
Toward a “Periodic Table” of Bugs
or

How Can I Really Tell What’s Wrong With My Code?

Paul E. Black, Irena Bojanova, Yaacov Yesha, Yan Wu

 NIST, BGSU

12 August 2015

Certain trade names and company products
are mentioned in the text or identified. In no
case does such identification imply
recommendation or endorsement by the
National Institute of Standards and
Technology (NIST), nor does it imply that the
products are necessarily the best available
for the purpose.

23 November 2015 Paul E. Black 2

Outline

l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This Work

3

Precise Medical Vocabulary
•  Medical	professionals	have	terms	to	precisely	name	

muscles,	bones,	organs,	condi8ons,	diseases,	and	so	forth.	

4

Common	Nomenclature	
Common	Weakness	
Enumeration	(CWE)	

l  A	“dictionary”	of	every	class	
of	bug	or	flaw	in	software	

l  More	than	600	distinct	
classes,	e.g.,	buffer	overflow,	
directory	traversal,	OS	
injection,	race	condition,	
cross-site	scripting,	hard-
coded	password,	and	
insecure	random	numbers	

											http://cwe.mitre.org/	

Common	Vulnerability	
Enumeration	(CVE)	

l  A	list	of	instances	of	security	
vulnerabilities	in	software	

l  More	than	9000	CVEs	were	
assigned	in	2014	
Heartbleed	is	CVE-2014-0160	

l  NIST’s	National	Vulnerability	
Database	(NVD)	has	fixes,	
severity	ratings,	etc.	for	CVEs	

												https://cve.mitre.org/	

5	

Common Weakness Enumeration
(CWE) is a Mess
l  CWE is widely used - by far the best dictionary of

software weaknesses. Many tools, projects, etc.
are based on CWE.

l  But definitions are imprecise and inconsistent.
l  CWEs are “coarse grained”: they bundle lots of

stuff, like consequences and likely attacks.
l  The coverage is uneven, with some combinations

well represented and others not represented at all.
l  No mobile weaknesses, eg., battery drain, physical

sensors (GPS, gyro, microphone, hi-res camera),
unencrypted wireless communication, etc.

6

Definitions are Imprecise

l  CWE-119: Improper Restriction of Oper-
ations within the Bounds of a Memory
Buffer:
“The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary
of the buffer.”

•  Note that “read from or write to a memory

location” is not tied to the buffer!

7

Overflow Has Gaps in Coverage

l  CWE-124: Buffer Underwrite (’Buffer
Underflow') and CWE-120: Buffer Copy
without Checking Size of Input ('Classic
Buffer Overflow') vs.

l  CWE-121: Stack-based Buffer Overflow and
CWE-122: Heap-based Buffer Overflow

l  CWE-127: Buffer Under-read and CWE-126:
Buffer Over-read

l  but no read-stack and read-heap versions.

8

… and a buncha’ others, too

l  CWE-123: Write-what-where Condition
l  CWE-125: Out-of-bounds Read
l  CWE-787: Out-of-bounds Write
l  CWE-786: Access of Memory Location Before

Start of Buffer
l  CWE-788: Access of Memory Location After End

of Buffer
l  CWE-805: Buffer Access with Incorrect Length

Value
l  CWE-823: Use of Out-of-range Pointer Offset

9

Path Traversal is too Detailed
l  CWE-23: Relative Path Traversal
l  CWE-24: Path Traversal: '../filedir’
l  CWE-25: Path Traversal: '/../filedir’
l  CWE-26: Path Traversal: '/dir/../filename’
l  CWE-27: Path Traversal: 'dir/../../filename’
l  CWE-28: Path Traversal: '..\filedir’
l  CWE-29: Path Traversal: '\..\filename’
l  CWE-30: Path Traversal: '\dir\..\filename’
l  CWE-31: Path Traversal: 'dir\..\..\filename’
l  CWE-32: Path Traversal: '...' (Triple Dot)
l  CWE-33: Path Traversal: '....' (Multiple Dot)
l  CWE-34: Path Traversal: '....//’
l  CWE-35: Path Traversal: '.../...//'

10

Other Bug Descriptions Have
Problems, Too.
l  Software Fault Patterns (SFP)

–  “factor” weaknesses into parameters, but
–  don’t include upstream causes or consequences,
–  and are based solely on CWEs.

l  Semantic Templates
–  collect CWEs into four general areas

•  Software-fault
•  Weakness
•  Resource/Location
•  Consequences

–  but are guides to aid human comprehension.
11

We don’t (yet) know the best
structure for bug descriptions.

12

Periodic Table Took Centuries
l  Greeks used the terms element and atom.
l  Aristotle: everything is a mix of Earth, Fire, Air, or Water.
l  Alchemists in the Middle Ages cataloged materials like

alcohol, sulfur, mercury, and salt.
l  Lavoisier listed 33 elements and

distinguished metals and non-metals.
–  including oxygen, nitrogen, hydrogen, phosphorus,

mercury, zinc, sulfur, light, and caloric.
l  Dalton realized “atoms of same element are

identical in all respects, particularly weight.”
l  Mendeleev’s table embodied centuries of

knowledge that reflects atomic structure
and forecast properties of missing
elements.

Specify Terrestrial Location with
Latitude, Longitude, and Elevation

14

Fingerprints

15

l  Classified as loop, whorl, or arch.
l  Retrieved by minutia

Linnaeus’ Taxonomy Categorizes
Living Things into a Hierarchy.

16

Chemists Have Detailed Systems
to Describe Molecules

17

Zofran ODT is: C18H19N3O

(±) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one

Integers Have Prime Factors

18

43,747,298,756 = 2 × 2 × 7 × 641
 × 1471 × 1657

70 = 2 × 5 × 7

6 = 2 × 3

Our vision is to have
a precise descriptive language for bugs

organized in a “natural” way.
(e.g., vocabulary, grammar, ontology, etc. whatever

best fits the information)

19

Outline

l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

20

We Start With Buffer Overflow

l  Our Definition:
The software can access through a buffer a memory
location that is not allocated to that buffer.

l  Clearer than CWE-119: Improper Restriction of
Operations within the Bounds of a Memory Buffer:
“The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary of
the buffer.”

21

Buffer Overflow: Attributes

22

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.

23

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).

24

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

25

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
•  Method:

Ø  Indexed, (bare) Pointer.

26

t = buf[j]; *buf = mind();

•  Access:
Ø  Read, Write.

•  Side:
Ø  Below (before, under, or lower), Above (after, over, or upper).

•  Segment (memory area):
Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

•  Method:
Ø  Indexed, (bare) Pointer.

•  Magnitude (how far outside):
Ø  Minimal (just barely outside), Moderate, Far (e.g. 4000).

Buffer Overflow: Attributes

27

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
•  Method:

Ø  Indexed, (bare) Pointer.
•  Magnitude (how far outside):

Ø  Minimal (just barely outside), Moderate, Far (e.g. 4000).
•  Data Size (how much is outside):

Ø  Minimal, Some (e.g. half dozen), Gazillion.

28

N a t i o n a l I n s t i t u t e o f

Buffer Overflow: Causes

 Buffer Overflow
Attributes:

• Access:
ü Read, Write.

• Side:
ü Below (before or under),

Above (after or over)
• Segment (memory area):
ü Heap, Stack, BSS,

Data (initialized), Code (text)
• Method:
ü Indexed, (bare) Pointer.

• Magnitude (how far outside):
ü Minimal (just barely), Moderate,

Far (e.g. 4000).
• Data Size (how much data) :
ü Minimal, Some, Gazillion.

No NULL
Termination

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Incorrect
Conversion

Incorrect Calculation

Off By One

User Input Not
Checked Properly

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

29

The graph of causes shows:
Ø  There are only 3 proximate causes of buffer overflows:

•  Destination is too small
•  Data is too big
•  Wrong index / pointer out of range.

Ø  Those 3 have preceding causes that may lead to them.

 Buffer Overflow
Attributes:

• Access:
ü Read, Write.

• Side:
ü Below (before, under, or lower),

Above (after, over, or upper).
• Segment (memory area):
ü Heap, Stack, BSS (uninitialized data),

Data (initialized), Code (text)
• Method:
ü Indexed, (bare) Pointer.

• Magnitude (how far outside):
ü Minimal (just barely), Moderate,

Far (e.g. 4000).
• Data Size (how much data) :
ü Minimal, Some, Gazillion.

Buffer Overflow: Consequences

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

30

Buffer Overflow: Causes,
Attributes, and Consequences

 Buffer Overflow
Attributes:

•  Access:
ü Read, Write.

•  Side:
ü Below (before, under, or lower),

Above (after, over, or upper).
•  Segment (memory area):
ü Heap, Stack, BSS,

Data (initialized), Code (text)
•  Method:
ü Indexed, (bare) Pointer.

•  Magnitude (how far outside):
ü Minimal (just barely), Moderate,

Far (e.g. 4000).
•  Data Size (how much data):
ü Minimal, Some, Gazillion.

No NULL
Termination

Causes Consequences

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Incorrect
Conversion

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

User Input Not
Checked Properly

The graph of causes shows:
Ø  There are only 3 proximate causes of buffer overflows:

•  Destination is too small
•  Data is too big
•  Wrong index / pointer out of range.

Ø  Those 3 have preceding causes that may lead to them.

31

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Outline

l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

32

Example 1: Heartbleed
CVE-2014-0160
Heartbleed buffer overflow is:

–  caused by Data Too Big
–  because of User Input not Checked Properly
–  where there was a Read that was After the end, Far outside
–  reading a Gazillion bytes
–  from a buffer in the Heap
–  that may be exploited for Information Exposure
–  when enabled by Sensitive Information Uncleared Before

Release (CWE-226).

The (1) TLS and (2) DTLS implementations … do not properly
handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory
via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, …

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

33

 Buffer Overflow
Attributes:

•  Access:
ü Read, Write.

•  Side:
ü Below (before, under, or lower),

Above (after, over, or upper).
•  Segment (memory area):
ü Heap, Stack, BSS,

Data (initialized), Code (text)
•  Method:
ü Indexed, (bare) Pointer.

•  Magnitude (how far outside):
ü Minimal (just barely), Moderate,

Far (e.g. 4000).
•  Data Size (how much data):
ü Minimal, Some, Gazillion.

No NULL
Termination

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

User Input Not
Checked Properly

34

Example 1: Heartbleed
CVE-2014-0160

Sensitive
Info Uncleared Before

Release

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Incorrect
Conversion

Example 2: Ghost
CVE-2015-0235

Ghost — gethostbyname buffer overflow is
–  caused by a Destination Too Small
–  because of an Incorrect Calculation, specifically Missing

Factor,
–  where there was a Write that was After the end by a

Moderate number of bytes
–  of a buffer in the Heap
–  that may be exploited for Arbitrary Code Execution.

Heap-based buffer overflow in the __nss_hostname_digits_dots
function … allows context-dependent attackers to execute
arbitrary code via vectors related to the (1) gethostbyname or (2)
gethostbyname2 function, aka “GHOST.”

35

Example 3: Chrome
CVE-2010-1773

Chrome WebCore — render buffer overflow is
–  caused by a Wrong Index
–  because of an Incorrect Calculation, specifically Off by One,
–  where there was a Read that was Below the start by a Minimal

amount
–  of a buffer in the Heap
–  that leads to use of User Input Not Checked Properly
–  that may be exploited for Information Exposure, Arbitrary Code

Execution, or Program Crash leading to Denial of Service.

Off-by-one error in the toAlphabetic function …, allows remote
attackers to obtain sensitive information, cause a denial of service
(memory corruption and application crash), or possibly execute
arbitrary code via vectors related to list markers for HTML lists, …

36

Example 4: cppCheck Warning
Classes

Warning								\								A*ribute:	 Access	 Side	 Indexed	 Size	 Magnitude	
Array	Index	Out	Of	Bounds	 -	 -	 Yes	 -	 -	
Buffer	Access	Out	Of	Bounds	 -	 -	 -	 -	 -	

Out	Of	Bounds	 -	 -	 -	 -	 -	
Nega8ve	Index	 -	 Below	 Yes	 -	 -	
Insecure	Cmd	Line	Args	 Write	 Above	 -	 -	 -	
Write	Outside	Buffer	Size	 Write	 -	 -	 -	 -	
Invalid	Scanf	 Write	 Above	 -	 Varies	 Moderately	

outside	

CppCheck	is	a	sta8c	analysis	tool.	Table	1	provides	descrip8ons	of	
the	buffer	overflow	parts	of	its	warning	classes.	

37

Example 5: Refactoring CWEs
Applying our definition and attributes, Buffer Overflow CWEs can be
categorized as follows.

 before
 a)er
 either end
 stack
 heap

read
 127
 126
 125

write
 124
 120
 123, 787
 121
 122

either r/w
 786
 788

Table	2.	Buffer	Overflow	CWEs	Organized	by	AQribute.	

38

Focus On: Injection
l  CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection'):
The software constructs all or part of an OS command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the
intended OS command when it is sent to a downstream
component.

à “Using input”, “intended command”, and “correctly
neutralizing” are imprecise. Our definition precisely defines
“using input” and “intended command”. We do not include
“correctly neutralizing”, because it simply means that
intended OS command cannot be modified.

l  Our Definition: For a common trusted input and two
untrusted inputs, the sub-sequences of code symbols
in the output program differ in a way that is not
included in a description of a given syntax of allowed
different sequences.

39

Injection: Causes,
Attributes, and Consequences

 Injection
Attributes:

•  Language/Resource:
ü  SQL query, Regular expression,

Bash shell command (OS
injection), XML/Xpath, http,
C printf format string, PHP
(eval), file path, etc.

•  Special Element:
ü  Quotes (‘ or “) – enclosing query

strings, Line delimiter (CRLF)
– separating headers, Angle
brackets and ampersand (< or >
or &) – web scripting elements,
“..” and “/” – path traversal, etc.

Complete Host
Takeover

Arbitrary Code
Execution

Computer Worm
Propagation

Denial Of
Access

Denial Of
Service

40

Loss of
Confidentiality/
Authentication/
Authorization/

Integrity

Information
Exposure

Information
Loss

Examples of immediate consequences:
•  Add Additional Command – turn "touch file" into "touch file; rm /

etc/passwd“.
•  Mask Legitimate Commands or Information – turn "WHERE

login == 'name' " into "WHERE login == 'name' && 1=1 --'r' " so
that the check for password is skipped.

Mask Legitimate
Commands or

Information

Add additional
command

Failure to Remove
Offending Characters

Failure to “Escape"
Offending Characters

Failure to Reject
Input Altogether

Input Not
Checked Properly

Permissive Whitelist

Incomplete Blacklist

Causes Consequences

Input Not
Sanitized Properly

Example 1: Yoggie Pico
CVE-2007-3572

Yoggie Pico and Pico Pro — remote take over is
–  caused by Input Not Checked Properly
–  specifically Incomplete Blacklist,
–  where injection was through a shell command
–  using a back tick (`) special element
–  to Add Command that adds a user-chosen root password to

/etc/shadow allowing Arbitrary Code Execution.

Incomplete blacklist vulnerability in cgi-bin/runDiagnostics.cgi in the
web interface on the Yoggie Pico and Pico Pro allows remote
attackers to execute arbitrary commands via shell metacharacters in
the param parameter, as demonstrated by URL encoded "`" (backtick)
characters (%60 sequences).

41

Outline

l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

42

Migrating From CWEs

l  Add descriptions in our notation to CWEs.
l  Tool makers describe their classes with it.

CVEs and others describe bugs with it.
l  They will say “This is like CWE-121, but has

read access”, people will just use our
notation. (CWE descriptions serve as
prototypes.)

43

Next Steps
Ø  Apply our technique to more examples
Ø  Work out another weakness class:

•  Authentication Attempts (CWE-307)
Ø  Define more “vocabulary” – add terms, more

formal, refine
Ø  Elaborate causes and consequences.

44

Focus On: Authentication
l  CWE-307: Improper Restriction of Excessive

Authentication Attempts:
The software does not implement sufficient measures
to prevent multiple failed authentication attempts
within in a short time frame, making it more
susceptible to brute force attacks.

l  à “Multiple” and “short” are vague. Our definition
recognizes that CWE-307 actually represents a set of
weaknesses, each of which satisfies particular institution-
specific definitions of “multiple” and “short”.

l  Our Definition: The software does not limit the
number of failed authentication attempts or allows
more than a specified number of failed authentication
attempts within a specified time period.

45

Some Benefits Are:

l  Help programmers write better code, because they
understand more clearly.

l  Better train computer scientists and cybersecurity
workers.

l  More precisely explain vulnerabilities (e.g. Heartbleed,
Shellshock, or Ghost).

l  Develop new techniques to mitigate or prevent
vulnerabilities.

l  More precisely describe the classes of bugs that tools
cover (e.g. buffer overflow, hard-coded password, or
SQL injection)

l  Improve existing classifications.

46

Society has 3 options:

l  Learn how to make software that works

l  Limit size or authority of software

l  Accept failing software

Thanks!	

47	

48

extra slides

ADDITIONAL SLIDES

49

Software Assurance Reference Dataset
(SARD)

50

Need:
l  Suites of programs with

known bugs to calibrate
software assurance tools

Objective:
l  Collect and develop sets of

programs with known bugs in
various languages, with bugs
of various classes, and bugs
woven into various code
structures

http://samate.nist.gov/SARD/

Software Assurance Reference Dataset
(SARD)

51

l  Over 140 000 cases in C, C++, Java, C#, and PHP
l  Contributions also from Fortify, Defence R&D

Canada, Klocwork, Kratkiewicz, MIT Lincoln
Laboratory, Secure Software, Praxis, etc.

l  NSA Juliet 1.0 and 1.2 - over 80 000 small,
synthetic test cases in C, C++, and Java covering
150 bug classes

l  IARPA STONESOUP - 15 000 cases based on 12
web apps with injected bug from 25 classes

l  2000 PHP cases developed at TELECOM Nancy
l  Users can search and download by language,

weakness, size, content, etc.

51	

