
Paul E. Black
paul.black@nist.gov

http://samate.nist.gov/

2

Automation doesn’t make the
complexity go away …

3

Automation just hides it in
micron-sized spots.

4

Bad Character
  Application: IC design parser

–  Input: computer chip design, 2D, WYSIWYG
–  Output: network list, plain text

  Failure: one strange character
(V-WIRE_32 (A_[0..31] B_[0..31]) (Y_[0..31])
 ((G_0 (Y_0) T-WIRE (A_0 B_0)) (G_1 (Y_1) T-WIRE (A_1 B_1))
 (G_8 (Y_8) T-GIRE (A_8 B_8)) (G_9 (Y_9) T-WIRE (A_9 B_9))

 (G_10 (Y_10) T-WIRE (A_10 B_10)) (G_11 (Y_11) T-WIRE (A_11 B_11))

–  Could not reproduce on my machine; could on engineer’s
–  Different places or characters on other runs: memory overwrite?

  No hint of code overwrite (common in C)
  A table of where the failure occurred in output files showed that

all had same low-order bits in hexadecimal
  Conclusion: flaky bit in output hardware!

5

A = f(p, s, e)

where A is functional assurance, p is
process quality, s is assessed quality of
software, and e is environment resilience.

6

A = f(p, s, e)

  High assurance software must be
developed with care, for instance:
–  Validated requirements
–  Good, simple system architecture
–  Safety designed- and built in
–  Trained programmers
–  Helpful programming language

7

A = f(p, s, e)

  There are two general kinds of software
assessment:
–  Static analysis

•  e.g. code reviews and scanner tools
•  examines code

–  Testing (dynamic analysis)
•  e.g. simulations, fault injection, and test beds
•  runs code

8

A = f(p, s, e)

  The execution platform can add assurance
that the system will function as intended.

  Some techniques are:
–  Physical enforcement mechanisms
–  Execute in a “sandbox” or virtual machine
–  Monitor execution and react to violations
–  Replicate processes and vote on output

9

Static Analysis
  Handles unfinished code
  Higher level artifacts
  Can find backdoors, e.g.,

full access for user name
“JoshuaCaleb”

  Potentially complete

Testing
  Code not needed, e.g.,

embedded systems
  Has few(er) assumptions
  Covers end-to-end or

system tests
  Assess as-installed

10

11

12

Combinatorial testing for software
  NIST studied software failures in many fields
  Pairwise testing would not find all errors. But a maximum of

6-way testing triggered all faults.

Browser

Medical

Server
NASA

0

20

40

60

80

100

1 2 3 4 5 6

%
 tr

ig
ge

re
d

Interactions

13

A simple example

14

Now How Many Would It Take?

  There are = 120 3-way interactions.

  Naively 120 x 23 = 960 tests.
  Since we can pack 3 triples into each test,

we need no more than 320 tests.
  But each test exercises many triples:

 0 0 0 1 1 1 0 1 0 1

We oughta be able to pack a lot in one test,
so what’s the smallest number we need?

10
3

15

All triples take only 13 tests!

16

Take aways

  Assurance comes from 3 places:
–  Process quality
–  Software assessment
–  Environment resilience

  Testing and static analysis complement
each other

  Combinatorial testing spreads test points
throughout behavior space

