
Special Publication 500-270

Source Code Security Analysis Tool
Test Plan

Draft 1 for public comment of Version 1.0

 Michael Koo
Romain Gaucher

Vadim Okun
Information Technology Laboratory (ITL)

Software Diagnostics and Conformance Testing Division
9 March 2007

Abstract

This document provides a set of metrics, including test suites and methods, to determine
how well a particular source code security analysis tool conforms to the requirements
specified in Source Code Security Analysis Tool Functional Specification Version 1.0
[SCA]. Each programming language has a corresponding set of test suites. The test suites
are intended to be used by tool developers and tool users alike to increase their level of
confidence in product quality. Each test suite consists of test cases. Each test case
contains test description, weakness contained in the test case, expected result and test
code. The detailed information of the test case, such as start parameters, procedures for
executing a test file and test file itself can be retrieved from the SAMATE Reference
Dataset (SRD) http://samate.nist.gov/SRD/.

As this document evolves, new versions will be posted to the web site at
http://samate.nist.gov/index.php/Source_Code_Security_Analysis.

 2

http://samate.nist.gov/index.php/Source_Code_Security_Analysis

Table of Contents

ABSTRACT .. 2
TABLE OF CONTENTS... 3
1 INTRODUCTION ... 4
2 PURPOSE... 4
3 TEST METHODOLOGY ... 4

3.1 REQUIREMENTS FROM [SCA].. 5
3.1.1 Requirements for Mandatory Features ... 5
3.1.2 Requirements for Optional Features... 5

3.2 MEASUREMENT OF FULFILLMENT OF REQUIREMENTS .. 5
3.2.1 Mandatory Features.. 6
3.2.2 Optional Features ... 6

4 TEST SUITES.. 7
4.1 TEST SUITES FOR THE C LANGUAGE ... 7

4.1.1 Test Suite SCA-TS-1-C (SRD Test Suite 45).. 7
4.1.2 Test Suite SCA-TS-2-C (SRD Test Suite 46).. 10
4.1.3 Test Suite SCA-TS-3-C (SRD Test Suite 47).. 12

4.2 TEST SUITES FOR THE C++ LANGUAGE... 13
4.2.1 Test Suite SCA-TS-1-CPP ... 13
4.2.2 Test Suite SCA-TS-2-CPP ... 13
4.2.3 Test Suite SCA-TS-3-CPP ... 13

4.3 TEST SUITES FOR THE JAVA LANGAUGE.. 14
4.3.1 Test Suite SCA-TS-1-JAVA.. 14
4.3.2 Test Suite SCA-TS-2-JAVA.. 14
4.3.3 Test Suite SCA-TS-3-JAVA.. 14

5 REFERENCE: ... 14

 3

1 Introduction

There is a critical need in society to ensure that software assurance tools produce
accurate, repeatable and objective results. The Software Assurance Metrics and Tool
Evaluation (SAMATE) project at the National Institute of Standards and Technology
(NIST) is working to establish a methodology for testing software assurance tools by
developing functional specifications, test procedures, test criteria, and test suites. The
results provide the information necessary for toolmakers to improve tools, for users to
make informed choices about acquiring and using software assurance tools, and for
interested parties to understand the tools’ capabilities. This project is further
described at http://samate.nist.gov/.

SAMATE is a joint project of the Department of Homeland Security and the NIST
Information Technology Laboratory (ITL). Since all documents are posted on the web
for public review and comment, the entire computer software assurance community
has the opportunity to participate in the development of the specifications and test
methods.

For this document, a Source Code Security Analyzer examines source code to detect
and report weaknesses that can lead to security vulnerabilities. Other static analysis
tools, for examples tools that scan bytecode or binary code or examine web sites, are
not covered.

2 Purpose

This document, along with files in the SRD [SRD], provides a means to test the
functions of a tool based on the requirements in Source Code Security Analysis Tool
Functional Specification Version 1.0 [SCA].

The test plan is generic in that it can be applied to any programming language. Each
language will have its own specific set of test suites.

The test methodology described in this document focuses only on the requirements of
in [SCA]. Testing the performance robustness, scalability, usability, etc. is outside of
the scope of this document.

3 Test Methodology

For the reader’s convenience, this section repeats the requirements in [SCA]. This

 4

http://samate.nist.gov/index.php/Main_Page

section also describes the approach to measure the tool under test.

3.1 Requirements from [SCA]

3.1.1 Requirements for Mandatory Features
A source code security analysis tool must be able to achieve the following six
mandatory tasks:

• SCA-RM-1: Identify all of the code weaknesses listed in Appendix A.
• SCA-RM-2: Generate a text analysis of the code weaknesses that it identifies.
• SCA-RM-3: Identify the weakness with a name semantically equivalent to

those in Appendix A.
• SCA-RM-4: Specify the location of a weakness by providing the directory

path, file name and line number.
• SCA-RM-5: Identify any weaknesses within the relevant the coding

complexities listed in Appendix B
• SCA-RM-6: Have an acceptably low false-positive rate.

3.1.2 Requirements for Optional Features
If the tool supports the applicable optional feature, then the requirement for that
feature applies:

• SCA-RO-1: Produce an XML-formatted report.
• SCA-RO-2: Not identify a weakness instance, which has been suppressed.
• SCA-RO-3: Use the CWE name of the weakness it identifies.

3.2 Measurement of Fulfillment of Requirements
Briefly, testing takes three steps:

1. Prepare – install tool, choose appropriate test suites
2. Run tool on test cases in test suites – determine if results are as expected
3. Summarize results

To prepare to run the tests, the tool must be installed, of course. The tester should
establish what names the tool uses corresponding with the errors in SCA, Appendix
A. This is one part of satisfying SCA-RM-3, the names that the tool uses mean the
same thing as the names used in the test. For automated checking, a correspondence
should be made between the two sets of names. If the tool uses CWE names, the
correspondence, and SCA-RO-3, are trivial. SCA-RM-3 is still important: it is
conceivable that a tool reports a weakness at the right place, but refers to it by some
entirely inappropriate name.

 5

Each computer language has three corresponding test suites. Test suite SCA-TS-1-
name, where name is the name of the language, has programs with weaknesses. For
instance, SCA-TS-1-CPP is for the C++ language and SCA-TS-1-Java is for Java.
It tests features that are described in requirements SCA-RM-1 through SCA-RM-5.
It can also test requirements SCA-RO-1 and SCA-RO-3. Test suite SCA-TS-2-
name tests requirement SCA-RM-6, false alarms or false positives. Test suite SCA-
TS-3-name tests requirement SCA-RO-2, suppressing warnings.

For each language to be tested, download the appropriate test suites SCA-TS-1 and
TS-2. If SCA-RO-2, warning suppression, is to be tested, download the appropriate
test suites TS-3, too.

Since there may be several hundred individual test results to check, we encourage
users to write a harness for their own needs. The “More Downloads” section of the
SRD will shortly have sample scripts. All the tests could be run, and results saved,
then the determination made if the results are as expected. Alternatively the
determination could be made as each test is run. The advantage of making the
determination after all runs is that the determination can be rerun if need be without
rerunning the tool on all the test cases.

Note that the results of running the tool on test suite SCA-TS-1 are used for many
requirements. The results of SCA-TS-2 and SCA-TS-3 are used for one
requirement each.

3.2.1 Mandatory Features
• To determine if SCA-RM-1 is met from the results of SCA-TS-1 …

To determine if SCA-RM-2 is met from the results of SCA-TS-1 …

To determine if SCA-RM-3 is met from the results of SCA-TS-1 …

To determine if SCA-RM-4 is met from the results of SCA-TS-1 …

To determine if SCA-RM-5 is met from the results of SCA-TS-1 …

For each test case, the tool under testing is expected to generate a report that
identifies the weakness with a name semantically equivalent to those in
Appendix A of [SCA] and its location (e.g. path name and line number(s) of
weakness).

• To determine what to report for SCA-RM-6 from the results of SCA-TS-2 …

The number of errors reported divided by number of test cases will be the ratio
of false positive.

3.2.2 Optional Features
• To test requirement SCA-RO-1, if XML-formatted report is not a default for

the tool under testing, turn on that feature and then run test suite SCA-TS-1
for the appropriate language. The tool under test should generate report as
described in 3.2.1 in XML-format.

 6

• To test requirement SCA-RO-2, run test suite SCA-TS-3 first to prove the tool
can identify the weaknesses. Then run SAC-TS-3 again after the weaknesses
described in Appendix A are suppressed in the tool under test. The tool
should generate no report on any weakness that is suppressed.

• To test requirement SCA-RO-3, run test suite SCA-TS-1 for the appropriate
language. For each test case, the tool under testing is expected to generate a
report that identifies the weakness with correct CWE name.

4 Test Suites
A test suite is a collection of test cases explicitly selected for a special purpose. Each test
case is an atomic program that ensures a specific functionality required by SCA can be
performed by the tool under testing. Test suites and their test cases are stored in SRD
[SRD]. Each SRD test case entry provides test file, description of weakness, CWE
classification, type of code complexity, location of the weakness and other test case
metadata.

4.1 Test Suites for the C Language

4.1.1 Test Suite SCA-TS-1-C (SRD Test Suite 45)
This test suite will cover source code weaknesses in C listed in Appendix
A of Source code security analysis tool Functional Specification [SCA].

Source Code
Weakness

CWE
ID

Code Complexity SRD
Test
case ID

Remark

Basic XSS 80 Basic 1794
 Scope 1781
 Address alias level 1919
 Container 1921
 Loop complexity 1792
Resource
Injection

99 Basic 1897

 Scope 1901
 Address alias level 1895
 Container 1899
OS Command
Injection

78 Basic 11 Test function
'system()'.

 Basic 1780 Test function
'execlp()'.

 Scope 1885
 Local control flow 1881

 7

 Loop structure 1883
SQL Injection 89 Basic 1796
 Array index complexity 1798
 Scope 1800
Stack Overflow 121 Basic 1486
 Array index complexity 1544
 Scope 1548
 Basic 1563 Test function gets()
 Basic 1565 Test function fgets()
 Array index complexity 1751
 Array length/limit

complexity
1905

 Index alias level 1907
 Loop Structure 1909
Heap Overflow 122 Basic 15
 Scope 1612
 Array address

complexity
1843

 Array index complexity 1845
 Memory location 1847
Format string
vulnerability

134 Basic 10

 Address alias level 92
 Scope 93
 Container 1831
 Local control flow 1833
Improper Null
Termination

170 Basic 1849

 Taint 1857
 Buffer address type 1852
 Container 1854
 Address alias level 1850
Heap Inspection 244 Basic 1737
Often Misused:
String
Management

251 Basic 1865

 Taint 1873
 Scope 1871
 Address alias level 1867
 Container 1869
Hard-coded 259 Basic 1810

 8

Password
 Local control flow 1839
 Loop structure 1841
 Container 1837
 Array Index

Complexity
1835

Time-of-check
Time-of-use race
condition

367 Basic 102

 Basic 1806
 Local Control Flow 1808
Unchecked Error
Condition

391 Basic 1928

Memory leak 401 Basic 1585
 Scope 1588
Unrestricted
Critical Resource
Lock

412 Basic 1863

Double Free 415 Basic 1508
 Buffer address type 99
 Loop structure 1829
 Local control flow 1827
 Scope 1590
Use After Free 416 Basic 6
 Scope 1917
 Address alias level 1911
 Container 1915
 Buffer address type 1913
Uninitialized
variable

457 Data type 78 Data type is integer

 Data type 1482 Data type is Char *
 Loop Structure 1757
Unintentional
pointer scaling

468 Basic 1782

Improper pointer
subtraction

469 Basic 1860

Null Dereference 476 Basic 1760
 Address alias level 1875
 Local control flow 1877
 Scope 1879
Leftover Debug 489 Basic 1861

 9

Code

4.1.2 Test Suite SCA-TS-2-C (SRD Test Suite 46)
This test suite will be used to examine false positive ratio generated by the
tool under testing for C applications.

Source Code
Weakness

CW
E ID

Code Complexity SRD
Test
case ID

Remark

Basic XSS 80 Basic 1795
 Scope 1924
 Address alias level 1920
 Container 1922
 Loop complexity 1793
Resource
Injection

99 Basic 1898

 Address alias level 1896
 Container 1900
 Scope 1902
OS Command
Injection

78 Basic 1931 Test function
'system()'.

 scope 1886
 Local control flow 1882
 loop structure 1884
SQL Injection 89 Basic 1797
 Array index complexity 1799
 Scope 1801
 Loop structure 1930
Stack Overflow 121 Basic 1547
 Array index complexity 1545
 Scope 1549
 Basic 1566
 Array length/limit

complexity
1906

 Basic 1602
 Index alias level 1908
 Loop Structure 1910
Heap Overflow 122 Basic 1936
 Scope 1615
 Array index complexity 1844
 Memory location 1848

 10

 Array index complexity 1574
 Scope 1613
Format string
vulnerability

134 Scope 1562

 Address alias level 1560
 Local control flow 1834
 Container 1832
 Scope 1556
Improper Null
Termination

170 Basic 1856

 Taint 1858
 Buffer address type 1853
 Container 1855
 Address alias

level
1851

Often Misused:
String
Management

251 Basic 1866

 Taint 1874
 Scope 1872
 Address alias level 1868
 Container 1870
Hard-coded
Password

259 Local control flow 1840

 Loop structure 1842
 Container 1838
 Array Index Complexity 1836
Time-of-check
Time-of-use race
condition

367 Basic 1892

 Local Control Flow 1894
Unchecked Error
Condition

391 Basic 1929

Memory leak 401 Basic 1933
 Scope 1586
 Address alias level 1589
 Container 1925
 Loop structure 1926
Unrestricted
Critical Resource
Lock

412 Basic 1864

Double Free 415 Basic 1932

 11

 Loop structure 1830
 local control flow 1828
 Scope 1591
Use After Free 416 Scope 1918
 Address alias level 1912
 Container 1916
 Buffer address type 1914
Uninitialized
variable

457 Basic 1935

Unintentional
pointer scaling

468 Data type 1927

Null Dereference 476 Basic 1934
 Scope 1880
 Address alias level 1876
 Local control flow 1878
Leftover Debug
Code

489 Basic 1862

4.1.3 Test Suite SCA-TS-3-C (SRD Test Suite 47)
This test suite will examine whether the tool identifies weakness after it
has been suppressed for C applications.

Source Code
Weakness

CWE
ID

Code Complexity SRD
Test
case ID

Remark

Basic XSS 80 Basic 1794
Resource
Injection

99 Basic 1897

OS Command
Injection

78 Basic 11 Test function
'system()'.

SQL Injection 89 Basic 1796
Stack Overflow 121 Basic 1486
Heap Overflow 122 Basic 15
Format string
vulnerability

134 Basic 10

Improper Null
Termination

170 Basic 1849

Heap Inspection 244 Basic 1737
Often Misused:
String

251 Basic 1865

 12

Management
Hard-coded
Password

259 Basic 1810

Time-of-check
Time-of-use race
condition

367 Basic 102

Unchecked Error
Condition

391 Basic 1928

Memory leak 401 Basic 1585
Unrestricted
Critical Resource
Lock

412 Basic 1863

Double Free 415 Basic 1508
Use After Free 416 Basic 6
Uninitialized
variable

457 Data type 78 Data type is integer

Unintentional
pointer scaling

468 Basic 1782

Improper pointer
subtraction

469 Basic 1860

Null Dereference 476 Basic 1760
Leftover Debug
Code

489 Basic 1861

4.2 Test Suites for the C++ Language

4.2.1 Test Suite SCA-TS-1-CPP
This test suite will cover source code weaknesses in C++ listed in
Appendix A of Source code security analysis tool Functional
Specification [SCA]. The test cases of this suite are still under
construction.

4.2.2 Test Suite SCA-TS-2-CPP
This test suite will be used to examine false positive ratio generated by the
tool under testing for C++ applications. The test cases of this suite are still
under construction.

4.2.3 Test Suite SCA-TS-3-CPP
This test suite will examine whether the tool identifies weakness after it
has been suppressed for C++ application. The test cases of this test suite
are under construction.

 13

4.3 Test Suites for the Java Language

4.3.1 Test Suite SCA-TS-1-JAVA
This test suite will cover source code weaknesses in JAVA listed in
Appendix A of Source code security analysis tool Functional
Specification [SCA]. This test suite is still under development.

4.3.2 Test Suite SCA-TS-2-JAVA
This test suite will be used to examine false positive ratio generated by the
tool under testing for JAVA applications. The test cases of this suite are
still under construction.

4.3.3 Test Suite SCA-TS-3-JAVA
This test suite will examine whether the tool identifies weakness after it
has been suppressed for JAVA application. The test cases of this test suite
are under construction.

5 Reference:
[SCA] Source Code Security Analysis Tool Functional Specification Version 1.0

http://samate.nist.gov/docs/SAMATE_source_code_analysis_tool_spec_0
1_29_07.pdf

[SRD] SAMATE Reference Dataset
http://samate.nist.gov/SRD/
To retrieve test suite, click on “Test Suites” on the tool bar. A list of test
suite will display. Select the required test suite.

 14

http://samate.nist.gov/docs/SAMATE_source_code_analysis_tool_spec_01_29_07.pdf
http://samate.nist.gov/docs/SAMATE_source_code_analysis_tool_spec_01_29_07.pdf
http://samate.nist.gov/SRD/

	Abstract
	Table of Contents
	Introduction
	Purpose
	Test Methodology
	Requirements from [SCA]
	Requirements for Mandatory Features
	Requirements for Optional Features

	Measurement of Fulfillment of Requirements
	Mandatory Features
	Optional Features

	Test Suites
	Test Suites for the C Language
	Test Suite SCA-TS-1-C (SRD Test Suite 45)
	Test Suite SCA-TS-2-C (SRD Test Suite 46)
	Test Suite SCA-TS-3-C (SRD Test Suite 47)

	Test Suites for the C++ Language
	Test Suite SCA-TS-1-CPP
	Test Suite SCA-TS-2-CPP
	Test Suite SCA-TS-3-CPP

	Test Suites for the Java Language
	Test Suite SCA-TS-1-JAVA
	Test Suite SCA-TS-2-JAVA
	Test Suite SCA-TS-3-JAVA

	Reference:

