti-|| to B experience an increase in potential.

SLD for n^{\uparrow} , $n^{\downarrow} = b_{nuclear}$ -,+ $b_{magnetic}$

- By choosing materials with same nuclear and magnetic SLDs, obtain reflection for the n[↓] state and transmission for the n[↑] state.
- The same idea applies the *average* nuclear and magnetic SLDs of layered materials. By varying the distance between layers, multiple critical angles may be achieved, extending the angular acceptance for reflection.

³He Spin Filters

Courtesy of Wangchun Chen. <u>https://www.nist.gov/ncnr/spin-filters/spin-filter-info/seop-method/optical-pumping</u> 11

Polarized ³He Neutronic Performance

80% ³He polarization (higher effective neutron polarization)

Courtesy of Wangchun Chen

Spin Filters can be made in a wide variety of shapes to accommodate many forms of wide angle diffraction ¹²

Neutron Spin Flipping

- Spin reversal must occur with respect to the polarization axis (a simple change in the polarization axis direction does not work)
- For ³He, spin reversal is built in by reversing ³He spins via RF pulse
- If can rotate your supermirror angle, may be able to vary between spin states (transmission vs. reflection)
- Mezei or coil flipper (tuned for specific neutron wavelength, material in beam)
- White-beam, gradient field spin-flipper (appropriate for multiple wavelengths, no material in beam)

Mezei or Coil Flipper

Flipper current sets

Blue is vertical field Red is horizontal field Black neutron spins

Spin Gradient, RF-Flipper

15

Asterix Flipper, M. Fitzsimmons

- If satisfy adiabatic condition along Z for fastest neutron, then neutrons of higher λ 's will also flip
- Accommodates wide range of wavelengths
- Very high efficiencies

٠

• Nothing in the neutron beam

C.P. Slicther, Principles of Magnetic Resonance, (Springer Verlag, Berlin 1980).

Polarized Beam Characterization

- Flipping ratio (F.R.) = n[↑] / n[↓], measures on transmitted beam (assume sample scattering is negligible if sample present)
 Flipping ratios > 30 decent; can be much higher
- Polarization, $P \equiv (n^{\uparrow} n^{\downarrow})/(n^{\uparrow} + n^{\downarrow}) = (F.R. 1)/(F.R. + 1)$ and polarization efficiency, $\varepsilon_r \equiv (n^{\uparrow})/(n^{\uparrow} + n^{\downarrow}) = (1 + P)/2$
- ³He atomic polarization (P³He¹) can be determined from unpolarized transmissions where T_E = glass transmission and μ = opacity of cell (dependent on neutron wavelength, gas pressure, and cell length typically determined in advance from transmission measurements of unpolarized ³He cell)

$$T_{^{3}\text{He}}^{\text{majority, minority}} = T_{\text{E}} \exp\left[-\mu(1 \mp \wp_{^{3}\text{He}})\right]$$

$$\wp_{^{3}\text{He}} = a \cosh\left[\frac{T_{(\text{polarized})^{^{3}\text{He cell}} - T_{\text{background noise}}}{T_{^{3}\text{He cell OUT}} - T_{\text{background noise}}}\frac{1}{T_{\text{E}} \exp(-\mu)}\right]/\mu.$$

$$P_{\text{cell}} = \tanh(\mu \wp_{^{3}\text{He}})$$

8

• Time dependence of ³He polarization decay should be accounted for:

 $\mu \wp_{{}^{3}\mathrm{He}}(t_{n}) = \mu \wp_{{}^{3}\mathrm{He}}(t_{0}) \exp\left[(t_{0} - t_{n})/\Gamma\right]$

Spherical Neutron Polarimetry (in comparison to 1D polarization analysis)

- Zero-applied magnetic field at sample
- Neutron free to rotate and is not constrained projections along +/- B
- Outside of sample region B-fields again define neutron polarization axes
- Up to 9 (or 18) measurement combinations allow detailed measurements of helical and chiral spin structures

IDNIC

CRYOPAD on the triple-axis spectrometer TAS-1 at JAERI

Masayasu Takeda^{a,*}, Mitsutaka Nakamura^a, Kazuhisa Kakurai^a, Eddy Lelièvre-berna^b, Francis Tasset^b, Louis-Pierre Regnault^c

Physica B 356 (2005) 136-140

- M. Blume, Phys. Rev. 130, 1670 (1963)
- [2] S.V. Maleyev et al., Soviet Phys. Solid State 4, 2533 (1963)
- [3] F. Tasset, Physica B 157, 627 (1989)
- [4] P.J. Brown, PhysicaB 297, 198 (2001)

Neutron Interactions with Sample Revisited

- Electric dipole moment of neutron negligible
- Magnetic moment of interacting nuclei are usually unpolarized
- This can lead to incoherent background scattering (example hydrogen) – 2/3 in spin-flip and 1/3 in non spin-flip channels

18

Example to Motivate Polarization Analysis

Monodisperse, 9 nm, ferrimagnetic magnetite (Fe₃O₄) particles crystallize into a face-centered cubic crystallites $\approx \mu m$. These crystallites are randomly oriented and form a powder. Magnetite is commonly used due to bio-compatibility stability, and a moment comparable to Ni.

Sample

Rule 1: Observe $M \perp Q$

B

 $N, M_J(Q) = \sum_{\kappa} \rho_{N,M_J}(K) e^{i\vec{Q}\cdot\vec{R}_K}$

Detector

60x10

20

-20

-30x10

-20

Moment (emu)

0.08 Å⁻¹ peak (111) reflection in 13.6 nm FCC lattice

Rules of 1D Polarization (polarization axis, p, defined by B)

• Rule 1: Only the component of the magnetic moment (or magnetic form factor), M, that is \perp Q may participate in neutron scattering. This is embodied in the Halpern-Johnson vector (Phys. Rev. 55, 898 (1939)) as:

$$\Upsilon(\hat{\mathbf{Q}}) = \mathbf{M} - (\hat{\mathbf{Q}} \cdot \mathbf{M}) \,\hat{\mathbf{Q}} = |\mathbf{M}| \left[\hat{\mathbf{M}} - (\hat{\mathbf{Q}} \cdot \hat{\mathbf{M}}) \,\hat{\mathbf{Q}}\right]$$

• Often it is conceptually simpler to define M in terms of three orthogonal components labeled A, B, and C, where A || **p** and B x C = A. ω is the angle between axes, which can be recast in terms of θ for SANS:

$$\Upsilon_{J=A,B,C}(\hat{\mathbf{Q}}) = \sum_{L=A,B,C} M_L[\cos(\omega_{L,J}) - \cos(\omega_{\mathbf{Q},J})\cos(\omega_{\mathbf{Q},L})]$$

Rule 2: Of M[⊥]Q (defined by Y), the portion || p contributes to non-spin flip, while the portion ⊥ p contributes to spin-flip (Moon, Riste, Koehler, Phys. Rev. 181, 920 (1969)). Note we are here neglecting any nuclear magnetic scattering, which is often unpolarized and negligible. A common exception is incoherent H-scattering, which shows up as a flat background with 2/3 of the scattering in the spin-flip channel and 1/3 in the non-spin-flip channel.

$$\sigma_{\uparrow\uparrow}^{\downarrow\downarrow}(\mathbf{Q}) = \frac{1}{2} \left| N \pm \Upsilon_A \right|^2, \quad \sigma_{\downarrow\uparrow}^{\uparrow\downarrow}(\mathbf{Q}) = \frac{1}{2} \left| \left(-\Upsilon_B \mp i\Upsilon_C \right) \right|^2$$

Specifics for $\mathbf{p} \perp \mathbf{n}$ -beam

 $\Upsilon_A(\mathbf{Q}) = M_A \sin^2(\theta) - M_B \sin(\theta) \cos(\theta)$ $\Upsilon_B(\mathbf{Q}) = M_B \cos^2(\theta) - M_A \sin(\theta) \cos(\theta)$ $\Upsilon_C(\mathbf{Q}) = M_C -$

C,
$$M_{z,\hat{p}_x \perp \hat{n}}$$
, B
 \hat{n} , $\hat{p}, M_{x,\hat{p}_x \perp \hat{n}}$, A

$$\begin{aligned} \sigma_{\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{\downarrow\downarrow}(\mathbf{Q}) &= N(\mathbf{Q})N^{*}(\mathbf{Q}) + M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})\sin^{4}(\theta) \\ &+ M_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})M_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})\cos^{2}(\theta)\sin^{2}(\theta) \\ &- [M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})M_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q}) \\ &+ M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})M_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})]\sin^{3}(\theta)\cos(\theta) \\ &\pm [N(\mathbf{Q})M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q}) + N^{*}(\mathbf{Q})M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})]\sin^{2}(\theta) \\ &\mp [N(\mathbf{Q})M_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q}) + N^{*}(\mathbf{Q})M_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})]\sin(\theta)\cos(\theta) \end{aligned}$$

 $\sigma_{\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{\downarrow\uparrow}(\mathbf{Q}) = M_{z,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})M_{z,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})$ + $M_{\mathbf{v},\hat{\mathbf{p}}_{\mathbf{v}}\perp\hat{\mathbf{n}}}(\mathbf{Q})M_{\mathbf{v},\hat{\mathbf{p}}_{\mathbf{v}}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})\cos^{4}(\theta)$ + $M_{x,\hat{\mathbf{p}}_x\perp\hat{\mathbf{n}}}(\mathbf{Q})M^*_{x,\hat{\mathbf{p}}_x\perp\hat{\mathbf{n}}}(\mathbf{Q})\sin^2(\theta)\cos^2(\theta)$ $-[M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})M^{*}_{y,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})]$ + $M_{x,\hat{\mathbf{p}}_x\perp\hat{\mathbf{n}}}^*(\mathbf{Q})M_{y,\hat{\mathbf{p}}_x\perp\hat{\mathbf{n}}}(\mathbf{Q})]\sin(\theta)\cos^3(\theta)$ $\pm i[M_{x,\hat{\mathbf{p}}_x\perp\hat{\mathbf{n}}}(\mathbf{Q})M^*_{z,\hat{\mathbf{p}}_x\perp\hat{\mathbf{n}}}(\mathbf{Q})$ $-M_{x,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})M_{z,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})]\sin(\theta)\cos(\theta)$ $\mp i[M_{\nu,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})M_{z,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q}) - M_{\nu,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}^{*}(\mathbf{Q})M_{z,\hat{\mathbf{p}}_{x}\perp\hat{\mathbf{n}}}(\mathbf{Q})]\cos^{2}(\theta)$

Specifics for $\mathbf{p} \perp \mathbf{n}$ -beam

X, H

$$N, M_J(\mathbf{Q}) = |N, M_J| \exp(i\varphi_{N, M_J}) \longrightarrow \alpha \alpha^* = |\alpha|^2,$$

$$\alpha \beta^* + \alpha^* \beta = 2 |\alpha| |\beta| \overline{\cos}(\varphi_\alpha - \varphi_\beta).$$

$$i(\alpha\beta^* - \alpha^*\beta) = -2|\alpha| |\beta| \overline{\sin(\varphi_{\alpha} - \varphi_{\beta})}$$

 $I^{--,++} = |N|^2 + \sin^2(\theta)\cos^2(\theta)|M_{\perp ip}|^2 + \sin^4(\theta)|M_{||}|^2$

 $-2\cos(\theta)sin^{3}(\theta)|M_{||}||M_{\perp ip}|\cos(\varphi_{||}-\varphi_{\perp ip})$ $\pm 2\sin(\theta)\cos(\theta)|\mathsf{N}||M_{\perp ip}|\cos(\varphi_{N}-\varphi_{\perp ip})$ $\mp 2sin^{2}(\theta)|N||M_{||}|\cos(\varphi_{N}-\varphi_{||})$

 $M^{2}_{\perp P}$ $M^{2}_{\perp OP}$ H

Υ

R. M. Moon, T. Riste, and W. C. Koehler, Physical. Review 181, 920 (1969)

- A. Wiedenmann et al., Physica B 356, 246 (2005)
- A. Michels and J. Weissmüller, Rep. Prog. Phys. 71, 066501 (2008)

K. Krycka *et al.*, J. Appl. Cryst. 45, 554 (2012)

 $I^{+-,-+} = |M_{\perp op}|^2 + \cos^4(\theta) |M_{\perp ip}|^2 + \sin^2(\theta) \cos^2(\theta) |M_{||}|^2 \checkmark$

 $-2sin(\theta)cos^{3}(\theta)|M_{||}||M_{\perp ip}|cos(\varphi_{||}-\varphi_{\perp ip})$ $\pm 2sin(\theta)cos(\theta)|M_{||}||M_{\perp op}|sin(\varphi_{||}-\varphi_{\perp op})$ $\mp 2cos^{2}(\theta)|M_{\perp ip}||M_{\perp op}|sin(\varphi_{\perp op}-\varphi_{\perp ip})$

23

<u>Coordinate Axes Simplification ($p \perp n$)</u>

If sample is structurally isotropic, we can determine M²_{II}

110

Non Spin-Flip Scattering at 1.2 Tesla, 200 K

26

M B from Spin-Flip Scattering at 1.2 Tesla, 200 K

$I^{+-,-+} = |M_{\perp op}|^2 + \cos^4(\theta) |M_{\perp ip}|^2 + \sin^2(\theta) \cos^2(\theta) |M_{||}|^2$

 $-2sin(\theta)cos^{3}(\theta)|M_{||}||M_{\perp ip}|\cos(\varphi_{||}-\varphi_{\perp ip})$ $\pm 2sin(\theta)\cos(\theta)|M_{||}||M_{\perp op}|\sin(\varphi_{||}-\varphi_{\perp op})$ $\mp 2cos^{2}(\theta)|M_{\perp ip}||M_{\perp op}|\sin(\varphi_{\perp op}-\varphi_{\perp ip})$

$$M_{\perp OP}^2 = M_{\parallel}^2 + 1.25 (M_{\perp I}^2)$$

$$M_{PARL}^{2} = I_{45^{\circ}}^{\uparrow\downarrow,\downarrow\uparrow} - 1.25M_{PERP}^{2}$$
$$M_{PERP}^{2} = (I_{X}^{\uparrow\downarrow,\downarrow\uparrow} + I_{Y}^{\uparrow\downarrow,\downarrow\uparrow})/3$$

Note Magnetic / Nuclear ~ 0.03

<u>M ^L B from Spin-Flip Scattering at 1.2 Tesla, 200 K</u>

Putting It Together

Neutron Beam and Sample Depolarization

1. Make sure off-axis (beam-path) depolarization is minimized

2. Measure and correct for depolarization contributions using transmission measurements Note that X and Υ encompass both beam-path and sample depolarization JDNC

Off-Axis Beam De-Polarization

• Although transmission captures depolarization up to and through the sample, depolarization of a *divergent beam* requires a visual inspection:

Diffraction ring example shown where leakage of NSF into SF channel is common sign of depolarization

Spin Cascade (Shown for Majority $\uparrow\uparrow$)

And there are 3 other variations to consider...

 $\sigma^{\uparrow\uparrow}[(1-P_{SM})(1-\chi)(1+\Upsilon)(1+P_{C}) +$ $(1-P_{SM})(1-\chi)(1-\Upsilon)(1-P_{C})]/16$

 $\sigma^{\uparrow\downarrow}[(1-P_{SM})(1-\chi)(1+\Upsilon)(1-P_{C}) +$ $(1-P_{SM})(1-\chi)(1-\Upsilon)(1+P_{C})]/16$

 $\sigma^{\downarrow\uparrow}[(1-P_{SM})(1+\chi)(1+\Upsilon)(1+P_{C}) +$ $(1-P_{SM})(1+\chi)(1-\Upsilon)(1-P_{C})]/16$

 $\sigma^{\downarrow\downarrow}[(1-P_{SM})(1+\chi)(1+\Upsilon)(1-P_{C}) +$ $(1-P_{SM})(1+\chi)(1-\Upsilon)(1+P_{C})]/16$

 $\sigma^{\downarrow\uparrow}[(1+P_{SM})(1-\chi)(1+\Upsilon)(1+P_{C}) +$ $(1+P_{SM})(1-\chi)(1-\Upsilon)(1-P_{C})]/16$

 $\sigma^{\downarrow \downarrow}_{DD}[(1+P_{SM})(1-\chi)(1+\Upsilon)(1-P_{C}) +$ $(1+P_{SM})(1-\chi)(1-\Upsilon)(1+P_{C})]/16$

 $\sigma^{\uparrow\downarrow}[(1+P_{SM})(1+\chi)(1+\Upsilon)(1-P_{C}) +$ $(1+P_{SM})(1+\chi)(1-\Upsilon)(1+P_{C})]/16$

 $\sigma^{\uparrow\uparrow}[(1+P_{SM})(1+\chi)(1+\Upsilon)(1+P_{C}) +$ $(1+P_{SM})(1+\chi)(1-\Upsilon)(1-P_{c})]/16$

31

More Compact Form

In transmission,
$$\sigma^{\uparrow\uparrow} = \sigma^{\downarrow\downarrow} = 1$$
 and $\sigma^{\downarrow\uparrow} = \sigma^{\uparrow\downarrow} = 0$.

The goal is to determine a, b, and c from transmissions, then multiply both sides by the inverse of the Measured Polarization Efficiencies matrix. That allows the true cross-sections (σ) to be determined from the four measured scattering patterns (S).

Solving Matrix Polarization Coefficients

In transmission,
$$\sigma^{\uparrow\uparrow} = \sigma^{\downarrow\downarrow} = 1$$
 and $\sigma^{\downarrow\uparrow} = \sigma^{\uparrow\downarrow} = 0$.

$$P_{\chi}P_{\Upsilon}P_{SM} = (2T_{\uparrow\uparrow}/T_{Unpol} - 1)/P_C$$

$$P_{\chi}P_{\Upsilon}P_{SM} = (1 - 2T_{\uparrow\downarrow})/T_{Unpol})/P_C$$

$$P_{\chi}P_{\Upsilon}P_{SM}P_F = (2T_{\downarrow\downarrow}/T_{Unpol} - 1)/P_C$$

 $P_{\chi}P_{\Upsilon}P_{SM}P_F = (1 - 2T_{\downarrow\uparrow}/T_{Unpol})/P_C$

The polarizations of the super mirror, χ , and Υ are difficult to separate. Often P_{SM} can be measured on an empty sample holder, and we set $\chi = \Upsilon$.

$$P_F = \left[\frac{2T_{\downarrow\downarrow}}{T_{Unpol}} - 1 \right] / P_C \left[\frac{2T_{\uparrow\uparrow}}{T_{Unpol}} - 1 \right] / P_C \right]$$

Polarization Efficiency Correction Effect

- Spin leakage from supermirror, polarizer, and ³He analyzer (time-dependent) are all important
- Sample itself can be depolarizing, and must be measured and corrected for if looking for small signals
- Typically corrections are most relevant for spin-flip scattering
- Multiple scattering (around a Bragg peak) can be difficult to properly polarization correct
- Too much wavelength spread (say > 15%) can also cause issues around sharp scattering features

Magnetic Correlations and Sample Depolarization

Directional depolarization

Magnetic coherence length (which may be < domain size)

$$D_{ii} = e^{-(\gamma^2/v^2)L\{\xi - \alpha_{ii}\}} \quad i = x, y, z$$

Assume $\rightarrow 0$
Sample length

Gyromagnetic ratio of neutron / velocity

S. G. E. te Velthuis, et al. J. Appl. Phys., Vol. 89, No. 2, 15 January 2001

Other structures may have non-zero contribution

Random canting about field direction shouldn't result in 2:1 spin-Flip deviation

Chiral Systems often results in noticeable cross-terms (and also $\uparrow \downarrow - \downarrow \uparrow$ differences, too)

Coupled Magnetic and Ferroelectric Domains in Multiferroic Ni₃V₂O₈

I. Cabrera,^{1,2} M. Kenzelmann,³ G. Lawes,⁴ Y. Chen,² W. C. Chen,² R. Erwin,² T. R. Gentile,² J. B. Leão,² J. W. Lynn,² N. Rogado,⁵ R. J. Cava,⁶ and C. Broholm^{1,2}

37

38

Diffraction Example of Chirality Continued

(a) NVO crystal sublattice showing Ni²⁺ spine (red) and cross-tie (blue) sites. (b) Counterclockwise (top) and clockwise (bottom) spin cycloids propagating along the **a** axis. The (green) vertical arrow indicates the direction of electric polarization.

DOI: https://doi.org/10.1103/PhysRevLett.103.087201

Consider p | n-beam

Pro: Cleaner separation of M || B and M \perp B; Con: can't point large of a field at ³He analyzer

Comparison of p 1 n-beam and p 1 n-beam

Terms for $\hat{\mathbf{p}} \perp \hat{\mathbf{n}}$.

	$\sigma^{\downarrow\downarrow} + \sigma^{\uparrow\uparrow}$	$\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\uparrow}$	σ^1	$^{\uparrow\downarrow}+\sigma^{\downarrow\uparrow}$	Unpol
$ N ^2$	1	0	0		1
$ M_{x} ^{2}$	$\sin^4(\theta)$	0	sir	$n^2(\theta)\cos^2(\theta)$	$\sin^2(\theta)$
$ M_{y} ^{2}$	$\sin^2(\theta)$ or	$\cos^2(\theta) = 0$	co	$\mathrm{os}^4(\theta)$	$\cos^2(\theta)$
$ M_{z} ^{2}$	0	0	1		1
$2 N M_x \overline{\cos}(\varphi_N - \varphi_{M_x})$	0	1	0		0
$-2 N M_{v} \overline{\cos}(\varphi_{N} - \hat{\varphi}_{M_{v}})$	0	1	0		0
$-2 M_x \dot{M}_y \overline{\cos}(\varphi_{M_x}-\dot{\varphi}_M)$	$_{y}) \sin^{3}(\theta) c$	$\cos(\theta) = 0$	sir	$n(\theta)\cos^3(\theta)$	$\sin(\theta)\cos(\theta)$

Can get M || B from Y-cut and X-cut subtraction or N-M cross-term; also seen in spinflip channel with 4-fold symmetry.

Spin-flip has all three magnetic components

Terms for $\hat{\mathbf{p}} \parallel \hat{\mathbf{n}}$. The choice of *X* and *Y* axes within the plane $\perp \hat{\mathbf{n}}$ is arbitrary.

	$\sigma^{\downarrow\downarrow}\!\!+\!\sigma^{\uparrow\uparrow}$	$\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\uparrow}$	$\sigma^{\uparrow\downarrow} + \sigma^{\downarrow\uparrow}$	Unpol
$ N ^2$	1	0	0	1
$ M_{z} ^{2}$	1	0	0	1
$ \tilde{M_{\rm r}} ^2$	0	0	$\sin^2(\theta)$	$\sin^2(\theta)$
$ \tilde{M_{y}} ^{2}$	0	0	$\cos^2(\theta)$	$\cos^2(\theta)$
$2 \dot{N} M_z \overline{\cos}(\varphi_N-\varphi_{M_z})$	0	1	0	0
$-2 M_x M_y \overline{\cos}(\varphi_{M_x}-\varphi_M)$,) 0	0	$\sin(\theta)\cos(\theta)$	$\sin(\theta)\cos(\theta)$

Always have nuclear + M || B in non-spin-flip, so separation of the two may be tricky (unless can turn off magnetism in the sample)

Consider Half-Polarization

	$\sigma^{\downarrow\downarrow} + \sigma^{\uparrow\uparrow}$	$\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\uparrow}$	$\sigma^{\uparrow\downarrow} + \sigma^{\downarrow\uparrow}$	Unpol
$ N ^2$	1	0	0	1
$ M_{\rm r} ^2$	$\sin^4(\theta)$	0	$\sin^2(\theta)\cos^2(\theta)$	$\sin^2(\theta)$
$ \tilde{M_{y}} ^{2}$	$\sin^2(\theta)$ or	$\cos^2(\theta) = 0$	$\cos^4(\theta)$	$\cos^2(\theta)$
$ M_z ^2$	0	0	1	1
$2 \tilde{N} M_x \overline{\cos}(\varphi_N - \varphi_{M_x})$	0	1	0	0
$-2 N M_{v} \overline{\cos}(\varphi_{N} - \varphi_{M_{v}})$	0	1	0	0
$-2 M_x \dot{M}_y \overline{\cos}(\varphi_{M_x}-\dot{\varphi}_{M_y})$) $\sin^3(\theta) c$	$\cos(\theta) = 0$	$\sin(\theta)\cos^3(\theta)$	$\sin(\theta)\cos(\theta)$

↓-↑ would be same as ↓ ↓ - ↑ ↑ except for an extra My-Mz (chiral) crossterm

Terms for $\hat{\mathbf{p}} \parallel \hat{\mathbf{n}}$. The choice of *X* and *Y* axes within the plane $\perp \hat{\mathbf{n}}$ is arbitrary.

	$\sigma^{\downarrow\downarrow}{+}\sigma^{\uparrow\uparrow}$	$\sigma^{\downarrow\downarrow} - \sigma^{\uparrow\uparrow}$	$\sigma^{\uparrow\downarrow} \!$	Unpol
$ N ^2$	1	0	0	1
$ M_z ^2$	1	0	0	1
$ \tilde{M_r} ^2$	0	0	$\sin^2(\theta)$	$\sin^2(\theta)$
$ M_{y} ^{2}$	0	0	$\cos^2(\theta)$	$\cos^2(\theta)$
$2 \hat{N} M_z \overline{\cos}(\varphi_N - \varphi_{M_z})$	0	1	0	0
$-2 M_x M_y \overline{\cos}(\varphi_{M_x}-\varphi_M)$	$(t_y) = 0$	0	$\sin(\theta)\cos(\theta)$	$\sin(\theta)\cos(\theta)$

 $\downarrow -\uparrow$ would be same as $\downarrow \downarrow -\uparrow \uparrow$

If want M || B, then half-pol may be the best way to go.

Rough Guidelines For (Magnetic) Polarized Scattering

- Often start with unpolarized scattering to get a feel of overall scattering intensity
- If sample magnetically saturates, will check (a) Intensity ⊥ B vs. Intensity || B or (b) high-field minus low field, or (c) changes in magnetism above and below blocking to get a feel for magnetic signal strength. The caveat is that moments ⊥ B may interfere with simple subtraction methods.
- Half-polarization can be exceptionally helpful in boosting the M || B signal in the form of ↓ minus ↑ nuclear-magnetic cross-term
- If interested in in moments [⊥] B, can attempt low-field minus high field (especially along direction || B), but if signal is supposed to be small relative to structural scattering, full-polarization may be the only way to extract it
- Cost of polarization analysis: loose half the intensity with polarizer, and double the counting channels if take ↑ and ↓ cross-sections (factor of 2 to 4)
- If add ³He analyzer, for example, the starting transmission of the desired spin state is about 50% (higher if using simple supermirror). Will also need to take 4 cross-sections. Yet, if spin-flip is the goal, won't have to count as long to overcome (typical) dominant structural scatting.
- Often bias the spin-flip to non spin-flip in a ratio of 2 or 3: 1. Typically don't take scans longer than an hour each in order to do a good time corrections for the ³He spin filter, if used.

<u>Summary</u>

- Polarization analysis of the neutron spin is ideal for separating (1) nuclear from magnetic scattering and (2) magnetism || and \perp to p
- Magnetic scattering <1% that of the structural scattering can be measured with careful correction of any polarization leakage
- Polarization analysis can be used to effectively measure phase unambiguously solve structures (magnetic reference layers) and measure changes in energy (NSE)
- Polarization analysis can be used to separate (and/or remove) incoherent background scattering
- Consider whether full polarization, half-polarization, and/or unpolarized scattering best suit the your needs for a specific sample