
© 2009 GrammaTech, Inc. All rights reserved

GrammaTech, Inc.
317 N Aurora St.
Ithaca, NY 14850
Tel: 607-273-7340
E-mail: info@grammatech.com

Truth is Subjective

Presented by:
Paul Anderson

© 2009 GrammaTech, Inc.

SATE 2009 Experience with CodeSonar®

Outline

§  Introduction to CodeSonar
§  Warning correctness

›  Examples of warnings

§  Suggestions for the future

© 2009 GrammaTech, Inc. Page 2

CodeSonar

§  Advanced Static Analysis for C/C++
§  Oriented towards general-purpose bug finding

›  Particularly for embedded/safety-critical
§  Not specialized for finding software security issues

›  Although there is much overlap
•  Buffer overruns, Null pointer dereferences, Uninitialized variable, Race

conditions, etc.

§  Analysis techniques
›  Whole program model
›  Symbolic execution

•  Flow-, Context-, and Path-sensitive

§  Designed for high scalability and low false positives
›  At the sacrifice of soundness

§  Highly configurable and customizable

© 2009 GrammaTech, Inc. Page 3

§  Study used true, false, insignificant
§  Judgment categories strongly depend on role of the analyst

›  Code author
›  Code reviewer
›  QA dept
›  Internal security reviewer
›  External security analyst
›  Attacker

§  Nature of application affects judgments too
›  Safety-critical
›  Real-time
›  High security

Warning “correctness” judgment

© 2009 GrammaTech, Inc. Page 4

SATE reviewer role

Most static analysis
tool users

CodeSonar Warning

§  Buffer overrun reported in Irssi:
›  struct tm tm;
›  memcpy(&tm, localtime(&now), sizeof(tm));

§  No buffer overrun possible

§  Caused by operator error!
›  Mismatch between sizes of types
›  Model for localtime based on 32-bit pointers, but analysis done in a

64-bit environment
›  Once corrected, this and several other warnings not reported

© 2009 GrammaTech, Inc. Page 5

CodeSonar misjudged warning

© 2009 GrammaTech, Inc. Page 6

Judged by evaluators as false positive.

But the TREALLOC may return NULL, so a NPD
is possible.

CodeSonar Buffer Underrun

© 2009 GrammaTech, Inc. Page 7

int
pvm_pkstr(cp)

 char *cp;
{

 int l = strlen(cp) + 1;
 int cc;

Buffer Underrun reported

p = getenv(“PVM_EXPORT”);
...
p = p – 11;
...
pvm_pkstr(p);

Suspicious code!

SATE reporting format obscured the real reason:

This code does work…
p = “xyz”
p – 11 = “PVM_EXPORT=xyz”

Getenv() issue

© 2009 GrammaTech, Inc. Page 8

Code relies on the implementation of getenv().

This behavior is not specified (or precluded) by the
specification of getenv().

Possible judgments:

•  False positive because the target platform works this way?
•  True positive because this may not port?
•  Insignificant?

char environ[] = “USER=paul\0PVM_EXPORT=xyz\0PATH=/usr/bin...

p - 11

p

SATE reviewer judgments

§  Out of 23 false judgments in one benchmark, 11 are
disputed

§  Insignificant and true judgments not reviewed

§  Recommendation:
›  Future Expos judge results from multiple perspectives

© 2009 GrammaTech, Inc. Page 9

Suggestions for the future

§  Keep SATE as it is
›  Great for vendors

•  I get to brag about CodeSonar

§  Run a high-profile competition
›  Big cash prizes => lots of publicity => raises awareness

§  Extend SAMATE Reference Dataset (SRD)
›  Potential to have very wide benefit to all vendors
›  Potential to spur research into new techniques

© 2009 GrammaTech, Inc. Page 10

Extend SRD

§  Need real examples of bugs
that matter

›  Boiled down or abstracted
examples are much less useful

›  As are samples with injected
flaws

§  Dataset would be useful for other
approaches

›  Including some we haven’t
thought of yet

§  Base the Expo around these
samples

© 2009 GrammaTech, Inc. Page 11

Ideal Specimen

© 2009 GrammaTech, Inc. Page 12

§  A serious bug that was observed in
the wild

›  With cross reference to CVE

§  Full source code and build system
for the vulnerable program

›  plus full source code for dependences
›  and a description of the platform and

toolchain used to build

§  A full explanation of the bug
›  Referencing locations in the source
›  Relevant CWE entry
›  History of how it was found

§  A patch that fixes the bug, and only
that bug

§  An executable in which the bug was
observed in the wild

›  plus one in which it was fixed

The End

© 2009 GrammaTech, Inc. Page 13

SATE Stated Goals

§  Goals
›  To enable empirical research based on large test sets
›  To encourage improvement of tools
›  To speed adoption of tools by objectively demonstrating their use on

real software

§  Our goal is not to evaluate nor choose the "best" tools.
§  Characteristics to be considered

›  Relevance of warnings to security
›  Correctness of warnings
›  Prioritization of warnings

© 2009 GrammaTech, Inc. Page 14

Customer Evaluation Methodology

§  Does the tool integrate with my build system?
›  Can it identify all the code that is compiled?
›  Does it model the compiler properly?

§  Does it find interesting bugs?
§  Is precision and recall acceptable?
§  Does it make triage easy?

›  Evidence for conclusion
›  UI for understanding warnings and related code

§  Can I add new checks?
§  Can managers track progress?
§  Does it integrate with my bug-tracking system?
§  Is the ROI appropriate?

© 2009 GrammaTech, Inc. Page 15

Customer Use Methodology

§  Run the analysis tool on the code
§  Eyeball the results, and assess

›  Is there code that should be incorporated?
•  E.g., Irssi uses glib
•  Either add the code, or model it

›  Are there classes that are uninteresting?
•  E.g., unsafe casts in Irssi
•  Set up filters; adjust default priorities

›  Are there parameters to adjust?
•  E.g., may malloc() return NULL?

›  Are there custom checks?
›  Is the workflow optimal?

§  Iterate until satisfied
§  Put tool into production

© 2009 GrammaTech, Inc. Page 16

