Understand origins of stochastic material response through multiscale materials science

Atomic scale phenomena

Single crystal behavior

Microstructural effects

Material performance

10⁻⁹ m 10⁻⁹ s 10⁻⁶ m 10⁰ s 10^{-3} m 10^{3} s

 10^{0} m 10^{6} s

Materials Mechanics Capabilities

- Roughly \$2M in annual programs supported
- 10 MTS Servohydraulic Loadframes
- Extensive traditional extensometry, grips, etc.
- Non-contact laser and LED extensometers
- Digital image correlation strain field mapping, both in optical and electron microscopes.
- Furnaces and thermal cycling chambers capable of -40C to +1400C
- Infrared thermal imaging (up to +1200C)
- Hardness and Charpy testers
- Test timescales from months to milliseconds
- High-speed imaging (up to 250,000 fps)
- Force range of 100 nN to 300 kN
- Specialized, custom capabilities in high-resolution microscale and nanoscale testing:
 - 3 nanoindenters
 - 1 in-situ SEM nanoindenter
 - 1 in-situ SEM tensile stage
 - 2 custom electromechanical probe stations
 - 2 horizontal custom low-force servohydraulic loadframes
 - Extensive optical microscopy facilities, including in-situ optical microscopy

Experimental Materials Mechanics Examples

Materials Characterization Capabilities

- Extensive metallography suite and highly experienced technicians
- Several field emission scanning electron microscopes with EDS and EBSD capabilities.
- 3 dual-beam focused ion beam electron microscopes with EDS and EBSD capabilities.
- Quantitative microstructural analysis software
- Several transmission electron microscopes with extensive analytic capabilities, EELS, EDS, Spectral Analysis, etc.
- Aberration Corrected scanning transmission electron microscope (probe-corrected)
- X-ray diffraction
- Atomic Force microscope
- Micro x-ray fluorescence capabilities
- Microprobe
- Analytical chemistry lab
- Time-of-flight secondary ion mass spectroscopy
- X-ray/Ultraviolet photoelectron spectroscopy
- Auger electron spectroscopy
- Imaging Near-edge x-ray absorption fine structure
- Nuclear magnetic spectroscopy
- Scanning laser Interferometry
- Failure analysis

Materials Characterization Examples

Computational Modeling related to Materials Mechanics

- Ab-initio density functional theory calculations
- Molecular statics and molecular dynamics
- Dislocation dynamics
- Traditional finite element analysis, including coupled thermal-mechanical analysis
- Finite-element representations of material microstructure
 - Polycrystal elasticity
 - Polycrystal plasticity (FCC and BCC metals)
 - Stochastic modeling, including variability in texture, grain morphology, etc.

Computational Materials Mechanics Examples

Continuum-down Foundational Problem: Geometric variability in 304L stainless welds

Current design approach: Use a single-material model with 4 parameters; 8 elements per cross-section.

Bridging the gap: Homogenize to 3 material model with 12 parameters; 8 elements with notch per cross-section

Materials science approach: Computational survey of weld geometries, varying weld depth, plate gap and offset

Some representative publications related to stochastic/microstructural mechanics (see pdf's sent previously)

<u>Buchheit2005:</u> A paper detailing the formulation for polycrystal plasticity for FCC metals. This framework has also been used for problems of elasticity. It includes a complete anisotropic representation of the elastic constants for each grain in a polycrystal.

<u>Counts2008:</u> Elastic properties homogenized from atomic scale to FEM scale (work largely done in Germany, with collaboration with Sandia)

<u>Counts2008b</u>: Modeling grain boundary hardening in a polycrystal plasticity framework.

<u>Brewer2009:</u> An example of the integration of experimental materials characterization such as EBSD with computational modeling such as polycrystal plasticity to understand mechanical behavior.

<u>Battaile2009</u>: Using brass as a simple material system, we use electron backscatter diffraction, digital image correlation, and polycrystal plasticity modeling to understand the role of microstructure on the mechanics of a deforming hole in a tensile bar.

<u>Boyce2009</u>: An example of some of my past work on understanding the strain-rate sensitivity of tensile behavior in several steel alloys. Modulus was not a concern in that previous study.

<u>Boyce2010:</u> An example in silicon microsystems of very small tensile bars used to generate large statistical datasets, in this case of fracture strength.

<u>Dingreville2010:</u> Ways to represent real microstructure into a polycrystal FEM framework.

Buchheit2011: Extending our existing FCC polycrystal plasticity model to represent BCC metals; there is a full paper in preparation.