
NIST

Special Publication 500-269

Software Assurance Tools:
Web Application Security Scanner
Functional Specification Version 1.0

Paul E. Black

Elizabeth Fong

Vadim Okun

Romain Gaucher

Information Technology Laboratory (ITL)

 Software Diagnostics and Conformance Testing Division

 21 August, 2007

2

Abstract:

Software assurance tools are a fundamental resource for providing an assurance argument for
today’s software applications throughout the software development lifecycle (SDLC). Software
requirements, design models, source code, and executable code are analyzed by tools in order to
determine if an application is secure. This document specifies the functional behavior of one class
of software assurance tool: the web application security scanner tool. Due to the wide spread
use of the World Wide Web and proliferation of web application vulnerabilities, application level
web security and assurance requires major attention. This specification defines a minimum
capability to help software professionals understand how a tool will meet their software assurance
needs.

Keywords:

Homeland security; software assurance; software assurance tools; specification; web application;
web application security scanner tool; vulnerability

Errata to this version:
None

Note:
This specification has not had public review. We plan to have public review and comment, then
to release a revised version.

Disclaimer:
Any commercial product mentioned is in for information only; it does not imply recommendation or
endorsement by NIST nor does it imply that the products mentioned are necessarily the best
available for the purpose.

 3

Table of Contents
1 Introduction...4

1.1 Purpose..4
1.2 Scope...4
1.3 Audience..5
1.4 Technical Background ...5
1.5 Glossary of Terms ...6

2 Functional Requirements ...8
2.1 High Level View ...8
2.2 Requirements for Mandatory Features..8
2.3 Requirements for Optional Features ...8

3 References ...9
Annex A Web Application Vulnerabilities ...10
Annex B Levels of Defense..12

1 Introduction

The NIST Software Assurance Metrics and Tool Evaluation (SAMATE) project provides a measure of
confidence in the software tools used in software assurance evaluations. It provides software developers
and purchasers with a means of deciding whether the tools in consideration for use should be applied to
the purposes required. Through the development of tool functional specifications, test suites and tool
metrics, the SAMATE project aims to better quantify the state of the art for all classes of software
assurance tools.

1.1 Purpose

This document constitutes a specification* for a specific type of software assurance tool, which is referred
to here as web application security scanner.

Web application security scanner is an automated program that examines web applications for potential
security vulnerabilities [Fong and Okun]. In addition to searching for web application specific
vulnerabilities, the tools also look for software coding errors, such as buffer overflows.

This document specifies basic functional requirements for web application security scanner tools used in
evaluations of application layer software on the web. Production tools should have capabilities far
beyond those indicated here. Many important attributes, like cost and ease of use, are not covered.

The purposes of the web application security scanner tool specification are:

• to define a minimum (mandatory) level of functions that must be available in the tool in
order for the purchaser and vendors to qualified the product,

• to produce unambiguous clauses as to what is required in order to conform, and
• to build consensus on tool functions and requirements toward the evaluation of software

security assessment tools for behavior and effectiveness.

The functionality described herein may be embedded in a larger tool with more functionality. The
functionality could also be covered by several specialized tools.

The functional requirements are the basis for developing test suites to measure the effectiveness of web
application security scanner tools. Accompanying documents detail test cases and methods to ascertain
to what extent a tool meets these requirements.

1.2 Scope

This specification is limited to software tools that examine software applications, which respond to
dynamic web page requests over HyperText Transfer Protocol (HTTP) or other similar protocols. Web
applications are designed to allow any user with a web browser and an Internet connection to interact
with them in a platform independent way.

This document specifies minimum functionality only. Critical production tools should have capabilities far
beyond those indicated here. Many important attributes, like compatibility with integrated development

* This specification has not had public review. We plan to have public review and comment, then to
release a revised version

 5

environments (IDEs) and ease of use, are not addressed. We focus on the ability of tools to detect
vulnerabilities and do not consider other characteristics of the tool, such as supported protocols,
supported parsers, supported method, and supported authentication.

Outside of scope are the following types of tools or functionality:

- Tools that scan other artifacts, like requirements, bytecode or binary code.
- Database scanners.
- Functionality that scans web services.
- Other types of system security tools, e.g., firewalls, anti-virus, gateways, routers, switches,

intrusion detection/protection systems.
- Functionality that checks infrastructure vulnerabilities, deployment, configuration issues, such

as running an obsolete version of web server.

Source code security analysis tools are covered by another specification developed by SAMATE [NIST
SP 500-268].

The misuse or proper use of a tool is outside the scope of this specification. The issues and challenges
in engineering secure systems and their software are outside the scope of this specification.

It is assumed that, this document, being a specification, only describes what functions should be (or must
be) in the tool, and not how to implement these functions. Therefore, techniques, methods and
algorithms for implementing certain functions are omitted here.

This specification is not a survey of tool functions and does not discuss variabilities and complexities on
how the tool is capable of performing.

1.3 Audience

The target audience for this specification is users and evaluators of web application security scanners. It
may also be useful to security professionals with an interest in web security, software assurance
researchers, and developers of web application security scanners.

1.4 Technical Background

This section gives some technical background, defines terms we use in this specification, explains how
concepts designated by those terms are related, and details some challenges in web application
vulnerability assessment for security assurance.

Different authors may use the same term to refer to different concepts. For clarity we give our definitions.
To begin, any event, which is a violation of a particular system's explicit (or implicit) security policy, is a
security failure, or simply, failure. For example, if an unauthorized person gains "root" or "admin"
privileges or if unauthorized people can read Social Security numbers through the World Wide Web,
security has failed.

A vulnerability is a property of system security requirements, design, implementation, or operation that
could be accidentally triggered or intentionally exploited and result in a security failure. (After [NIST SP
800-27]) In our model the source of any failure is a latent vulnerability. If there is a failure, there must
have been vulnerability. A vulnerability is the result of one or more weaknesses in requirements, design,
implementation, or operation.

 6

An exploit is a piece of software or technique that takes advantage of a vulnerability to cause a failure. An
attack is a specific application of an exploit [After AP-Glossary]. In other words, an attack is an action (or
sequence of actions) that takes advantage of vulnerability.
A web application is a software application executed by a web server, which responds to dynamic web
page requests over HTTP [WASC-Glossary]. A web application is comprised of a collection of
components, which reside on a web server and interact with databases or other sources of dynamic
content. Using the infrastructure of the Internet, web applications allow service providers and clients to
share and manipulate information in a platform-independent manner. A web application has a distributed
n-tiered architecture. Typically, there is a client (web browser), a web server, an application server (or
several application servers), and a persistence (database) server.

Since HTTP is a stateless protocol, web applications use separate mechanisms to maintain application
state, or context, during a session. A session is a series of interactions between user and web application
during a single visit to the web site. The context may be maintained via GET or POST session, variables,
cookies, and other methods.

A web application security scanner is an automated program designed to examine web applications for
security vulnerabilities. In using the term vulnerability, we do not attempt to differentiate between the
issues that cause critical, costly security failures (e.g., theft of credit card information) and those that do
not (e.g., a buffer overflow that causes loss of personal preference information on a non-commercial site).

When a web application identifies vulnerability, it reports one or more attacks. To allow the developers to
verify and fix the vulnerability, an attack report must contain relevant information, including script location
(e.g., http://foo.com/where/search.pl), input parameters (e.g., file=/etc/passwd), and context. This
information is contained within the HTTP headers, so a tool may report the headers. Alternatively, a tool
may report this information in a different format. Additionally, the output page can help developer verify
the vulnerability.

In order to provide different levels of access to different users, web applications employ various
authentication mechanisms. Some functions of a web application may only be accessible to authenticated
users; others may produce different output depending on the level of access of the user. A web
application security scanner must be able to login, possibly with the help of the user, to an application.
Once logged in, the scanner must be able to maintain the logged-in state and recognize when it was
logged out.

Since a failure only takes one vulnerability, the requirements have a tone of catching all vulnerabilities.
Practical considerations require the false positive rate [Fleiss] to be acceptably low for the domain.

In addition, vulnerabilities within one type differ significantly in terms of difficulty of exploiting them and
types of attacks that are effective against them. A web application security scanner may be able to find
one SQL injection vulnerability, but fail to detect another. The reason is that web application developers
implement different defense measures that make attacks more difficult. Annex B presents common
defense mechanisms, and then combines them into defense levels of increasing strength.

To save analysis time in later runs, some tools allow the user to suppress vulnerability instances so they
are not reported again.

Modern web applications use various advanced client-side technologies. Ideally, a web application
scanner must understand and support these technologies. At a minimum, it must recognize the presence
of a technology that it does not (fully) support and alert the tool user that this may cause its vulnerability
assessment to be incomplete.

1.5 Glossary of Terms

This glossary was added to provide context for terms used in this document. Many of the terms were
copied from the web security glossary developed by Web Application Security Consortium [WASC-
glossary].

Name Description

 7

(Web) Application Server A software server, typically using HTTP, which has the ability to
execute dynamic web applications. Also known as a middleware,
this piece of software is normally installed on or near the web
server where it can be called upon.

Authentication The process of verifying the identity or location of a user, service
or application. Authentication is performed using at least one of
three mechanisms: “something you have”, “something you know”
or “something you are”. The authenticating application may
provide different services based on the location, access method,
time of day, etc.

Authorization The determination of what resources a user, service or
application has permission to access. Accessible resources can
be URL’s, files, directories, servlets, databases, execution paths,
etc.

Attack An action (or sequence of actions) that takes advantage of
vulnerability

Exploit An exploit is a technique or software code (often in the form of
scripts) that takes advantage of a vulnerability or security
weakness in a piece of target software.

False negative Failure of a tool to report a weakness, when in fact there is one
present in the code.

False positive Reporting of a vulnerability by a tool, where there is none.

Session A session is a series of interactions between user and web
application during a single visit to the web site.

Security vulnerability A property of system security requirements, design,
implementation, or operation that could be accidentally triggered
or intentionally exploited and result in a security failure.

Source code A series of statements written in a human-readable computer
programming language.

Universal Resource Locator (URL) A standard way of specifying a location of an object, normally a
web page, on the Internet.

Unvalidated input User-supplied input data that has not been examined or filtered
prior to use.

Unfiltered output Application output that has not been filtered prior to being
returned to the client.

Vulnerability A property of system security requirements, design,
implementation, or operation that could be accidentally triggered
or intentionally exploited and result in a security failure.

Web application A software application executed by a web server which responds
to dynamic web page requests over HTTP.

Web application security scanner An automated program that searches for software security
vulnerability within web applications.

Weakness A defect in a system that may (or may not) lead to a
vulnerability.

 8

2 Functional Requirements

In this section we first give a high-level description of the functional requirements for web application
security scanner, and then detail the requirements for mandatory and optional features.

2.1 High Level View

A web application security scanner(s) shall be able to (at a minimum):

• Identify a select set of vulnerabilities in a web application.
• For each vulnerability, generate a text report indicating an attack.

2.2 Requirements for Mandatory Features

In order to meet this baseline capability, a web application security scanner(s) must be able to accomplish
the tasks described in the mandatory requirements listed below. The tool(s) shall:

WA-RM-1: Identify all of the vulnerabilities listed in Annex A.
WA-RM-2: Report an attack that demonstrates the vulnerability.
WA-RM-3: Specify the attack by providing script location, inputs, and context.
WA-RM-4: Identify the vulnerability with a name semantically equivalent to those in Annex A.
WA-RM-5: Be able to authenticate itself to the application and maintain logged-in state.
WA-RM-6: Have an acceptably low false positive rate.

2.3 Requirements for Optional Features

The following requirements apply to optional tool features. If the tool under test supports the applicable
optional feature, then the requirement for that feature applies, and the tool can be tested against it. This
means that a specific tool might optionally provide none, some or all of the features described by these
requirements. Optionally, the tool(s) shall:

WA-RO-1: Find any vulnerability within the defense mechanisms listed in Annex B.
WA-RO-2: Not identify a vulnerability instance that has been suppressed.
WA-RO-3: Indicate remediation tasks.

WA-RO-4: Produce an eXtended Markup Language (XML) formatted report.

WA-RO-5: Assign a severity rating to the vulnerabilities they identify.

 9

3 References

[AP-Glossary] Sean Barnum, Amit Sethi, Attack Pattern Glossary, in Build Security In.

[CWE] Common Weakness Enumeration, The MITRE Corporation, web site

http://cve.mitre.org/cwe/index.html#tree

[Fleiss] Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions, 2
nd

ed., John
Wiley and Sons, New York, pp 4-8.

[Fong and Okun] Elizabeth Fong and Vadim Okun, Web Application Scanners: Definitions and
Functions, 40th Annual Hawaii International Conference on System Sciences
(HICSS'07), p. 280b, 2007.

[Fong et. al] Elizabeth Fong, Romain Gaucher, Vadim Okun, Paul E. Black and Eric Dalci,

Building a Test Suite for Web Application Scanners, Hawaii International
Conference on System Sciences (HICSS'08), to appear.

[NIST SP 500-268] Paul E. Black, Michael Kass and Michael Koo, Source Code Security Analysis

Tool Functional Specification Version 1.0, NIST Special Publication 500-268,
May 2007.

[NIST SP 800-27] Engineering Principles for Information Technology Security (A Baseline for
 Achieving Security), NIST SP 800-27, Revision A, June 2004.

 Available at http://csrc.nist.gov/publications/nistpubs/

[OWASP-TOP-10] OWASP Top 10: The Ten Most Critical Web Application Vulnerabilities,
 http://www.owasp.org/index.php/Top_10_2007

[PCI-DSS] Payment Card Industry (PCI) Data Security Standard,

https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

[WASC-Glossary] Web Application Security Consortium: Glossary, web site
 http://webappsec.org/projects/glossary/

[WASC-Threat] Web Application Security Consortium: Threat Classification, web site
 http://www.webappsec.org/projects/threat/

http://cve.mitre.org/cwe/index.html#tree
http://csrc.nist.gov/publications/nistpubs/
http://www.owasp.org/index.php/Top_10_2007
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf
http://webappsec.org/projects/glossary/
http://www.webappsec.org/projects/threat/

 10

Annex A Web Application Vulnerabilities

The web application vulnerabilities in this table represent a “base set” of vulnerabilities that a web
application security scanner must be able to identify if it supports the technology and languages in which
the vulnerability exists. Criteria for selection of vulnerabilities include:

- Found in existing applications today.
- Recognized by tools today.
- Likelihood of exploit or attack is medium to high.

In devising the table, we used several taxonomies, including [OWASP-TOP-10], [CWE], and [WASC-
Threat]. The table also provides a, possibly incomplete, mapping of the vulnerability names to Open Web
Application Security Project (OWASP) Top Ten 2007, Common Weakness Enumeration (CWE), and the
Payment Card Industry (PCI) Data Security Standard [PCI-DSS]. The mapping identifies related (not
equivalent) terms.

Name Description Related
terms

OWASP
Top
Ten
2007

CWE
ID

PCI
DSS
1.1

Cross Site
Scripting (XSS)

A web application accepts user input (such
as client-side scripts and hyperlinks to an
attacker’s site) and displays it within its
generated web pages without proper
validation.

Reflected
XSS,
persistent
(stored) XSS,
DOM-based
XSS

A1 79 X

SQL Injection Unvalidated input is used in construction of
an SQL statement.

Blind SQL
injection

A2 89 X

OS Command
Injection

Unvalidated input is used in an argument to a
system operation execution function.

 A2 78 X

XML Injection Unvalidated input is inserted into an XML
document.

XPath
injection,
XQuery
injection

A2 91 X

HTTP
Response
Splitting

Unvalidated input is used in construction of
HTTP response headers.

CRLF
injection

A2 113, 93 X

Malicious File
Inclusion

Unvalidated input is used in an argument to
file or stream functions.

File inclusion,
Remote code
execution,
Directory
traversal

 A3 98

 11

Insecure Direct
Object
Reference

Unvalidated input is used as a reference to
an internal implementation object, such as a
file, directory, or database key.

Parameter
tampering,
Cookie
poisoning,
Path
manipulation

 A4 233,
73, 472

X

Cross Site
Request
Forgery (CSRF)

An application authorizes requests based
only on credentials that are automatically
submitted by the browser. A CSRF attack
forces a logged-in victim’s browser to send a
request to a vulnerable application, which
then performs the chosen action on behalf of
the victim, to the benefit of the attacker.

Session
riding,
One-click
attacks,
Hostile
Linking

 A5 352

Information
Leakage

Disclosure of sensitive information or the
internal details of the application.

File and
directory
information
leaks,
System
information
leak.

 A6 538,
200,
497

X

Improper Error
Handling

Error message may display too much
information that is useful in exploring a
vulnerability.

Error
message
information
leaks,
Detailed error
handling

A6 388,
209,
390

X

Weak
Authentication
and Session
Management

Lack of proper protection of account
credentials and session tokens through their
lifecycle.

 A7 287 X

Session
Fixation

Authenticating a user without invalidating any
existing session identifier. This gives an
attacker the opportunity to steal
authenticated sessions

 A7 384 X

Insecure
Communication

Transmitting sensitive information (session
tokens, credit card numbers or health
records) without proper encryption (e.g.,
SSL).

 A9 X

Unrestricted
URL Access

Missing or insufficient access control for
sensitive URLs and functions.

Predictable
resource
location,
security by
obscurity

 A10 425 X

 12

Annex B Levels of Defense

A tool must be able to identify vulnerabilities when the application developer implements certain defense
measures. This annex presents common defense mechanisms that can be implemented to make various
attacks more difficult, and then combines them into defense levels of increasing strength [Fong et. al].
The following table of defense mechanisms is not comprehensive. To be effective, these defense
mechanisms must be implemented on the server side.

Defense
Mechanism

Description Example Affected
vulnerabilities

Typecasting Convert the input string
to specific type, such as
integer, Boolean,
double.

(int)($_GET[‘var’]) transforms
“8<script>” into the integer 8

XSS, Injections,
Cookie poisoning

Meta-character
replacement

Encode characters from
a blacklist

“<” is replaced with “<” for
HTML documents, quotes
replacement…
For XSS, replace these
characters: ‘, “, <, >, &, %, #

All technical
vulnerabilities

Restrict input range Restrict the range of
integers, the type of an
entry (only
alphanumeric), length of
a string etc.

For HTML injection, use a
regular expression such as:
[a-zA-Z0-9_\s]+
to restrict the input to
alphanumeric characters plus
underscore and space.
Using data binding for SQL
queries (prepared
statements), etc.

All technical
vulnerabilities

Restricted user
management

Use a restricted account
for performing data
manipulation, SQL
queries, etc.

If user is not logged in, use a
read-only SQL account that
only allows commands like
SELECT and EXECUTE; no
UPDATE or INSERT allowed.

SQL Injection, OS
Command Injection

Use of stronger
function

Use a stronger function
for performing a secure
action

Use SHA-256 instead of
SHA-1 or MD5, Salt the
passwords, Secure cookies.
Using HttpOnly cookies to
prevent client-side script to
read them.

Weak cryptographic
functions, Insecure
cookies

Token Validation Use a unique token to
verify the origin of the
HTTP request

By adding a unique identifier
(token) in the forms or in the
HTTP header, the application
must be able to verify the
origin of the request

Cross-Site Request
Forgery

Character encoding
handling

Canonicalize resource
names and other input
that may contain
encoded characters.

Sample attacks using
encoding:
XSS: The UTF-7 encoded
string: “+ADw-script+AD4-

XSS, Injections,
Cookie poisoning

 13

alert('XSS')+ADsAPA-
/script+AD4-“ should be
interpreted as
“<script>alert(‘XSS’)</script>
SQL Injection: An injection
technique consist of replacing
the strings to inject by a
concatenation of characters

Hide information Hide information such as
errors, Session ID etc.

 All vulnerabilities that
can produce an
informative output
(SQL Injection, XSS,
File Inclusion, etc.),
Session Management

We can combine the defense mechanisms into levels of defense of increasing strength. Each level
includes the mechanisms of the previous levels. The following table presents levels of defense for several
vulnerability types.

Level of defense Description of defense mechanisms used

Cross-Site Scripting (XSS)

0 No input filtering.
For example, the following URL will result in a pop-up window:
http://.../bank/index.php?q=<script>alert(1);</script>

1 Level 0 + Typecasting

2 Level 1 + Meta-character replacement
Using the PHP htmlentities function which escapes every HTML character.
For example, http://.../bank/index.php?q=<script>alert(1);</script>
will insert in the page: <script>alert(1); </script>

3 Level 2 + Using a special function which looks for possible nested JavaScript.

4 Level 3 + Probing the charset and decoding the inputs.

Cross-Site Request Forgery (CSRF)

0 No validation

1 Level 0 + Check the HTTP referrer

2 Level 1 + Using a unique token validation

SQL Injection

0 No filtering of SQL query parameters.
Example: http://.../bank/login.php?username=’ OR 1=1;--&password=

1 Level 0 + Hide information
Hiding the MySQL errors

2 Level 1 + Typecasting

3 Level 2 + Meta-character replacement.
Escaping potential MySQL characters: \x00, \n, \r, \, ', " and \x1a.

http://.../bank/index.php?q=%3Cscript%3Ealert(1);%3C/script
http://.../bank/index.php?q=%3Cscript%3Ealert(1);%3C/script
http://.../bank/login.php?username

 14

4 Level 3 + Restricted user management

5 Level 4 + Using prepared statements or similar methods

File Inclusion

0 Include input file name concatenated with ‘.inc’

1 Level 0 + Test that file exists (works for remote files)

2 Level 1 + Test that file is in the Apache DOCUMENT_ROOT

3 Level 2 + Meta-character replacement
The file name does not contain special characters, such as /etc/…, /…/.., so the
file is restricted to a certain directory.

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Audience
	1.4 Technical Background
	1.5 Glossary of Terms

	2 Functional Requirements
	2.1 High Level View
	2.2 Requirements for Mandatory Features
	2.3 Requirements for Optional Features

	3 References

