
Where Do Software Security Assurance Tools Add Value?
David Jackson

QinetiQ
WWA109 Malvern Technology Centre

Malvern, WR14 3PS, UK
[+44] (0)1684 896689

DMJackson@QinetiQ.com

David Cooper
CESG

Room A2h, Hubble Road,
Cheltenham, GL51 0EX, UK

[+44] (0)1242 221491 ext 39049

David.Cooper@cesg.gsi.gov.uk

ABSTRACT
In developing security information technology products, we are
presented with a wide choice of development and assurance
processes, and of tools and techniques to support those processes.
By considering a structured break-down of the goals of a
development, and building on the results of a survey of the
applicability of tools to certification, this paper proposes a
framework for assessing the value of tools – both security specific
and more general – to security assurance.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management–software quality
assurance (SQA); Software/Program Verification–Validation

General Terms
Management, Measurement, Security.

Keywords
Software Assurance; Common Criteria for Information Security
Evaluation

1. INTRODUCTION
Security is important in all aspects of life, and the increasing
pervasiveness and capability of information technology makes IT
infrastructure security increasingly so [1]. The continual and
increasing publicity given to failures of IT security demonstrate
the importance of developing and assuring systems to appropriate
levels of security.

In spite of this attention, security remains a difficult attribute to
assess and value [2]. Although the benefits of improved security
can be difficult to quantify, as technologists and managers we are
required to define and implement security measures which are
appropriate to the threat and to the application.In the area of
software security, these choices are further complicated by the
wide range of techniques and tools have been used or proposed.
Efforts are being made to categorize these tools and techniques,
and to measure the effectiveness with which they perform their

functions, but the variety of different approaches makes direct
comparisons difficult.

This paper is a preliminary attempt to identify the role of various
assurance activities and tools in the development of a software
product, and the potential benefits of employing them. We believe
that virtually all developments aimed at a non-trivial distribution
will require some degree of security assurance.

This paper is based on the authors’ experience in a number of
recent projects relating to software security assurance. Its
principle inputs are:

• A study carried out on behalf of the UK Government
CESG into the use of tools in support of Common
Criteria (CC) evaluation [4];

• The SafSec project, which is investigating cost-effective
safety and security certification approaches for
Integrated Modular Avionics (IMA) [5]; and

• Discussions around the NIST workshop on “Defining
the State of the Art in Software Assurance Tools” [6].

The work described here is the first attempt to combine the goal-
based approach proposed by SafSec with the survey results of the
other projects, and also takes into account the recent revision of
the Common Criteria [17]. As a result, it poses questions for
future research which are more wide-ranging than earlier studies.

2. BACKGROUND – THE ASSURANCE
PROBLEM
Various approaches are used by those responsible for developing,
deploying and maintaining IT equipment and systems.
Historically, most of the emphasis on information security came
from government and military applications. Information security
techniques developed which were appropriate for these highly-
regulated environments. These are typified by formal product
approval schemes such as that established by the Common
Criteria for Information Technology Security Evaluation [3]
(hereafter Common Criteria or CC). In purely commercial
applications, less rigorous division will typically exist between
development and security assessment, but effective security
processes will still generally contain elements of both [7]. In
order to examine where the benefits of particular technologies in
supporting security assurance lie, we will consider a general
model of product development, taken from [5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2.1 Lifecycle of a Secure Product
Figure 1 High-level Goals of a Product Development

Define
requirements

Understand
risks

Specify
mitigations

Specify
functions

Specify
assurance

Build secure
product

Implement
requirements

Implementation
complete

Evidence
relevant

Compliance
demonstrated

Evidence
satisfactory

The security aspects of a development address a number of goals;
these goals do not necessarily represent particular activities, but
rather aspects of development which must be made, and
maintained, valid through the course of development and
deployment. A high-level view of a typical project is shown in
Figure 1, which is based on that adopted by the SafSec project
[5]. The notation is based on Kelly’s Goal Structuring Notation
(GSN) [8]. The key goals are grouped into those which derive
security specifications (understanding the risks, specifying
mitigations) and those which ensure the specifications are
implemented (completion and control of implementation,
generation and adequacy of assurance evidence).
Although the emphasis given to these goals will differ widely
between products according to the priorities of particular
industries and applications, at some level each of these areas must
be addressed by an adequately assured development.
Given a breakdown of the goals which a product development is
seeking to achieve, we can assess the value of project activities by
considering their contribution to meeting particular goals.
Ultimately, we might assess the relative merits of different
strategies by considering the relative economy (in terms of the
necessary supporting solutions) with which each supports the
goal. Obviously if the goals have been characterized purely in
terms of security, only security aspects of the development will be
illuminated by such an analysis.

2.2 Common Criteria Evaluation & Practical
Security
In regulated applications, these development goals are often
satisfied by adopting a formal certification scheme, of which the
Common Criteria are the most widely accepted. Certification
schemes generally involve additional time and expense in meeting
their requirements, and thus the value of such schemes has been
questioned. Areas in which the results of a certification program
may differ from expectations include:

• Measurement of results: Is the objective to minimize
vulnerabilities discovered or published, or to achieve a
level of confidence that no significant risks remain?

• The scope of assessment: some evaluations are carried
out under constraints which are too stringent to be
widely practicable.

• Development processes: development technologies are
continually evolving, and future developments may not
match the expectations of the certification scheme.

Our previous work [4] includes a study aimed at addressing some
of these issues and reviewing both assurance technologies and the
CC assurance criteria to identify potential improvements to
development and evaluation processes. The baseline for the work
described here is the current formal release of the common
criteria, version 2.2. The implications of the new draft of the CC,
version 3, are discussed in Section 4.4 below.

2.2.1 Current evaluation practice
Current evaluation practice is driven by the evaluation method
[9]. Many requirements are focused on a product’s
documentation, rather than any formal artifact. This
documentation – models of the design, or representations of the
implementation, for example – is typically largely manually
generated and intended for manual review. The CC evaluation
process also makes assumptions about the development process.
The information available is assumed to be consistent with a
waterfall-style development: security functions are identified at
the requirements level, and their presence and correct
implementation verified through successive levels of design
representation, culminating in their demonstration (by testing) in
the final product. In consequence, only a small proportion of the
evaluation effort is typically spent examining the product (code).
Focus on implementation of identified security functions also
poses pragmatic problems for evaluators: to make a sensible
judgment on security issues, a thorough understanding of the
product is necessary, but the targeted documentation provided to
trace the security functions will not necessarily help build this
understanding. Emphasis on the presence of specific security
measures is also seen as encouraging the de-scoping of valuable,
but difficult-to-assure, measures from the security targets which
are claimed. This could result in the accreditation of products with
increasingly unrealistic constraints on their operation, as opposed
to real improvements in security. These factors do not encourage
the types of assurance (e.g. scanning for potential vulnerabilities,
or automated checks for compliance with implementation rules)
that are amenable to automation (apart from standard document
automation functions such as searching and indexing.). The
product development process is, of course, likely to make some
use of tools, for example to manage and organize source code, to
generate and monitor tests, or to carry out customized consistency
or style checks. Typically, however, such tools are used purely to
benefit the development, not to contribute to the formal security
assurance process. Evaluation may be facilitated by tools which
contribute to the management of development (such as tools for
configuration management, impact analysis, change control, or
automated build and testing) but to no greater extent than any
other process is facilitated by having good control of its inputs.

2.2.2 Desirable changes
The perceived weaknesses of current assurance regimes lead us to
try and identify desirable features of future assurance approaches.
Key attributes identified by a range of stakeholders in the CC
scheme included:

• Assurance should not introduce significant delay or
additional cost into product development.

• Emphasis should be placed on identifying
vulnerabilities in the product, rather than exploring
attributes of the documentation.

• Assurance requirements should not list specific
documents and checks, but allow flexibility to choose
development environments and life-cycles which reflect
current practices, and the goals to be addressed.

• Encouragement of broader good practice and
approaches that facilitate understanding and assurance
of the whole product, not simply a set of security
functions. Also promotion of security targets which are
broad enough to be practically applicable, rather than
restricted to facilitate accreditation.

• Provision of concrete advice on the application of
specific techniques, the use of tools in specific areas,
and the identification and elimination of particular high-
risk structures.

• Maintenance of the existing high standards for the
quality of assurance, eg by maintaining mutual
recognition and repeatability, and demanding
appropriate validation of tools.

However, it was emphasized that any changes should not
jeopardize the assurance of systems which are not covered by
available tools, or introduce unrealistic expectations of the
developers (e.g. by demanding manual resolution of many false
positive reports from tools).

3. CLASSIFICATION OF ASSURANCE
TOOLS AND TECHNOLOGIES
The tool survey carried out as part of the CC investigation
examined a broad range of technologies, on the grounds that
many tools might contribute to developing a secure system even if
they are not specifically security-related. The classification used
there is summarized here.

• Tools which aid human comprehension of software,
including

o Reverse-engineering to graphical
representations

o Enhanced code navigation
o Automatic documentation
o Presentation of multiple views
o Configuration management
o Integrated development environments

There are also tools targeted specifically at audit and
assessment, which typically include a number of the
above functions.

• Configuration management tools. Some form of
configuration management is essential, but in this
category we include related tools for controlling and
supporting development. Additional facilities offered
include:

o Comprehensive documentation management
(not just source code)

o Change management
o Version / variant management
o Traceability
o Build management
o Access control
o Integration with the development environment

• Test support and dynamic analysis tools, covering not
only conventional testing, but also other assurance
activities based on execution of (a variant of) the
product. Examples include:

o Test execution frameworks
o Test case generation, both white-box (based

on the implementation) and black-box (based
on a separate specification of intended
behavior)

o Test coverage analysis
o Memory and execution profiling

• Subset conformance tools. Some forms of security risk
can be avoided by eliminating certain classes of
structure from allowable implementations, essentially
defining a subset of the implementation language. These
subsets can be standardized (as, for example, the
MISRA subset of C [10]) or company- or project-
specific.

• Detection of general implementation weaknesses. Many
means of exploiting vulnerabilities make use of errors in
software implementation, even if the errors themselves
do not constitute a direct vulnerability. Detection and
elimination of general programming errors will improve
the overall quality of a software product and reduce the
potential for security functions to be bypassed or
subverted.

• Run-time error detection. One specific class of software
weakness which can be difficult to identify by testing is
the occurrence of run-time exceptions such as overflow
and arithmetic errors. Several approaches have been
developed to identify where such errors may occur.

• Vulnerability detection. Of all the classes of flaws
which we may search for in a product, those which
present known vulnerabilities offers the most direct
benefit. A range of tools is available according to the
implementation technology and vulnerability classes of
concern. This area is the main focus of many other
surveys, including [11].

• Executable code analysis. Many of the attributes noted
above can be determined either at source code level or
by direct examination of object code or byte-code.
Source code tools have potential access to richer
information about the design intent that object-code
tools, but the latter have the advantage of applying
directly to the delivered product, and could, for
example, be applied to third-party or legacy
components.

• Program correctness tools. Although typically
applicable only to higher levels of assurance
requirement, and thus of limited general applicability,
some tools do exist which address the question of
program correctness in a broader sense. As many
security vulnerabilities are likely to lie outside the
intended behaviour of a program, these are able to
provide high levels of confidence in the security of a
product. Typically, however, they require additional
design and implementation effort, such as the
preparation of formal specifications or program
annotations.

Another recent proposal for a taxonomy of security assurance
tools [11] identified the following classes:

• External

o Network Scanners
o Web Application Scanners
o Web Services Network Scanners
o Dynamic Analysis Tools

• Internal

o Software Requirements Verification Tools
o Software Design/Modeling Verification Tools
o Source Code Scanning Tools, further divided

into identification of range and type errors,
calls to vulnerable library functions,
environmental problems synchronization and
timing errors, locking problems, protocol
errors, general logic errors and other flaws
(file cycling issues, access control
implementation, configuration violations)

o Byte Code Scanning Tools
o Binary Code Scanning Tools
o Database Scanning Tools

This breakdown provides more detail on security-specific tools,
and includes, in its external category, tools that, being most useful
after deployment, were not judged relevant to a product assurance
process for the purposes of our earlier study. It provides less
detail on tools which are not security specific. Ongoing work to
develop a more general taxonomy is taking place as part of the
NIST SAMATE project [6].

If tools are to be used in creating or assessing assurance evidence,
it is necessary for the tools themselves to be fit for the purpose, in
order to establish the requisite confidence in the results they
produce. The problem of tool qualification is not unique to
security, and has been addressed, for example, by the aerospace
safety community [12]. The benchmark for any tool which
replaces a life-cycle process is that its output should be at least
equivalent to the processes replaced; this means that if the output
of a tool is cross-checked independently by some other activity,
the requirements place on the tool itself may be relaxed.

Attributes which may be expected of a qualified tool include:

• Clear definition of the function performed and
requirements satisfied

• Accuracy

• Repeatability

• Completeness and lack of ambiguity of output

• Characterization of operating environment and behavior
under abnormal conditions

• Demonstration of requirements coverage, and analysis
of the degree of coverage achieved

• Evidence of previous evaluations, of previous
successful deployments, and of the pedigree of other
tools developed by the same process

• A traceable defect recording and corrective action
system

Ultimately, if the requirements on a class of tool can be
characterized with sufficient accuracy, we could expect to
develop certification criteria and independent testing schemes.

4. POTENTIAL BENEFITS
The CC classify security requirements into security functional
requirements (specifying particular security-related functions
which a system must provide) and assurance requirements
(specifying the measures to be taken to ensure correct
implementation of the functional requirements). Assurance
requirements are further subdivided into families:

• Configuration management (ACM)

• Delivery and operation (ADO)

• Development (ADV)

• Guidance documentation (AGD)

• Life cycle support (ALC)

• Tests (ATE)

• Vulnerability assessment (AVA)
Seven pre-defined packages of assurance requirements are
defined, representing increasing levels of assurance – the
Evaluation Assurance Levels (EAL) 1–7 where EAL 1 is the least
stringent, and EAL 7 the most.
Analysis of the capabilities of the various classes of software
development and assurance tools against the CC requirements led
us to consider three areas in which tools can facilitate the
development of an assured product, as follows.

o Tools employed in the development, but which support
or facilitate assurance,

o Tools of direct use in evaluating security, and

o Tools which support the implementation of security
functional requirements rather than providing evidence
that security assurance requirements have been met.

These areas are discussed in the following sub-sections.

One additional aspect of tool use became clear in the course of the
analysis: there are many areas in which tools which may not
necessarily assist in one-off assurance of a particular development
but contribute substantially to the effective maintenance and re-
use of assurance evidence. Such re-use is important in many
situations:

o In re-assurance of a modified or updated product,

o In assurance of a product in distinct, but related,
environments (eg across different platforms), and

o In developing composite systems that make use of
previous assurance evidence about their components.

Of particular importance in these cases is the need to be able to
identify where modifications have been made, and where
dependencies arise which may need to be re-considered in the
light of those changes. Our experience indicates that even given
such facilities, re-assuring a complex system can still be difficult
if an attempt is made to re-use parts of previous work in the
production of complete new assurance arguments; re-use is more
likely to be effective if complete assurance arguments are used as
a whole, forming a baseline against which later assurance is
documented as an assured set of changes.

4.1 Tools employed in development
Many tools used in development are useful in supporting
assurance, because many of the factors which facilitate assurance
also directly facilitate the development itself. Nevertheless, some
development tool functions are of greater relevance than others.
Areas of particular relevance are described below

4.1.1 Configuration Management (CC Assurance
Class ACM).
Tool support for change and build management provides both
developers and assessors with confidence that the product
delivered – and its supporting configuration information,
documentation, training material, etc – are derived from valid
sources and controlled appropriately. All serious product
developments will use some forms of configuration management
policy and tools; nevertheless, choice of appropriate tools can
greatly simplify assuring an appropriate level of configuration
management. Features of particular relevance include:
comprehensive coverage of all documents (not simply code);
access control; change control; traceability; and version
comparison/impact analysis to support re-use of assurance
evidence.

4.1.2 Life cycle support (CC Assurance Class ALC)
Confidence in the control of the development life-cycle is an
important component of assurance. While few tools control the
life-cycle directly, and lifecycle definition and control are general
project-management issues beyond the scope of this paper, a
number of aspects of assurance benefit from an appropriate
development tool environment. Configuration management tools
which provide formal release control, for example, may be used
to enforce compliance to particular life-cycle features.
Development security (Class ALC_DVS) may also be enhanced
by use of a CM system which enforces appropriate access
controls and audit mechanisms. The level of assurance required of
all tools used is also a life-cycle issue: maintenance of satisfactory
assurance may require keeping all tools under configuration
management, for example, and the use of additional tools (such as
subset-conformance checkers) to ensure that other tools (such as
compilers) are only employed within the limits of their own
assurance. Direct assurance of one tool, a compiler for example,
may also be established through the use of another (a de-compiler
or compiler validation suite). See Section 3.

4.1.3 Development (CC Assurance Class ADV)
The CC approach to development concentrates on establishing
consistency between increasingly detailed levels of design
representation. Assurance of this consistency can be facilitated by
tools which maintain traceability between representations.
Integrated development environments using semi-formal notations
such as UML [13] can be used to support such a lifecycle, the
rigorous separation of functional specification, high-level design,
low-level design and implementation representation which (the
current version of) the CC requires is not necessarily natural in
such frameworks. See Section 4.4 for further discussion. The task
of demonstrating correspondence between implementation and
low-level design is facilitated by many of the software quality
tools identified in Section 3: subset conformance, detection of
run-time errors and software weaknesses all support this goal, as
do some forms of object code verification.

4.1.4 Testing (CC Assurance Class ATE)
Some degree of test automation is likely to be used in any
substantial product development, and any mechanisms which
encourage the repeatable and controlled execution of tests will
provide a degree of assurance in the design process. Some
assurance benefits maybe expected from coverage analysis tools,
although measurement of the proportion of a design which is
exercised may not be a good prediction of the actual performance
of the tests in detecting security-related errors. Management tools,
such as configuration management and traceability tools, will also
be applicable to tests and the test process.

4.2 For evaluators
The areas in which tools are directly applicable to assurance are
perhaps more restricted than the general benefits of development
tools, but the specific value which could potentially be obtained
in some cases is nevertheless substantial. In the analysis, it proved
useful to consider areas in which evaluators seek confidence, such
as:

• Correct functionality is crucial, but in the majority of
cases restricted to an informal review

• Identification of specific risky constructs, including
error conditions, common vulnerabilities such as buffer
overflows, and issues regarding concurrency.

• Consistency between design representations, and across
interfaces between different elements.

• Sensitivities to platform and compiler attributes, which
may become weaknesses if external dependencies
change.

• General structure and behaviour of the program, as a
prerequisite for assessing other issues, and also to
illuminate information flow, for example.

Note that although these issues were examined from the
perspective of an evaluator or assessor, developers are likely to
use the same tools and techniques in order to reduce the risk that
issues may be discovered later in the product life cycle.

4.2.1 Assurance of correct development (CC
Assurance Class ADV)

The bulk of the information available to an assessor arises from
the development process – any evaluation will therefore expect to
make use of the tools discussed in the previous section. The
applicability of other tools will depend largely on the nature of
the information available: for medium and low-level assessment
(the vast majority of cases) much of this information will be
informal. In these cases, the key documentation (functional
specifications, high- and low-level designs) may be natural
language texts – there may be scope for the use of documentation
tools such as readability metrics and indexing tools, but little true
automation may be expected (NASA’s Automated Requirement
Measurement tool (ARM) is an interesting extension to an
important class of documents [14].) Where semi-formal notations
are used, mechanical consistency checks may be implemented
(often as part of an IDE) ,but acceptance of such checks a
assurance evidence is hampered by lack of commonly agreed
representations and semantics for such checks.

In contrast, source code is by its nature formal and suited to the
provision of mechanical support for the key assurance challenge
of accessing and comprehending large quantities of technical
information. Navigation and documentation aids (such as cross
referencing and indexing tools) are important supports to
assessment activities. Tools which provide some degree of
abstraction (such as generating a call-tree or dependence graph)
can be used to support comparison of the implementation with a
low-level design, and can assist in identifying security-enforcing
functions and their dependencies.

4.2.2 Assurance testing (CC Assurance Class ATE)
Assurance activities will typically include both an assessment of
testing carried out during development and an element of
independent testing. Both classes of activities will be facilitated
by tools as discussed in the previous section (Section 4.1). The
identification of specific vulnerabilities is also likely to involve
testing in addition to the activities discussed in the next section.

4.2.3 Vulnerability identification (CC Assurance
Class AVA)
The search for specific vulnerabilities is an essential element of
security assurance. This is an area in which a number of specific
vulnerability detection tools have been proposed (See Section 3)
and their use is obviously a potentially valuable source of
evidence, but the value of their results will be crucially dependent
on parameters which are not necessarily easy to characterize, such
as the proportion of identified problems which are not, in fact
vulnerabilities (false positives) and the proportion of
vulnerabilities which are present but not detected (false
negatives). Similar concerns also apply to tools which look for
general weaknesses which may be associated with breaches, such
as run-time errors. The characterization and qualification of these
tools is an important area of research (see also Section 3).

4.2.4 Manual assurance is essential
Although we have identified a number of areas in which tool
support may support the assurance activities, there are a number
of areas where no substitute to manual review and assessment is
practical. This is the case, for example, in areas where the key
attributes are the clarity and completeness of documentation, such
as prevention of accidental misuse and installation and
operational guidance generally. General purpose tools will also

have limited use in some technical analysis, such as determination
if the strength of security functions is appropriate.

4.3 Functional requirements
The discussion above has concentrated on assurance requirements
– constraints on how a product is constructed – rather than the
function it actually performs. In general, tools will not be able to
confirm functional correctness of a product, although customised
tool-supported analysis may be justifiable for some specific
projects. There are some specific areas, however, where tool
support can be valuable in assuring functional correctness,
including:

• Control and data flow analyses. The more sophisticated
program analysis tools can derive the flow of data and
control through a program. This can be valuable in
demonstrating the adequacy of various controls and
policies, such as ensuring that security functions are
invoked prior to any action which might compromise
security (mediation).

• Failure mode analysis. Tools which detect
vulnerabilities or general weaknesses in implementation
provide information about the possible ways in which
an implementation or function may fail. This is
necessary to establish the appropriateness of measures
which manage failures such as fault-tolerance or fail-
secure functionality.

• Protocol and algorithm correctness. Although full proof
of correctness of an implementation is not likely to be
practical for the vast majority of security products, there
are elements which, because of their extreme criticality
or wide deployment, may be subject to more stringent
constraints. In these cases, formal verification with
specialist tool support may be appropriate. Typical
applications might be security protocols or algorithms
used by fundamental network infrastructure. ([15], [16],
for example).

4.4 Evolution of the CC Evaluation Scheme
Our review identified a number of recommendations which we
felt should be considered for changes to the CC and the evaluation
methodology which advises how the criteria should be applied.
The key recommendations regarding the methodology were:

• To require a search for known failure modes in the
chosen implementation language, and mechanical
enforcement of rules necessary to conform to well-
defined language subsets.

• To link the sizes chosen for sampling activities to
general software quality measures (allowing sample size
reduction to be argued for developments showing
demonstrably good quality).

• To encourage security targets to be defined according to
practical application rather than to simplify evaluation.

Recommendations regarding the Common Criteria themselves
were addressed more cautiously, because of the need to maintain
consensus among all participants. The key suggestions were in the
following areas:

• Fault elimination: Strengthening the functional
specification of security functions to place greater
emphasis on interfaces, and on the assumptions which
the security functions make for correct behavior (e.g.
integrity of memory, restrictions on flow of control).
(Class ADV_FSP); inclusion in the development of
evidence for the robustness of separation between
security functions and other functions; and allowing
tool support for maintenance of design representations,
and relaxing requirements for strict refinement between
design representations (while maintaining the necessary
consistency).

• Fault discovery and removal: the requirement identified
above, to search for known failure modes and
insecurities, should ultimately be reflected in the CC.

• Failure tolerance. Designing systems to be tolerant of
faults and failures is a crucial element in other product
integrity domains, but is not emphasized in the CC. A
requirement should be added to require analysis of
possible failures and demonstrating that the design is
appropriately robust.

• General changes: In other communities, standards-
setting is moving towards a less prescriptive goal-
oriented approach. The CC could be made less
prescriptive, stating objectives of a successful
evaluation and criteria which the recorded evidence
must meet, but leaving open the means of meeting these
objectives. This would facilitate competitive
improvement of the evaluation process. To maintain
mutual recognition in the light of this change,
recognition should be based on establishing that
different approaches are consistent in their effectiveness
and findings, rather than that they produce identical
results.

Since the completion of the work reported in [4], a new draft issue
of the Common Criteria and the evaluation methodology has been
published [17]. The new draft addresses many of the
recommendations made here:

• Greater emphasis is placed on architectural integrity,
and on demonstrating that other functions do not
interfere with the security functions, although explicit
failure mode analysis is not required.

• More explicit requirements are placed on specification
of the interfaces of security functions.

• The development assurance family (ADV) has been
revised to simplify the constraints placed on design
documentation.

• The vulnerability analysis requirements include
requirements to search for known classes of
vulnerabilities.

The evaluation methodology remains too abstract to provide
concrete advice on the use of tools, although clearly tool support
will be advantageous for those activities which are required to be
methodical.

Although the new version does significantly introduce noticeable
simplification and significant re-structuring in many
requirements, the majority of key assurance activities remain the
same; the value and applicability of tool support will, therefore,
remain unchanged.

5. CONCLUSIONS & FUTURE WORK
This paper takes results from number of existing studies:

• a goal-based view of the objectives of a secure product
development [5],

• a review of the applicability of tools to security
assurance [4] and

• Emerging work on taxonomies of software security
tools [11],

and presents a summary which highlights where software tools
may be expected to add value to development programs.

5.1 Applicability of Tools
Our review identified a number of areas where existing security
evaluations could be supported by existing tools:

• Control of changes and configurations of products,
product variants and assurance evidence

• Identification of general weaknesses, violations of
coding standards and subsets, and potential run-time
errors

• Identification of known vulnerabilities
• Assisting in an assessors understanding of a potentially

large volume of potentially complex information
In the short term, use of tools in these areas appears most likely to
improve the value of assurance (in terms of reduction of
vulnerabilities discovered in service) rather than to decrease cost.
We believe that it may be possible to achieve savings, primarily
in the cost of developing the information required to support
assurance, if increased use of automated document management
and change control tools, and increased use of tools to enforce
coding standards and subsets, were combined with a shift in the
focus of development and evaluation processes.

Any successful deployment of tools will require that the tools
themselves are adequately assured.

5.2 Varieties of assurance
The security of a product depends on many factors, and
consequently can be improved and demonstrated by a range of
different measures. The benefits of different assurance measures
can be comprehended, and trade-off decisions facilitated, by
considering their contribution to a structured assurance argument.
Such an argument can provide a framework for planning
assurance activities and identifying the support which tools can
provide.

Some of the more important measures are specific to security
assurance, such as searching implementations for known
vulnerabilities, but we believe that systematic examination of the
goals of a secure development demonstrates that more general
assurance tools provide significant value in areas including
general software quality, robustness of architectures,
configuration management and change control. Our studies
further indicate that for benefits in cost as well as quality, security

assurance must be an integral element of the development
process, taken into consideration as key design decisions are
being made.

5.3 Future Work
Although the opportunity for tool-supported security assurance is
attractive, there are several questions which must be resolved if
security assurance tools are to be widely adopted:

• Classification of tools and techniques, and development
of common understandings of the value and function of
each class, is necessary both to justify the adoption of
tools, and to provide a basis for tool assurance. To
support cost-benefit analysis, the classification must
reflect benefits (eg risks reduced) rather than functional
behaviour.

• Practical tools must be usable: issues such as consistent
and informative output, reduction of false positive and
false negative results, and scalability to large code bases
are paramount.

• The qualitative discussion of assurance presented here
must be refined to give quantitative cost-benefit
arguments for tool adoption. A systematic approach to
assurance will be required to allow tradeoffs to be made
not only between the cost of assurance and the cost of
failure, but between mechanisms which may each
improve security in very different ways.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of CESG,
Praxis High Integrity Systems Ltd, and all the stakeholders
involved in the Common Criteria study [4]. Particular thanks are
due to Keith Banks for his contributions to [4], and to Phil Core
for his comments on drafts of this paper. The referees also
provided useful comments.

7. REFERENCES
[1] U.S. Department of Homeland Security, The National

Strategy to Secure Cyberspace, February 2003
[2] Anderson, R.J., Why Information Security is Hard – An

Economic Perspective, Proc. Annual Computer Security
Applications Conference, 2001

[3] Common Criteria for Information Technology Security
Evaluation, Version 2.2, January 2004 Available from
www.commoncriteriaportal.org

[4] Praxis Critical Systems Ltd, EAL4 Common Criteria
Evaluations Study, September 2004, available from
http://www.cesg.gov.uk/site/iacs/itsec/media/techniques_tool
s/eval4_study.pdf

[5] U.K Defence Procurement Agency and Praxis High Integrity
Systems Limited, SafSec Project, www.safsec.com

[6] U.S. National Institute of Standards and Technology,
SAMATE Project, http://samate.nist.gov

[7] Secure Software Inc., The CLASP Application Security
Process, 2005.

[8] Kelly, T.P., Arguing Safety – A Systematic Approach to
Safety Case Management, DPhil Thesis YCST99-05,
Department of Computer Science, University of York, UK,
1998

[9] Common Methodology for Information Technology Security
Evaluation, Version 2.2, January 2004

[10] Motor Industry Software Reliability Association, MISRA-
C:2004 - Guidelines for the use of the C language in critical
systems, ISBN 0 9524156 2 3, 2004

[11] U.S. National Institute of Standards and Technology,
SAMATE Project Tools Survey,
http://samate.nist.gov/index.php/Tools

[12] RTCA Inc, DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, 1992

[13] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified
Modeling Language User Guide Addison-Wesley 1998

[14] NASA, Automated Requirement Measurement (ARM),
http://satc.gsfc.nasa.gov/tools/arm/

[15] Lowe, G., An Attack on the Needham-Schroeder Public-Key
Authentication Protocol. Information Processing Letters 56,
3, 1995, 131-133.

[16] Reed, J.N., Jackson, D.M., Deinov, B., and Reed, G.M.,
Automated Formal Analysis of Networks: FDR models for
arbitrary topologies and flow-control mechanisms, Proc.
Joint European Conferences on Theory and Practice of
Software LNCS 1382, Springer 1998.

[17] Common Criteria for Information Technology Security
Evaluation, Draft Version 3.0, July 2005

	INTRODUCTION
	BACKGROUND – THE ASSURANCE PROBLEM
	Lifecycle of a Secure Product
	Common Criteria Evaluation & Practical Security
	Current evaluation practice
	Desirable changes

	CLASSIFICATION OF ASSURANCE TOOLS AND TECHNOLOGIES
	POTENTIAL BENEFITS
	Tools employed in development
	Configuration Management (CC Assurance Class ACM).
	Life cycle support (CC Assurance Class ALC)
	Development (CC Assurance Class ADV)
	Testing (CC Assurance Class ATE)

	For evaluators
	Assurance of correct development (CC Assurance Class ADV)
	Assurance testing (CC Assurance Class ATE)
	Vulnerability identification (CC Assurance Class AVA)
	Manual assurance is essential

	Functional requirements
	Evolution of the CC Evaluation Scheme

	CONCLUSIONS & FUTURE WORK
	Applicability of Tools
	Varieties of assurance
	Future Work

	ACKNOWLEDGMENTS
	REFERENCES

