SATE V Workshop
CVE-selected Analysis Results

Bertrand STIVALET, NIST
stivalet [at] nist [dot] gov
March 14, 2014

The SAMATE Project
http://samate.nist.gov

N HNaﬁonal Institute of Standards and Technology

Outline

* Test sets

 CVE*-based analysis
— Procedure
— Observations

e Subset warnings analysis
— Procedure
— Observations

*CVE: Common Vulnerabilities and Exposures

Test sets

* PHP language:

Software Vulnerable Fixed version Lines of code Participating
version tools

Wordpress

Blogging 2 2.2.3 < 25k 1

platform

Certain instruments, software, materials, and organizations are identified in this paper to specify
the exposition adequately. Such identification is not intended to imply recommendation or

endorsement by NIST, nor is it intended to imply that the instruments, software, or materials are
necessarily the best available for the purpose.

Test sets

 C/C++ language:

Software Vulnerable Fixed version Lines of code Participating
version tools

Asterisk

PBX Platform 10.2.0 10.12.2 > 500k 8

Wireshark

Traffic 1.8.0 1.8.7 >2M 9

Analyzer

Test sets

* JAVA language:

Software Vulnerable Fixed version Lines of code Participating
version tools

JSPWiki

Wiki 2.5.124 2.5.139 > 60k 6

Openfire

Groupchat 3.6.0 3.6.4 > 200k 6
server

Methods:

Tool
warnings
~1.3M

CVE based

Selected

_/

Warning
subset

warnings

Analysis procedure for
CVE-selected test cases

Analyze for
correctness
and associate

data

Methods:

Tool
warnings
~1.3M

CVE based

Selected

_/

Warning
subset

warnings

Analysis procedure for
CVE-selected test cases

Analyze for
correctness
and associate

data

CVE-based analysis

e CVE: Commun Vulnerabilities and Exposures
* Focused on real-life exploitable vulnerabilities

e 73 CVEs in the 5 test cases
— |dentify source, sink or path locations
— Match to tool warnings

CVE-based observations

* CVEs found by tools: ¢ CWEs* found by tools:

Total CVEs: 73 Total CWEs: 35
40 33 16 19
459 CVEs found 46% CWEs found
(o) (0)
e CVEs not found 2 CWEs not found

*CWE: Common Weakness Enumeration

CVE-based observations

Infinite Loop
Uncontrolled Memory
Integer Overflow
Improper Restriction
Improper Neutralization

Signed to Unsigned
Integer Overflow
Uncontrolled Memory
Improper Restriction
Improper Neutralization

S

10

Top 5 CWEs present in CVEs

10

15

17

20

* Top 5 CWEs cover 37 of 73 CVEs

Top 5 CWEs found by tools

20

30

37

40

“Infinite loop” weakness has only
1 hit.

Methods:

Tool
warnings
~1.3M

CVE based

Selected

_/

Warning
subset

warnings

Analysis procedure for
CVE-selected test cases

Analyze for
correctness
and associate

data

Warning subset analysis

* Helps understand what weaknesses are found by tools
in real-world software

* 30 warnings from each tool report statistically selected
=> 900 warnings!

* Analyzers: bl
— Aure
— Bertrand — Sean (volunteer)
— Charles — Vadim

— Kamillia — Yan

Decision process

Correctness categories:

* True security weakness: a weakness relevant to security

True weakness: poor code quality

True but insignificant claim.

Not a weakness — false: invalid conclusion about the code

Weakness status unknown

Wordpress precision analysis

Precision = (#Useful Warnings) / (#All Warnings)

= (q+s) /(f+i+q+s) PNELE

- i: insignifican

=(6+9)/(10+5+6+9) q: quality
=50% S: security

12

10

|FaIse Insigniﬁcant| |Quality Security|

Useless warnings Useful warnings 14

Asterisk + Wireshark precision analysis

a5

40

35

30

25

20

15

10

5

0

25

20

15

10

18%

17% 37% 30% 23%
\’5" & ‘ \'}“ .(\c \)’} c)° Q(:DQ & \ | \'}"z 'b(?o\ | o,}\'c\
;.*f ° &5 F & ° & &°
Average precision: 31.8%
74% 25% 36% 12%

& @ & ‘ e & & &
& § & & & s & & & S
o & ef * & & * & Ml 4
5 & &
e 9 -« &

a5

35

25

20

15

10

JSPWiki + Openfire precision analysis

55%

71%

Java Testcases

Average precision: 60.8%

$ & ¥ & & @ ¥ & & @ R ¥ & & @ S A
W@ < > W & 3 3 @ & 2 o & < S & @ & & 3 & & &
& & & N C & Ny < o & & N C & Ny <
& o & o e o & e & o e & o 2 o o e
) & o)) & 9 & o & of
& & & & « &

22%

73%

79%

65%

16

Top 5 CWE groups

 Top CWE groups reported in and weaknesses
CWE GROUP - C OCCURENCE CWE GROUP - JAVA OCCURENCE
Buffer operation 82 Input validation 165
Code quality 69 Code quality 146
Denial of Service 46 API 109
Desigh and implementation 38 Design and implementation 90
Memory leak 38 Concurrency 83
CWE GROUP - PHP OCCURENCE
C Web 13
Input validation 6
TR o Confidentiality 5
Dynamic code 3
API 2

17

* Finalize our results analysis

* Precision varies a lot by tool and weakness
category

e Some CWEs are still difficult to find

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH FAIL!

3

http://xkcd.com/376/

We selected 30 warnings from each tool report (except one report, which had fewer
than 30 warnings) using the following procedure. Here, a warning class is a (weakness
name, severity), e.g., (Buffer Underrun, 1) pair. For one of the tools we could not use
weakness names to identify warning classes, so we used a (CWE id, severity) pair
instead.

The procedure is similar to that used in previous SATEs. The main difference is that
some tool reports had more than 30 warning classes with severities 1 through 4, so
we chose a random subset of warning classes.

While more warnings are needed, repeat for severity S (where S is from 1 through 4):
-- Randomly select one warning from each warning class (or a randomly selected
subset of warning classes if there are more warning classes left than warnings
needed) identified by a warning name (or by CWE id) with severity S.

 While more warnings are needed, repeat:

-- Randomly select 3 of the remaining warnings (or all remaining warnings if there
are less than 3 left) from each warning class with severity 1,

-- Randomly select 2 of the remaining warnings (or all remaining warnings if there
are less than 2 left) from each warning class with severity 2,

-- Randomly select 1 of the remaining warnings from each warning class (if it still
has any warnings left) with severity 3.

* If more warnings are still needed, select warnings from warning class with severity
4, then select warnings from warning class with severity 5.

If a tool did not assign severity, we assigned severity based on weakness names and
our understanding of their relevance to security.

We excluded from the selection process the warnings that refer exclusively to test
code, parser generator code, or external header files.

