
28 January 2008 Paul E. Black

SAMATE Project Update

Paul E. Black
Romain Gaucher
National Institute of Standards and Technology
http://samate.nist.gov/
paul.black@nist.gov
romain.gaucher@nist.gov

28 January
2008

Paul E. Black

Overview

Software Assurance Metrics And Tool Evaluation
(SAMATE) project is sponsored in part by DHS
Current areas of concentration

Web application scanners
Source code security analyzers
Tool effectiveness studies

New areas
Binary analyzers
Static analyzer tool exposition (SATE)
Software labels
Malware research protocols

Web site http://samate.nist.gov/

28 January
2008

Paul E. Black

Researching Risky Software

Many people research malware, but there
are no widely accepted protocols.
Biological research has defined
levels with associated practices,
safety equipment, and facilities.
Some approaches are

Weakened programs (auxotrophs)
Programs that ALERT
Outgoing firewalls
Isolated networks

28 January
2008

Paul E. Black

Software Facts Label
Software Facts should:

Voluntary
Absolutely simple to produce
Have a standard format for other claims

What could be easily supplied?
Source available? Yes/No/Escrowed
Is default installation secure?
Accessed: network, disk, ...
What configuration files? (registry, ...)
Certificates (eg, "No Severe weaknesses
found by CodeChecker ver. 3.2")

Cautions
A label can give false confidence.
A label shut out better software.
Labeling diverts effort from real
improvements.

28 January
2008

Paul E. Black

SATE

Static Analysis Tool Exposition
http://samate.nist.gov/index.php/SATE

Goals:
Enable research based on large test sets
Encourage improvement of tools
Speed adoption of tools

Protocol
1. Choose test set of programs (in C & Java)
2. Tool makers run tools on programs
3. Organizers develop a “master list” and analyze results
4. All report their experience at June 2008 workshop

Currently choosing test set
do you have any to share?

28 January
2008

Paul E. Black

Java,
Ada,
C++,

…
binary

Weaknesse
s
&

Vulnerabiliti
es

Analyzer

Source Code Security Analyzers

C++ test suite done
Covers 21 weaknesses
38 for weakness, 38 for false positives, 14 for weakness
suppression

prototype Test Case Generator demonstrated
12 formalized CWE definitions

Web Application Security
Scanners

Problems and Solutions for evaluating the tools

Romain Gaucher
January 31st 2oo8

NIST / SAMATE

Outline

1. Web Applications | Security | Scanners
2. NIST & Web Apps Security Scanner
3. Why it's hard to test a web apps scanner
4. Our solution: 3 Components based diagnostic
5. Conclusions

Web Application
security oriented characterization

A collection of technologies, server-side or client-side. But
roughly, a webapp is:

HTTP communication between client/server
HTML/XML as main content
JavaScript, CSS, Flash and other client-side technologies to
increase the application usability
HTTP is stateless, so Cookies/Sessions/POST/GET are
used to maintain the state artificially

Web Application Security

A Web Application Security Scanner

Black-box remote tool: access the website like a user
Find security flaws by attacking the web site
The tool performs 3 operations:
1. Crawl/Extract/Understand information
2. Attack the website
3. Probe/Report the successful attacks

NIST & Web Apps Security Scanner

The role of NIST is to help the user to choose a tool they need.

Specification released
Simple test cases in the SRD
Test plan in progress...

Our first try: the test suites

Test suites:
Web application with seeded vulnerabilities
Configurable defense mechanisms on each vulnerability

Experiment results & conclusions:
simple defense mechanisms are giving hard time to the
tools
they failed at finding some vulnerabilities and we didn't know
why
Our test application is synthetic...

Challenge for a scanner

Authentication mechanisms
With CAPTCHA? Ajax login forms? Client-Side certificate?

Client-Side technologies
JavaScript, Flash, Aero, Silverlight, ActiveX,...

Application logic
http://foo.com/index.php?template=accounts_page
http://foo.com/index.php?template=profile_page

Session handling: URL/GET/POST/COOKIES
http://foo.com/09a9djs9/admin
http://foo.com/?sid=09a9djs9
http://foo.com cookie: sid=09a9djs9

Attacking is also a problem...

Example of different XSS attacks

Simple attack, can inject HTML:
"><script>alert(42)</script>
">
In HTML tag if single quotes & HTML entities escaped:
' onmouseover='alert(42)' foo='
' style=expression(alert(42)) foo='
Filter evasion using character encodings:
¼script¾alert(¢XSS¢)¼/script¾
+ADw-SCRIPT+AD4-alert('XSS');+ADw-/SCRIPT+AD4-

3 Components to diagnose the
problems

Our prime interest is to understand why a tool didn't find a
particular vulnerability

The solution: inserting sensors during the assessment
Seeded vulnerabilities
Looking at the attack surface coverage
Probing the type of attacks (with granularity)

Seeded vulnerabilities with levels of
defense

A level of defense is a combination of orthogonal defense
mechanisms

Each vulnerability in our test suites have different levels of
defenses (XSS Level 0, SQL Injection Level 2, ...)
For testing, we know where the vulnerabilities are

Attack Surface Coverage

In our context, Attack Surface is all the places where a problem
is most likely to occur

Track the scanner in pages, scripts and functions
Check that the scanner generates errors from the test
application
Look at sequences and paths

Probing the type of attacks

Check the type of attacks the scanner did:
Did the tool check for Cross-Site Scripting, SQL
Injection, Remote File Inclusion,...?

What are the granularities of the attacks:
Did the tool attack with sophisticated attacks? ex: did it
try encodings?

Combining the data while testing

Conclusions

By instrumenting our test application we can answer the
question why the tools didn't find some vulnerabilities

Future work:
Coming up with metrics
Tool profiling: Is this tool better for a particular type of
vulnerabilities? Will this fit with my website profile?

Contacts

SAMATE website, http://samate.nist.gov

Project Leader: Dr. Paul E. Black
Project Team Members:
Elizabeth Fong, Romain Gaucher,
Michael Kass, Michael Koo,
Vadim Okun, Will Guthrie,

