
SARD: A Software Assurance
Reference Dataset

Paul E. Black
SAMATE Project

Software Quality Group
Software & Systems Division

NIST

Certain trade names and company products
are mentioned in the text or identified. In no
case does such identification imply
recommendation or endorsement by the
National Institute of Standards and
Technology (NIST), nor does it imply that the
products are necessarily the best available
for the purpose.

15 September 2015 Paul E. Black 2

What is Static Analysis?

Java,
C,

C++,
…

binary

3	

What is Static Analysis?

Weaknesses
&

Vulnerabilities

Java,
C,

C++,
…

binary

Static
Analyzer

l  Examine	
 source	
 code	
 or	
 binary	
 for	
 weaknesses,	

adherence	
 to	
 guidelines,	
 etc.	

l  Level	
 of	
 formality	
 may	
 vary	
 from	
 program	
 “proofs”	
 to	

heuristics	

l  Level	
 of	
 automation	
 may	
 vary	
 from	
 analysis	
 assistant	

to	
 fully	
 automated	

4	

Weaknesses
&

Vulnerabilities SARD
Static

Analyzer

5	

Known
Weaknesses

&
Vulnerabilities

programs
with

known
bugs

Testing Static Analysis Tools

Three	
 Desired	
 Characteris1cs	
 of	

Test	
 Suites	
 	

l  Needs	

–  Test	
 cases	
 applicable	
 to	

production	
 code	

–  Statistically	
 significant	

number	
 of	
 test	
 cases	

–  Test	
 cases	
 with	
 ground	

truth:	
 known	
 bugs	

l  Objective:	
 	

–  Collect	
 and	
 develop	
 test	

cases	
 with	
 those	

characteristics	

Known	
 Bugs	

Produc1on	

Code	

Sta1s1cally	

	
 	
 Significant	

Perfect	

Test	

Suite	

6	

l  Achievements	

–  Collect	
 millions	
 of	
 tool	

warnings	
 for	
 open	

source	
 software	
 from	

SATE	

–  Manually	
 analyze	

hundreds	
 of	
 reported	

bugs	
 (CVEs)	
 in	
 open	

source	
 software	
 to	

establish	
 ground	
 truth	

–  Juliet	
 test	
 suite:	

hundreds	
 of	
 thousands	

of	
 synthetic	
 test	
 cases	

with	
 known	
 bugs	

Known	
 Bugs	

Produc1on	

Code	

Sta1s1cally	

	
 	
 Significant	

CVE	

SATE	

Juliet	

Three	
 Desired	
 Characteris1cs	
 of	

Test	
 Suites	
 	

7	

Material to Properly Test Tools
l  Static analysis
l  Dynamic bug detection

8

Software Assurance Reference Dataset
(SARD)

9

Need:
l  Suites of programs with

known bugs to calibrate
software assurance tools

Objective:
l  Collect and develop sets of

programs with known bugs in
various languages, with bugs
of various classes, and bugs
woven into various code
structures

http://samate.nist.gov/SARD/

Software Assurance Reference Dataset
(SARD)

10

l  Over 89 000 cases in C, C++, Java, C#, and PHP
l  Contributions also from Fortify, Defence R&D

Canada, Klocwork, Kratkiewicz, MIT Lincoln
Laboratory, Secure Software, Praxis, etc.

l  NSA Juliet 1.2 - over 86 000 small, synthetic test
cases in C, C++, and Java covering 150 bug
classes

l  IARPA STONESOUP Phase 3 - 15 000 cases based
on 12 web apps with injected bug from 25 classes

l  2000 PHP cases developed at TELECOM Nancy
l  Users can search and download by language,

weakness, size, content, etc.
l  Test cases from Static Analysis Tool Exposition

(SATE)

10	

Juliet 1.2 Test Suite

l  86 864 small C/C++ and Java programs for
almost two hundred weakness classes

l  Each case is one or two pages of code
l  Described in IEEE Computer, Oct 2012

11

IARPA STONESOUP Phase 3
cases
l  7770 cases in Java and C
l  Real programs with flaw inserted. Each

case has inputs to trigger flaw and “safe”
inputs

l  Each case has inputs triggering the
vulnerability, as well as “safe” inputs

l  Cover weaknesses in Integer Overflow,
Tainted Data, Command Injection, Buffer
Overflow, Null Pointer, etc.

Kratkiewicz MIT cases
l  1164 cases in C for CWE-121 Stack-Based

Buffer Overflow
l  Created to investigate static analysis and

dynamic detection methods
l  Each case is one of four variants:

–  access within bounds (ok)
–  access just outside bound (min)
–  somewhat outside bound (med)
–  far outside bound (large)

l  Code complexities: index, type, control, …

Other SRD Content
l  Zitser, Lippmann, & Leek MIT cases

–  28 slices from BIND, Sendmail, WU-FTP, etc.
l  Fortify benchmark 112 C and Java cases
l  Klocwork benchmark 40 C cases
l  25 cases from Defence R&D Canada
l  Robert Seacord, “Secure Coding in C and

C++” 69 cases
l  Comprehensive, Lightweight Application

Security Process (CLASP) 25 cases
l  329 cases from our static analyzer suite

Common	
 Nomenclature	

Common	
 Weakness	

Enumeration	
 (CWE)	

l  A	
 “dictionary”	
 of	
 every	
 class	

of	
 bug	
 or	
 flaw	
 in	
 software	

l  More	
 than	
 600	
 distinct	

classes,	
 e.g.,	
 buffer	
 overflow,	

directory	
 traversal,	
 OS	

injection,	
 race	
 condition,	

cross-­‐site	
 scripting,	
 hard-­‐
coded	
 password,	
 and	

insecure	
 random	
 numbers	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 http://cwe.mitre.org/	

Common	
 Vulnerability	

Enumeration	
 (CVE)	

l  A	
 list	
 of	
 instances	
 of	
 security	

vulnerabilities	
 in	
 software	

l  More	
 than	
 9000	
 CVEs	
 were	

assigned	
 in	
 2014	

Heartbleed	
 is	
 CVE-­‐2014-­‐0160	

l  NIST’s	
 National	
 Vulnerability	

Database	
 (NVD)	
 has	
 fixes,	

severity	
 ratings,	
 etc.	
 for	
 CVEs	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 https://cve.mitre.org/	

15	

Common Weakness Enumeration
(CWE) is a Mess
l  CWE is widely used - by far the best dictionary of

software weaknesses. Many tools, projects, etc.
are based on CWE.

l  But definitions are imprecise and inconsistent.
l  CWEs are “coarse grained”: they bundle lots of

stuff, like consequences and likely attacks.
l  The coverage is uneven, with some combinations

well represented and others not represented at all.
l  No mobile weaknesses, eg., battery drain, physical

sensors (GPS, gyro, microphone, hi-res camera),
unencrypted wireless communication, etc.

16

Definitions are Imprecise
l  CWE-119: Improper Restriction of Oper-

ations within the Bounds of a Memory
Buffer:
“The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary
of the buffer.”

•  Note that “read from or write to a memory

location” is not tied to the buffer!

17

Overflow Has Gaps in Coverage
l  CWE-124: Buffer Underwrite (’Buffer

Underflow') and CWE-120: Buffer Copy
without Checking Size of Input ('Classic
Buffer Overflow') vs.

l  CWE-121: Stack-based Buffer Overflow and
CWE-122: Heap-based Buffer Overflow

l  CWE-127: Buffer Under-read and CWE-126:
Buffer Over-read

l  but no read-stack and read-heap versions.

18

… and a buncha’ others, too
l  CWE-123: Write-what-where Condition
l  CWE-125: Out-of-bounds Read
l  CWE-787: Out-of-bounds Write
l  CWE-786: Access of Memory Location Before

Start of Buffer
l  CWE-788: Access of Memory Location After End

of Buffer
l  CWE-805: Buffer Access with Incorrect Length

Value
l  CWE-823: Use of Out-of-range Pointer Offset

19

Path Traversal is too Detailed
l  CWE-23: Relative Path Traversal
l  CWE-24: Path Traversal: '../filedir’
l  CWE-25: Path Traversal: '/../filedir’
l  CWE-26: Path Traversal: '/dir/../filename’
l  CWE-27: Path Traversal: 'dir/../../filename’
l  CWE-28: Path Traversal: '..\filedir’
l  CWE-29: Path Traversal: '\..\filename’
l  CWE-30: Path Traversal: '\dir\..\filename’
l  CWE-31: Path Traversal: 'dir\..\..\filename’
l  CWE-32: Path Traversal: '...' (Triple Dot)
l  CWE-33: Path Traversal: '....' (Multiple Dot)
l  CWE-34: Path Traversal: '....//’
l  CWE-35: Path Traversal: '.../...//'

20

Other Bug Descriptions Have
Problems, Too.
l  Software Fault Patterns (SFP)

–  “factor” weaknesses into parameters, but
–  don’t include upstream causes or consequences,
–  and are based solely on CWEs.

l  Semantic Templates
–  collect CWEs into four general areas

•  Software-fault
•  Weakness
•  Resource/Location
•  Consequences

–  but are guides to aid human comprehension.
21

We Need Better Vocabulary
l  Finer grained, common vocabulary to

describe bugs
–  Common Weakness Enumeration (CWE) is

widely-used, but does not match well the
classes that tools report. Tools’ classes are
precise, but are hard to match to other tools.

22

Precise Medical Vocabulary
•  Medical	
 professionals	
 have	
 terms	
 to	
 precisely	
 name	

muscles,	
 bones,	
 organs,	
 condi1ons,	
 diseases,	
 and	
 so	
 forth.	

23

Periodic Table Took Centuries
l  Greeks used the terms element and atom.
l  Aristotle: everything is a mix of Earth, Fire, Air, or Water.
l  Alchemists in the Middle Ages cataloged materials like

alcohol, sulfur, mercury, and salt.
l  Lavoisier listed 33 elements and

distinguished metals and non-metals.
–  including oxygen, nitrogen, hydrogen, phosphorus,

mercury, zinc, sulfur, light, and caloric.
l  Dalton realized “atoms of same element are

identical in all respects, particularly weight.”
l  Mendeleev’s table embodied centuries of

knowledge that reflects atomic structure
and forecast properties of missing
elements.

Specify Location with
Latitude, Longitude, and Elevation

25

Fingerprints

26

l  Classified as loop, whorl, or arch.
l  Retrieved by minutia

Chemists Have Detailed Systems
to Describe Chemicals

27

Zofran ODT is: C18H19N3O

(±) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one

Integers Have Prime Factors

28

43,747,298,756 = 2 × 2 × 7 × 641
 × 1471 × 1657

70 = 2 × 5 × 7

6 = 2 × 3

Our vision is to have
a precise descriptive language for bugs

organized in a “natural” way.
(e.g., vocabulary, grammar, taxonomy, ontology, etc.)

29

Outline
l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

30

We Start With Buffer Overflow
l  Our Definition:

The software can access through a buffer a memory
location that is not allocated to that buffer.

l  Clearer than CWE-119: Improper Restriction of
Operations within the Bounds of a Memory Buffer:
“The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary of
the buffer.”

31

Buffer Overflow: Attributes

32

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.

33

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).

34

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

35

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
•  Method:

Ø  Indexed, (bare) Pointer.

36

t = buf[j]; *buf = mind();

•  Access:
Ø  Read, Write.

•  Side:
Ø  Below (before, under, or lower), Above (after, over, or upper).

•  Segment (memory area):
Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

•  Method:
Ø  Indexed, (bare) Pointer.

•  Magnitude (how far outside):
Ø  Minimal (just barely outside), Moderate, Far (e.g. 4000).

Buffer Overflow: Attributes

37

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
•  Method:

Ø  Indexed, (bare) Pointer.
•  Magnitude (how far outside):

Ø  Minimal (just barely outside), Moderate, Far (e.g. 4000).
•  Data Size (how much is outside):

Ø  Minimal, Some (e.g. half dozen), Gazillion.

38

N a t i o n a l I n s t i t u t e o f

Buffer Overflow: Causes
 Buffer Overflow

Attributes:
• Access:
ü Read, Write.

• Side:
ü Below (before or under),
Above (after or over)

• Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

• Method:
ü Indexed, (bare) Pointer.

• Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

• Data Size (how much data) :
ü Minimal, Some, Gazillion.

No NULL
Termination

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Incorrect
Conversion

Incorrect Calculation

Off By One

User Input Not
Checked Properly

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

39

The graph of causes shows:
Ø  There are only 3 proximate causes of buffer

overflows:
•  Destination is too small
•  Data is too big
•  Wrong index / pointer out of range.

Ø  Those 3 have preceding causes that may lead
to them.

 Buffer Overflow
Attributes:

• Access:
ü Read, Write.

• Side:
ü Below (before, under, or lower),
Above (after, over, or upper).

• Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

• Method:
ü Indexed, (bare) Pointer.

• Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

• Data Size (how much data) :
ü Minimal, Some, Gazillion.

Buffer Overflow: Consequences

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

40

Buffer Overflow: Causes,
Attributes, and Consequences

 Buffer Overflow
Attributes:

•  Access:
ü Read, Write.

•  Side:
ü Below (before, under, or lower),
Above (after, over, or upper).

•  Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

•  Method:
ü Indexed, (bare) Pointer.

•  Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

•  Data Size (how much data):
ü Minimal, Some, Gazillion.

No NULL
Termination

Causes Consequences

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Incorrect
Conversion

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

User Input Not
Checked Properly

The graph of causes shows:
Ø  There are only 3 proximate causes of buffer

overflows:
•  Destination is too small
•  Data is too big
•  Wrong index / pointer out of range.

Ø  Those 3 have preceding causes that may lead
to them. 41

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Outline
l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

42

Example 1: Heartbleed
CVE-2014-0160
Heartbleed buffer overflow is:

–  caused by Data Too Big
–  because of User Input not Checked Properly
–  where there was a Read that was After the end, Far outside
–  reading a Gazillion bytes
–  from a buffer in the Heap
–  that may be exploited for Information Exposure
–  when enabled by Sensitive Information Uncleared Before

Release (CWE-226).

The (1) TLS and (2) DTLS implementations … do not properly
handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory
via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, …

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

43

44

from
http://xkcd.com/1354/

Example 1: Heartbleed

 Buffer Overflow
Attributes:

•  Access:
ü Read, Write.

•  Side:
ü Below (before, under, or lower),
Above (after, over, or upper).

•  Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

•  Method:
ü Indexed, (bare) Pointer.

•  Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

•  Data Size (how much data):
ü Minimal, Some, Gazillion.

No NULL
Termination

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

User Input Not
Checked Properly

45

Example 1: Heartbleed
CVE-2014-0160

Sensitive
Info Uncleared Before

Release

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Incorrect
Conversion

Example 2: Ghost
CVE-2015-0235

Ghost — gethostbyname buffer overflow is
–  caused by a Destination Too Small
–  because of an Incorrect Calculation, specifically Missing

Factor,
–  where there was a Write that was After the end by a

Moderate number of bytes
–  of a buffer in the Heap
–  that may be exploited for Arbitrary Code Execution.

Heap-based buffer overflow in the __nss_hostname_digits_dots
function … allows context-dependent attackers to execute
arbitrary code via vectors related to the (1) gethostbyname or (2)
gethostbyname2 function, aka “GHOST.”

46

Example 3: Chrome
CVE-2010-1773

Chrome WebCore — render buffer overflow is
–  caused by a Wrong Index
–  because of an Incorrect Calculation, specifically Off by One,
–  where there was a Read that was Below the start by a Minimal

amount
–  of a buffer in the Heap
–  that leads to use of User Input Not Checked Properly
–  that may be exploited for Information Exposure, Arbitrary Code

Execution, or Program Crash leading to Denial of Service.

Off-by-one error in the toAlphabetic function …, allows remote
attackers to obtain sensitive information, cause a denial of service
(memory corruption and application crash), or possibly execute
arbitrary code via vectors related to list markers for HTML lists, …

47

Example 4: Refactoring CWEs
Applying our definition and attributes, Buffer Overflow CWEs can be
categorized as follows.

 before
 a)er
 either end
 stack
 heap

read
 127
 126
 125

write
 124
 120
 123, 787
 121
 122

either r/w
 786
 788

Table	
 2.	
 Buffer	
 Overflow	
 CWEs	
 Organized	
 by	
 AUribute.	

48

