

An example involving hydrogen-deuterium substitution, the utility of absolute scaling, and custom-modeling

Thanks to Erika Vreeland and Dale Huber of Senior Scientific for the samples,

Erik Brok and Julie Borchers for the SANS investigation

Brownian relaxation

- Rotation of particles
- Only free particles
- $\tau_{\rm B} = \frac{3\eta V_{\rm H}}{k_{\rm B}T}$
- Fast (< 1 ms)

Néel relaxation

- Rotation of magnetization
- Bound and free particles

•
$$\tau_{\mathrm{N}} = \tau_0 \exp\left(\frac{KV_{\mathrm{M}}}{k_{\mathrm{B}}T}\right)$$

• Slow ($\approx 1s$)

Relaxation time distinguishes free from bound particles Magnetic relaxometry (MRX)

Images courtesy of Erik Brok

MRX for detection of disease

- Iron oxide nanoparticles
- Aqueous suspension
- Biocompatible coating
- Specific antibodies

Relaxation time depends on

- Single particle properties
 - Magnetic anisotropy
 - Particle size
 - Polydispersity
- Colloidal properties
 - Aggregation
 - Agglomeration

De Haro et al., Biomedical Engineering 2015

$$au_{\rm B} = \frac{3\eta V_{\rm H}}{k_{\rm B}T}$$

$$\tau_{\rm N} = \tau_0 \exp\left(\frac{KV_{\rm M}}{k_{\rm B}T}\right)$$

Images courtesy of Erik Brok

Samples from Senior Scientific (2015)

- Monodisperse Fe_3O_4 cores (25 ± 1 nm)
- Biocompatible shell
 - Oleic acid + amphiphilic polymer

E. Vreeland et al., Chem. Mater., 27 (17) (2015) 6059-6066.

Material (bulk)	Chemical Formula	SLD_nuclear (Å ⁻²)	SLD_magnetic (Å ⁻²)
Water	H ₂ O	-5.605 x 10 ⁻⁷	0
Heavy water	D ₂ O	6.35 x 10 ⁻⁶	0
Magnetite	Fe ₃ O ₄	6.91 x 10 ⁻⁶	1.46 x 10 ⁻⁶
Oleic Acid	C ₁₈ H ₃₄ O ₂	7.81 x 10 ⁻⁸	0

- In H₂O, Fe₃O₄ core highlighted
 - In D₂O, polymer shell highlighted

- In all cases, we can get a decent fit at higher Q assuming noninteracting nanoparticles, but the fit significant;y undershoots at Q <= 0.01 Å⁻¹.
- Scale factor is known from sample concentration and cell thickness, which constrains our parameter space.

Using standard linear-pearl model:

We could add these three models using Fitting -> Add/Multiply Models function in SasView.

Better would be a model involving multiple length chains and core-shell structure...

This custom model was written in C, and cased in a Python wrapper; could be easily adapted to other morphologies if you use the same format. It should be placed in your .sasview/plugin_models folder, and if it compiled properly it will appear under Plugin Models.

```
parameters = [
['CoreSLD', 'Inv. Ang^2', 7E-6, [-numpy.inf, numpy.inf], '', ''],
['MagCoreSLD', 'Inv. Ang<sup>2</sup>', 1.5E-6, [-numpy.inf, numpy.inf], '', ''],
['ShellSLD', 'Inv. Ang<sup>2</sup>', 2E-6, [-numpy.inf, numpy.inf], '', ''],
['SolventSLD', 'Inv. Ang<sup>2</sup>', 0.0, [-numpy.inf, numpy.inf], '', ''],
['VolumeFraction', '', 0.01, [0.0, numpy.inf], '', ''],
['NormalizationRadius', '', 100, [0.0, numpy.inf], '', ''],
['SingletFraction', '', 0.5, [0.0, numpy.inf], '', ''],
['DimerFraction', '', 0.3, [0.0, numpy.inf], '', ''],
['TrimerFraction', '', 0.2, [0.0, numpy.inf], '', ''],
['QuadramerFraction', '', 0.0, [0.0, numpy.inf], '', ''],
['PentamerFraction', '', 0.0, [0.0, numpy.inf], '', ''],
['CoreRadius', 'Ang.', 100, [0.0, numpy.inf], 'volume', ''],
['ShellThickness', 'Ang.', 50, [0.0, numpy.inf], 'volume', ''],
['Length', 'Sphere to sphere length in Ang.', 300, [0.0, numpy.inf], 'volume', ''],
['MVar', '1=random;2=alongchain;3=alongfield', 1, [1, 3], ", "]
```

Randomly Oriented Chain Parameters

return (Intensity+MIntensity)*VolumeFraction*(1E8)/FractionScale; where q-points are automatically passed to your function

Things get even more interesting if we apply a magnetic field, where obvious changes are seen between horizontal and vertical sector cuts, suggesting Oriented Chains (with a FWHM distribution of canting angles w.r.t. applied field).

Structural radii of 0-125 is Fe3O4 | 125-175 is polymer shell | > 175 is solvent D2O, while magnetic core is 0-120

Structural radii of 0-125 is Fe3O4 | 125-175 is polymer shell | > 175 is solvent D2O, while magnetic core is 0-120

Conclusions

- Sandia nanoparticles appear to be more chained in D_2O than in H_2O , even before application of an applied field. However, the chains orient in the direction of the applied field more quickly in H_2O .
- H₂O-D₂O contrast matching can be useful for highlighting different parts of a system
- Absolute scaling is a powerful constraint on modeling
- Custom modeling is reasonably easy to implement within SasView