
Bringing Static Analysis to the
Masses:

S. Tucker Taft
October 2010

© 2010 SofCheck, Inc.

2

Outline of Presentation

Why arenʼt the masses using static analysis yet?
What can we do about it?
Integration into the development process

 Integration into the IDE
 Integration into the build process
 Integration into the compiler
 Integration into the language

The design of ParaSail
 Parallel Specification and Implementation Language

© 2010 SofCheck, Inc.

3

Why arenʼt the Masses using Static
Analysis yet?

 This very question asked 10 days ago on Linked-In Static
Code Analysis Group (by Steve Heffner)

 Many answers, many scapegoats:
 Blame the customers?

 Organizational laziness
 Insecure programmers

 Blame the marketers?
 Early versions oversold
 Current versions undersold
 “Static Analysis” is a boring name

 Blame the tools?
 Too slow
 Too much noise
 Difficult to incorporate into build process

 Blame the President?! (it is an election year after all)

© 2010 SofCheck, Inc.

4

 Make static analysis an integral part of the development
process rather than after-the-fact

 Provide “One Button” ease of use
 Run at a speed comparable to rest of build

 Incremental analysis
 Provide multiple depths of analysis

 Similar to compiler optimization levels

 Provide success/failure indicator which can determine
overall success/failure of build
 Analogous to gccʼs “warnings are errors” (-Werror)
 False positives must be easy enough to accommodate by

suppressing or making a benign change
 Get tools to agree on what is/is not a problem

What can we do about it?

© 2010 SofCheck, Inc.

5

Levels of Integration

 Integration into the IDE
 IDE plugin architecture should make this easier
 e.g. Eclipse panel combines compiler and analyzer messages
 Just check one box, or click on one menu item to produce static

analysis results

 Integration into the Compiler/Linker
 Use compilerʼs front end
 Avoids front end incompatibilities and quirks
 No need for separate configuration for target, subdirectories,

libraries, etc.
 Examples: Green Hills DoubleCheck and AdaCore CodePeer
 Static analysis can then be seen as Enhanced Compile-Time

Checking -- less threatening?

© 2010 SofCheck, Inc.

6

Ultimate Step:
Integration Into the Language

 Eiffel helped to popularize notion of integrating annotations
with language

 SPARK is example of this based on Ada
 JML and standard annotations like @notnull do this for Java
 But... These still rely on run-time checks and/or on separate

tools -- we want compile-time checking.
 Can we require compile-time enforcement of all user

annotations and all language-defined checks (e.g. array
indexing, null pointer, etc.) as part of the language definition?
 Java sticks “toe” in the water with initialization of local variables

© 2010 SofCheck, Inc.

7

Is It Time to Design a Language for Safe
and Secure Parallel Programming?

 What is New?
 Hardware is no longer getting any faster

 It is getting more parallel, and hence more difficult to program safely
 Safety and Security is now everyoneʼs concern

 Everything is networked
 Deep and Precise Static Analysis is coming of age

 We can do sophisticated things in the compiler/linker

 What is True?
 80+% of safety-critical systems are developed in C and C++, two

of the least safe languages invented in the last 40 years
 In 10 years, many chips will have 64+ cores
 Software has become the focus of more and more investment in

almost all industries (e.g. 40% of R&D for automobiles)

© 2010 SofCheck, Inc.

8

Designing A New Language

 ParaSail -- Parallel Specification and Implementation
Language

 Designed to make parallel programming safe and
convenient

 All checking is done at compile-time
 No run-time checking, no run-time exceptions
 No race conditions
 User-definable safety and security constraints

 Heavy duty static analysis done by the compiler
 Program fails to compile if compiler canʼt prove assertions

© 2010 SofCheck, Inc.

9

What makes ParaSail Interesting?

 Pervasive (implicit and explicit) parallelism
 Inherently safe:

 preconditions, postconditions, constraints, etc., integrated
throughout the syntax

 no global variables; no dangling references
 no run-time checks -- all checking at compile-time
 no run-time exceptions

 Small number of flexible concepts:
 Modules, Types, Objects, Operations

 User-defined literals, indexing, aggregates, physical
units checking

 Itʼs hot off the presses

© 2010 SofCheck, Inc.

10

Parallelism in ParaSail

 Parallel by default
 parameters are evaluated in parallel
 have to work harder to make code run sequentially

 Easy to create even more parallelism
 Process(X) || Process(Y) || Process(Z);

 Lock-based and lock-free concurrent objects
 Lock-based objects also support queued access
 User-defined delay and timed call based on queued access

 No global variables
 Can only access or update variable state via parameters

 Compiler prevents aliasing and unsafe access to non-
concurrent variables

© 2010 SofCheck, Inc.

11

Examples of ParaSail Parallelism

Z := F(U) + G(V); // F(U) and G(V) eval’ed in parallel

Process(A) || Process(B) || Process(C); // All 3 in parallel

for X => Root then X.Left || X.Right while X not null

 concurrent loop

 Process(X); // Process called on each node in parallel

end loop;

concurrent interface Box<Element is Assignable<>> is

 function Create() -> Box; // Creates an empty box

 procedure Put(M : locked var Box; E : Element);

 function Get(M : queued var Box) -> Element; // May wait

 function Get_Now(M : locked const Box) -> optional Element;

end interface Box;

type Item_Box is Box<Item>;

var My_Box : Item_Box := Create();

© 2010 SofCheck, Inc.

12

Annotations in ParaSail

 Preconditions, Postconditions, Constraints, etc. all use
same Hoare-like syntax: {X != 0}

 All assertions are checked at compile-time
 no run-time checks inserted
 no run-time exceptions to worry about

 Location of assertion determines whether is a:
 precondition (before “->”)
 postcondition (after “->”)
 assertion (between statements)
 constraint (in type definition)

© 2010 SofCheck, Inc.

13

Examples of ParaSail Annotations

interface Stack <Component is Assignable<>; Size_Type is Integer<>> is

 function Max_Stack_Size(S : Stack) -> Size_Type {Max_Stack_Size > 0};

 function Count(S : Stack) -> Size_Type
 {Count <= Max_Stack_Size(S)};

 function Create(Max : Size_Type {Max > 0}) -> Stack
 {Max_Stack_Size(Create) == Max and Count(Create) == 0};

 function Is_Empty(S : Stack) -> Boolean
 {Is_Empty == (Count(S) == 0)};

 function Is_Full(S : Stack) -> Boolean
 {Is_Full == (Count(S) == Max_Stack_Size(S))};

 procedure Push(S : ref var Stack {not Is_Full(S)}; X : Component)
 {Count(S') == Count(S) + 1};

 function Top(S : Stack {not Is_Empty(S)}) -> Component;

 procedure Pop(S : ref var Stack {not Is_Empty(S)})
 {Count(S') == Count(S) - 1};

end interface Stack;

© 2010 SofCheck, Inc.

14

More Annotation Examples
type Age is new Integer<0 .. 200>;
type Youth is Age {Youth <= 20};
type Senior is Age {Senior >= 50};

function GCD(X, Y : Integer {X > 0 and Y > 0}) -> Integer
 {GCD > 0 and GCD <= X and GCD <= Y and
 X mod GCD == 0 and Y mod GCD == 0} is
 var Result := X; {Result > 0 and X mod Result == 0}
 var Next := Y mod X; {Next <= Y and Y - Next mod Result == 0}

 while Next != 0 loop
 {Next > 0 and Next < Result and Result <= X}
 const Old_Result := Result;
 Result := Next; {Result < Old_Result}
 Next := Old_Result mod Result;
 {Result > 0 and Result <= Y and Old_Result - Next mod Result == 0}
 end loop;

 return Result;
end function GCD;

© 2010 SofCheck, Inc.

15

Overall ParaSail Model

 ParaSail has four basic concepts:
 Module

 has an Interface, and Classes that implement it
 interface M <Formal is Int<>> is ...

 Type
 is an instance of a Module
 type T is M <Actual>;

 Object
 is an instance of a Type
 var Obj : T := T::Create(...);

 Operation
 is defined in a Module, and
 operates on one or more Objects of specified Types.

© 2010 SofCheck, Inc.

16

User-defined Indexing, Literals, etc.

 User-defined indexing
 Any type with operator “[]” defined
 Indexing function returns ref to component of parameter

 User-defined literals
 Any type with operator “from_univ” defined from:

 Univ_Integer (42), Univ_Real (3.141592653589793)
 Univ_String (“Hitchhikerʼs Guide”), Univ_Character (ʻπʼ)
 Univ_Enumeration (#red)

 User-defined ordering
 Define single binary operator “=?” (pronounced “compare”)
 Returns #less, #equal, #greater, #unordered
 Implies “<=“, “<“, “==“, “!=“, “>”, “>=“, “in X..Y”, “not in X..Y”

© 2010 SofCheck, Inc.

17

More Examples of ParaSail
concurrent class Box <Element is Assignable<>> is
 var Content : optional mutable Element; // starts null and can change size
 exports
 function Create() -> Box is // Creates an empty box
 return (Content => null);
 end function Create;

 procedure Put(M : locked var Box; E : Element) is
 M.Content := E;
 end procedure Put;

 function Get(M : queued var Box) -> Element // May wait
 queued until Content not null is
 const Result := M.Content;
 M.Content := null;
 return Result;
 end function Get;

 function Get_Now(M : locked const Box) -> optional Element is
 return M.Content;
 end function Get_Now;
end class Box;

© 2010 SofCheck, Inc.

18

Clock Example
abstract concurrent interface Clock <Time_Type is Ordered<>> is

 function Now(C : Clock) -> Time_Type;

 procedure Delay_Until(C : queued Clock; Wakeup : Time_Type)

 {Now(C’) >= Wakeup}; // queued until Now(C) >= Wakeup

end interface Clock;

concurrent interface Real_Time_Clock<...> extends Clock<...> is

 function Create(...) -> Real_Time_Clock;

 ...

end interface Real_Time_Clock;

var My_Clock : Real_Time_Clock <...> := Create(...);

const Too_Late := Now(My_Clock) + Max_Wait;

select // multi-way parallel queued call

 const Data := Get(My_Box) => Process(Data);

 || Delay_Until(My_Clock, Wakeup => Too_Late) =>

 Put_Line(Out_Stream, “My_Box not filled in time”);

end select;

© 2010 SofCheck, Inc.

19

Walk Parse Tree in Parallel

type Node_Kind is Enum < [#leaf, #unary, #binary] >;

 ...

for X => Root while X not null loop

 case X.Kind of

 #leaf =>

 Process_Leaf(X);

 #unary =>

 Process_Unary(X) ||

 continue loop with X => X.Operand;

 #binary =>

 Process_Binary(X) ||

 continue loop with X => X.Left ||

 continue loop with X => X.Right;

 end case;

end loop;

© 2010 SofCheck, Inc.

20

Parallel N-Queens Solution

interface N_Queens <N : Univ_Integer := 8> is
 // Place N queens on an NxN checkerboard so that none of them can
 // "take" each other. Return vector of solutions, each solution being
 // an array of columns indexed by row indicating placement of queens.

 type Chess_Unit is new Integer<-N*2 .. N*2>;
 type Row is Chess_Unit {Row in 1..N};
 type Column is Chess_Unit {Column in 1..N};
 type Solution is Array<optional Column, Indexed_By => Row>;

 function Place_Queens() -> Vector<Solution>
 {for all S of Place_Queens: for all C of S: C not null};
end interface N_Queens;

© 2010 SofCheck, Inc.

21

Parallel N-Queens Solution
(contʼd)

class N_Queens is
 type Sum_Range is Chess_Unit {Sum_Range in 2..2*N};
 type Diff_Range is Chess_Unit {Diff_Range in (1-N) .. (N-1)};
 type Sum is Set<Sum_Range>;
 type Diff is Set<Diff_Range>;
 exports
 function Place_Queens() -> Vector<Solution>
 {for all S of Place_Queens: for all C of S: C not null}
 is
 var Solutions : concurrent Vector<Solution> := [];
 Outer_Loop
 for (C : Column := 1; Trial : Solution := [.. => null];
 Diag_Sum : Sum := []; Diag_Diff : Diff := []) loop
 // Iterate over the columns
 ...
 Solutions |= Trial;
 ...
 end loop Outer_Loop;
 return Solutions;
 end function Place_Queens;
end class N_Queens;

© 2010 SofCheck, Inc.

22

Parallel N-Queens Solution
(contʼd)

 function Place_Queens() -> Vector<Solution> is
 var Solutions : concurrent Vector<Solution> := [];
 Outer_Loop
 for (C : Column := 1; Trial : Solution := [.. => null];
 Diag_Sum : Sum := []; Diag_Diff : Diff := []) loop // over the columns
 for R in Row concurrent loop // over the rows
 if Trial[R] is null and then
 (R+C) not in Diag_Sum and then (R-C) not in Diag_Diff then
 // Found a Row/Column combination that is not on any diagonal
 if C < N then // Keep going since haven't reached Nth column.
 continue loop Outer_Loop with (C => C+1,
 Trial => Trial | [R => C],
 Diag_Sum => Diag_Sum | (R+C),
 Diag_Diff => Diag_Diff | (R-C));
 else // All done, remember trial result.
 Solutions |= Trial;
 end if;
 end if;
 end loop;
 end loop Outer_Loop;
 return Solutions;
 end function Place_Queens;

© 2010 SofCheck, Inc.

23

How does ParaSail Compare to ...

C/C++ -- built-in safety; built-in parallelism
Ada -- eliminates race conditions, increases

parallelism, eliminates run-time checks,
simplifies language

Java -- eliminates race conditions, increases
parallelism, avoids garbage collection, no run-
time exceptions, compile-time checks against
security constraints

© 2010 SofCheck, Inc.

24

Some of the Open Issues in ParaSail

 If we eliminate pointers, what about “references”?
 if references, when and where?

 If no global variables, how best to provide access to
global “singleton” objects from environment
 such as “the” database or “the” user or “the” filesystem
 “Context” object with singletons as components passed to main

subprogram?

 How to standardize how “smart” compiler is at proving
assertions
 Open source algorithm?
 Detailed specification of inference and simplification rules?

© 2010 SofCheck, Inc.

25

Ultimate Test:
Physical Units Example

interface Float_With_Units
 <Base is Float<>; Name : Univ_String; Short_Hand : Univ_String;
 Unit_Dimensions : Array <Element_Type => Univ_Real,
 Index_Type => Dimension_Enum> := [.. => 0.0]; Scale : Univ_Real> is

 operator "from_univ"(Value : Univ_Real)
 {Value in Base::First*Scale .. Base::Last*Scale} -> Float_With_Units;

 operator "to_univ"(Value : Float_With_Units) -> Result : Univ_Real
 {Result in Base::First*Scale .. Base::Last*Scale};

 operator "+"(Left, Right : Float_With_Units) -> Result : Float_With_Units
 {[[Result]] == [[Left]] + [[Right]]};

 operator "=?"(Left, Right : Float_With_Units) -> Ordering;

 operator "*"(Left : Float_With_Units; Right : Right_Type is Float_With_Units<>)
 -> Result : Result_Type is Float_With_Units<Unit_Dimensions =>
 Unit_Dimensions + Right_Type.Unit_Dimensions>
 {[[Result]] == [[Left]] * [[Right]]};

 operator "/"(Left : Left_Type is ...
 end interface Float_With_Units;

 type Meters is Float_With_Units<Name => “centimeters”, Short_Hand => “cm”,
 Unit_Dimensions => [#m => 1.0, #k => 0.0, #s => 0.0], Scale => 0.01>;

© 2010 SofCheck, Inc.

26

Conclusions

 Static analysis hasnʼt reached the masses yet
 Integration into the development process is essential

 Ideally into the compiler/linker

 Integration into the language is the ultimate step -- it
becomes a non-optional part of the process

 When designing a new language, can unify and simplify
 Can focus on new issues

 pervasive parallelism
 integrated annotations enforced at compile-time

 Read the blog if you are interested...
http://parasail-programming-language.blogspot.com

© 2010 SofCheck, Inc.

27

11 Cypress Drive
Burlington, MA 01803-4907

Tucker Taft

tucker.taft@sofcheck.com

http://parasail-programming-language.blogspot.com

+1 (781) 750-8068 x220

