

Special Publication 500-270 v1.1

Source Code Security Analysis Tool
Test Plan Version 1.1

Michael Koo

Romain Gaucher

Charline Cleraux

Jenise Reyes Rodriguez

Software and Systems Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

July 2011

U.S. Department of Commerce

Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology

Dr. Patrick D. Gallagher, Director

Abstract

This document provides a set of metrics, including test suites and methods, to determine

how well a particular source code security analysis tool conforms to the requirements

specified in Source Code Security Analysis Tool Functional Specification Version 1.0

[SCA]. Each relevant programming language in [SCA] has a corresponding set of test

suites. The test suites are intended to be used by tool developers and tool users alike to

increase their level of confidence in product quality. Each test suite consists of test cases

that are designed to evaluate against various requirements of [SCA], including mandatory

features and optional features. Each test case contains a test description, a description of

the weakness contained in the test case, the expected result and the test code. Detailed

information on the test case, such as start parameters, procedures for executing the test

file and the test file itself can be retrieved from the SAMATE Reference Dataset (SRD)

at http://samate.nist.gov/SRD/.

As this document evolves, new versions will be posted to the web site at

http://samate.nist.gov/index.php/Source_Code_Security_Analysis.html.

Keywords

Source code security analysis tool; test plan; test methodology; test suite.

Changes to this version

This version 1.1 updates version 1.0 by modifying C and C++ test suites and adding Java

test suites.

http://samate.nist.gov/SRD/
http://samate.nist.gov/index.php/Source_Code_Security_Analysis.html

 3

Table of Contents

ABSTRACT .. 2

KEYWORDS .. 2

CHANGES TO THIS VERSION .. 2

TABLE OF CONTENTS ... 3

1 INTRODUCTION ... 4

2 PURPOSE AND SCOPE ... 4

3 TEST METHODOLOGY ... 4

3.1 REQUIREMENTS FROM [SCA] .. 5
3.1.1 Requirements for Mandatory Features ... 5
3.1.2 Requirements for Optional Features .. 5

3.2 MEASUREMENT OF FULFILLMENT OF REQUIREMENTS ... 5
3.2.1 Naming Convention .. 6
3.2.2 Mandatory Features ... 7
3.2.3 Optional Features ... 7

4 TEST SUITES .. 7

4.1 TEST SUITES FOR THE C LANGUAGE .. 7
4.1.1 Test Suite SCA-TS-1-C (SRD Test Suite 45) ... 7
4.1.2 Test Suite SCA-TS-2-C (SRD Test Suite 46) ..10
4.1.3 Test Suite SCA-TS-3-C (SRD Test Suite 47) ..13

4.2 TEST SUITES FOR THE C++ LANGUAGE...14
4.2.1 Test Suite SCA-TS-1-CPP (SRD Test Suite 57) ...14
4.2.2 Test Suite SCA-TS-2-CPP (SRD Test Suite 58) ...15
4.2.3 Test Suite SCA-TS-3-CPP (SRD Test Suite 59) ...17

4.3 TEST SUITES FOR THE JAVA LANGUAGE ...17
4.3.1 Test Suite SCA-TS-1-JAVA (SRD Test Suite 63) ..17
4.3.2 Test Suite SCA-TS-2-JAVA (SRD Test Suite 64) ..19
4.3.3 Test Suite SCA-TS-3-JAVA (SRD Test Suite 65) ..20

5 REFERENCES ...21

 4

1 Introduction

There is a critical need in information technology to ensure that software assurance

tools produce accurate, repeatable and objective results. The Software Assurance

Metrics and Tool Evaluation (SAMATE) project at the National Institute of Standards

and Technology (NIST)
1
 is working to establish a methodology for measuring the

functionality and capability of software assurance tools by developing functional

specifications, test procedures, test criteria, and test suites. The results provide the

information necessary for the toolmakers to improve tools, for users to make

informed choices about acquiring and using software assurance tools, and for

interested parties to understand the tools’ capabilities.

This document updates a test plan, including the test methodology and test suites, for

Source Code Security Analysis Tools that examine program source code to detect and

report weaknesses that can lead to security vulnerabilities. Other static analysis tools,

for examples tools that scan bytecode or binary code, are not covered.

2 Purpose and Scope

This document, along with some specific test suites in the SAMATE Reference

Dataset (SRD) [SRD], provides a means to test the functionality and capability of a

Source Code Security Analysis Tool based on the requirements asserted in Source

Code Security Analysis Tool Functional Specification Version 1.0 [SCA].

The test plan is generic in that it can be applied to any programming language.

However, each language will have its own specific set of test suites for measuring the

tool.

The test methodology described in this document focuses only on the functional

specification in [SCA]. Testing the performance robustness, scalability, usability, etc.

of a source code security analysis tool is outside of the scope of this document.

3 Test Methodology

1
 This project is sponsored by the U.S. Department of Homeland Security (DHS) National Cyber Security Division and

NIST. Detailed information about this project is described at http://samate.nist.gov/.

http://samate.nist.gov/index.php/Main_Page

 5

3.1 Requirements from [SCA]

3.1.1 Requirements for Mandatory Features

To meet a minimum level of capability, a source code security analysis tool or set

of tools must be able to accomplish the tasks described below. The tool(s) shall:

SCSA-RM-1: Identify all of the classes of weaknesses listed in Annex A

of [SCA].

SCSA-RM-2: Textually report any weaknesses that it identifies.

SCSA-RM-3: For any identified weaknesses in classes listed in Annex A

of [SCA], report the class using a semantically equivalent name.

SCSA-RM-4: Report the location of any weaknesses by providing the

directory path, file name and line number.

SCSA-RM-5: Identify weaknesses despite the presence of the coding

complexities listed in Annex B of [SCA].

SCSA-RM-6: Have an acceptably low false positive rate.

3.1.2 Requirements for Optional Features

The following requirements apply to optional tool features. If the tool supports an

optional feature, then the requirement for that feature applies, and the tool can be

tested against it. A specific tool might optionally provide none, some, or all of the

features described by these requirements. Optionally, the tool(s) shall:

SCSA-RO-1: Produce an XML-formatted report.

SCSA-RO-2: Not report a weakness instance that has been suppressed.

SCSA-RO-3: Use the Common Weakness Enumeration [CWE] name of

the weakness class it reports.

3.2 Measurement of Fulfillment of Requirements

In general, measuring source code security analysis tool takes three steps:

1. Preparation: Set up testing environment, study functionalities of the

tool, become familiar with the material in Annex A of [SCA], review

test suites outlined in this test plan, etc. Specific examples of tasks

that may be part of this step include:

 install tool

 understand the capacity of the tool

 establish the corresponding relationship between weaknesses

that the tool can detect and the weakness listed in Annex A of

[SCA]

 choose appropriate test suites, (see Section 4).

2. Run tool on test cases in test suites – determine if results are as

expected.

 6

3. Summarize results.

This test plan includes 9 (nine) test suites. Each test suite evaluates the source code

security tool for one or multiple requirement specified in Sections 3.1.1 and 3.1.2.

Each test suite consists of a set of test cases in one of the languages, i.e., C, C++, or

Java. A test case demonstrates a weakness in a specific code construct; or a test

case is a fixed version of code that has the weakness removed to measure the

capability of the tool to avoid generating false positives.

The expected result of a test case will be a report of weakness, if a weakness is

seeded in the code; or it will not report the weakness, if a weakness is not seeded or

reporting the weakness is suppressed. If a weakness is reported, the expected result

must be a weakness from classes listed in Annex A of [SCA], or a weakness from

that class reported using a semantically equivalent name. The report must also

include the location of the weakness.

3.2.1 Naming Convention

Annex A of [SCA] covers three computer languages, C, C++ and Java. Each

computer language has three corresponding test suites. Test suite SCA-TS-1-name,

where name is the name of the language, consists of test cases in that language.

For instance, SCA-TS-1-CPP is for the C++ language and SCA-TS-1-Java is for

Java. Test suite SCA-TS-1 tests features that are described in requirements SCA-

RM-1 through SCA-RM-5. It can also test requirements SCA-RO-1 and SCA-RO-3.

Test suite SCA-TS-2-name tests requirement SCA-RM-6, false alarms or false

positives. Test suite SCA-TS-3 tests requirement SCA-RO-2, suppression of

warnings.

Dependent on the language and requirements to be tested, download the appropriate

test suite from the SRD, see Section 4.

Since there may be up to several hundred individual test results to check, we

encourage users to write a harness for their own needs. The “More Downloads”

section of the SRD provides sample scripts. All the tests could be run, and results

saved, then the determination made if the results are as expected. Alternatively the

determination could be made as each test is run.

Note that the results from running the tool on test suite SCA-TS-1 are used for

many requirements. The results of SCA-TS-2 and SCA-TS-3 are used for one

requirement each.

 7

3.2.2 Mandatory Features

 To determine if SCA-RM-1 is met from the results of SCA-TS-1 …

To determine if SCA-RM-2 is met from the results of SCA-TS-1 …

To determine if SCA-RM-3 is met from the results of SCA-TS-1 …

To determine if SCA-RM-4 is met from the results of SCA-TS-1 …

To determine if SCA-RM-5 is met from the results of SCA-TS-1 …

For each test case, the tool under test is expected to generate a report that

identifies the seeded weakness with a name semantically equivalent to one of

those in Annex A of [SCA] and its location (e.g., the path name and line

number(s) of the weakness).

 To determine what to report for SCA-RM-6 from the results of SCA-TS-2 …

For each test case, the original seeded weakness is fixed or removed. The tool

under test should not report any weakness. If it does, practical considerations

require the false positive rate [Fleiss] to be acceptably low for the domain.

3.2.3 Optional Features

 To test requirement SCA-RO-1, turn on that feature if necessary and then run

test suite SCA-TS-1 for the appropriate language. The tool under test should

generate a report as described in 3.2.2 in the appropriate XML-format.

 To test requirement SCA-RO-2, run test suite SCA-TS-3 first to prove the tool

can identify the weaknesses. Then run SCA-TS-3 again after the weaknesses

described in Annex A of [SCA] are suppressed in the tool under test. The tool

should generate no reports for any weakness that is suppressed.

 To test requirement SCA-RO-3, run test suite SCA-TS-1 for the appropriate

language. For each test case, the tool under test is expected to generate a

report that identifies the incorporated weakness with the correct CWE name.

4 Test Suites

A test suite is a collection of test cases explicitly selected for a special purpose. Each test

case is an atomic program that tests a specific tool functionality required by [SCA]. Test

suites and their test cases are stored in the SRD [SRD]. Each SRD test case entry

provides a test file, a description of the test case, the CWE classification of the

incorporated weakness, any type(s) of code complexity present, the location of the

weakness, and other test case related information. This test plan includes test suites for C,

C++ and Java languages.

4.1 Test Suites for the C Language

4.1.1 Test Suite SCA-TS-1-C (SRD Test Suite 45)

http://samate.nist.gov/SRD/view.php?tsID=45

http://samate.nist.gov/SRD/view.php?tsID=45

 8

This test suite tests the capability of a source code security analysis tool’s handling of

weaknesses in the C language. It covers the source code weaknesses in C listed in

Annex A of Source Code Security Analysis Tool Functional Specification [SCA].

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 1794

 Scope 1781

 Address alias level 1919

 Container 1921

 Loop complexity 2198

Resource

Injection

99 Basic 1897

 Scope 1901

 Address alias level 1895

 Container 1899

OS Command

Injection

78 Basic 111 Test function

'system()'.

 Scope 1885

 Local control flow 1881

 Loop structure 1883

SQL Injection 89 Basic 1796

 Array index complexity 1798

 Scope 1800

Stack Overflow 121 Basic 2009

 Array index complexity 1544

 Scope 1548

 Basic 1563 Test function gets()

 Basic 1565 Test function fgets()

 Array index complexity 1751

 Array length/limit

complexity

1905

 Index alias level 1907

 Loop Structure 1909

Heap Overflow 122 Basic 1611

 Scope 1612

 Array address

complexity

1843

 Array index complexity 1845

Format string 134 Basic 10

 9

vulnerability

 Address alias level 92

 Scope 93

 Container 1831

 Local control flow 1833

Improper Null

Termination

170 Basic 1849

 Taint 1857

 Buffer address type 2010

 Container 1854

 Address alias level 1850

Heap Inspection 244 Basic 1737

Often Misused:

String

Management

251 Basic 1865

 Taint 1873

 Scope 1871

 Address alias level 1867

 Container 1869

Hard-coded

Password

259 Basic 1810

 Local control flow 1839

 Loop structure 1841

 Container 1837

 Array Index

Complexity

1835

Time-of-check

Time-of-use race

condition

367 Basic 102

 Basic 1806

 Local Control Flow 1808

Unchecked Error

Condition

391 Basic 1928

Memory leak 401 Basic 1585

 Scope 1588

Unrestricted

Critical Resource

Lock

412 Basic 2109

Double Free 415 Basic 2199

 Buffer address type 99

 Loop structure 1829

 10

 Local control flow 1827

 Scope 1590

Use After Free 416 Basic 2200

 Scope 2201

 Container 2202

 Buffer address type 2203

Uninitialized

variable

457 Data type 2019 Data type is integer

 Data type 2003 Data type is int *

 Loop Structure 1757

Unintentional

pointer scaling

468 Basic 1782

Null Dereference 476 Basic 2193

 Address alias level 1875

 Local control flow 1877

 Scope 1879

Leftover Debug

Code

489 Basic 1861

4.1.2 Test Suite SCA-TS-2-C (SRD Test Suite 46)

http://samate.nist.gov/SRD/view.php?tsID=46

This test suite can be used to assess the false positive ratio of the tool under test for C

applications.

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test case

ID

Remark

Basic XSS 80 Basic 1795

 Scope 1924

 Address alias level 1920

 Container 1922

 Loop complexity 2204

Resource

Injection

99 Basic 1898

 Address alias level 1896

 Container 1900

 Scope 1902

OS Command

Injection

78 Basic 2139 Test function

'system()'.

 scope 2138

http://samate.nist.gov/SRD/view.php?tsID=46

 11

 Local control flow 2136

 loop structure 2137

SQL Injection 89 Basic 1797

 Array index

complexity

1799

 Scope 1801

 Loop structure 1930

Stack Overflow 121 Basic 1547

 Array index complexity 1545

 Scope 1549

 Basic 1566

 Array length/limit

complexity

1906

 Basic 1602

 Index alias level 1908

 Loop Structure 1910

Heap Overflow 122 Basic 2134

 Scope 1615

 Array index

complexity

1844

 Memory location 1848

 Array index complexity 1574

 Scope 1613

Format string

vulnerability

134 Scope 1562

 Address alias level 1560

 Local control flow 1834

 Container 1832

 Scope 1556

Improper Null

Termination

170 Basic 1856

 Taint 1858

 Buffer address type 2012

 Container 1855

Often Misused:

String

Management

251 Basic 1866

 Taint 1874

 Scope 1872

 Address alias level 1868

 Container 1870

 12

Hard-coded

Password

259 Basic 2131

 Local control flow 2132

 Loop structure 2133

 Array Address

Complexity

2130

Time-of-check

Time-of-use race

condition

367 Basic 1892

 Local Control Flow 1894

Unchecked Error

Condition

391 Basic 1929

Memory leak 401 Basic 1933

 Scope 1586

 Address alias level 1589

 Container 1925

 Loop structure 1926

Unrestricted

Critical Resource

Lock

412 Basic 2205

Double Free 415 Basic 2271

 Loop structure 1830

 local control flow 1828

 Scope 1591

Use After Free 416 Scope 2269

 Address alias level 2270

 Container 2135

 Buffer address type 1914

Uninitialized

variable

457 Basic 2186

Unintentional

pointer scaling

468 Data type 1927

Null Dereference 476 Basic 2195

 Scope 1880

 Address alias level 1876

 Local control flow 2194

Leftover Debug

Code

489 Basic 1862

 13

4.1.3 Test Suite SCA-TS-3-C (SRD Test Suite 47)

http://samate.nist.gov/SRD/view.php?tsID=47

This test suite can be used to examine whether the tool generates weakness reports

after reporting of each weakness has been suppressed for C applications.

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 1794

Resource

Injection

99 Basic 1897

OS Command

Injection

78 Basic 1885 Test function

'system()'.

SQL Injection 89 Basic 1796

Stack Overflow 121 Basic 1563

Heap Overflow 122 Basic 1611

Format string

vulnerability

134 Basic 10

Improper Null

Termination

170 Basic 1849

Heap Inspection 244 Basic 1737

Often Misused:

String

Management

251 Basic 1865

Hard-coded

Password

259 Basic 1810

Time-of-check

Time-of-use race

condition

367 Basic 102

Unchecked Error

Condition

391 Basic 1928

Memory leak 401 Basic 1585

Unrestricted

Critical Resource

Lock

412 Basic 2109

Double Free 415 Basic 2199

Use After Free 416 Basic 2200

Uninitialized

variable

457 Data type 2019 Data type is integer

Unintentional

pointer scaling

468 Basic 1782

Null Dereference 476 Basic 2193

http://samate.nist.gov/SRD/view.php?tsID=47

 14

Leftover Debug

Code

489 Basic 1861

4.2 Test Suites for the C++ Language

4.2.1 Test Suite SCA-TS-1-CPP (SRD Test Suite 57)

http://samate.nist.gov/SRD/view.php?tsID=47

This test suite tests the capability of a source code security analysis tool’s handling

weaknesses in the C++ language. Coupled with SCA-TS-1-C (SRD Test Suite 45), it

covers the source code weaknesses in C++ listed in Annex A of Source Code Security

Analysis Tool Functional Specification [SCA].

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 1965

 Scope 1973

 Index alias level 1975

Resource

Injection

99 Basic 2013

 Scope 2023

 Address alias level 2021

 Container 2026

OS Command

Injection

78 Basic 2028

 Scope 2030

 Local control flow 2032

 Loop structure 2034

SQL Injection 89 Basic 1983

 Array index complexity 1989

 Scope 1985

Stack Overflow 121 Basic 1971

 Container 2038

Heap Overflow 122 Basic 2062

 Scope 2063

 Array address

complexity

2064

 Array index complexity 2065

Hard-coded 259 Basic 2043

http://samate.nist.gov/SRD/view.php?tsID=47
http://samate.nist.gov/SRD/view.php?tsID=45

 15

Password

 Scope 2044

 Loop structure 2045

 Container 2046

 Data Type 2048

Unchecked Error

Condition

391 Basic 1739

Memory leak 401 Basic 2054

 Local Control Flow 2056

Uninitialized

variable

457 Data type 2187 Data type is integer

 Data type 2060 Data type is pointer

 Loop Structure 2188

Unintentional

pointer scaling

468 Basic 1979

Null Pointer

Dereference

476 Basic 1993

 Index alias level 1999

 Local control flow 1997

 Scope 1995

Leftover Debug

Code

489 Basic 2196

4.2.2 Test Suite SCA-TS-2-CPP (SRD Test Suite 58)

http://samate.nist.gov/SRD/view.php?tsID=58

This test suite can be used to assess the false positive ratio of the tool under test for

C++ applications. Coupled with SCA-TS-2-C (SRD Test Suite 46), it covers the

source code weaknesses in C++ listed in Annex A of Source Code Security Analysis

Tool Functional Specification [SCA].

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 1966

 Scope 1974

 Index alias level 1976

Resource

Injection

99 Basic 2025

 Scope 2024

http://samate.nist.gov/SRD/view.php?tsID=58
http://samate.nist.gov/SRD/view.php?tsID=46

 16

 Address alias level 2022

 Container 2040

OS Command

Injection

78 Basic 2029

 Scope 2036

 Local control flow 2033

 Loop structure 2035

SQL Injection 89 Basic 1984

 Array index complexity 1990

 Scope 1986

Stack Overflow 121 Basic 1972

 Container 2039

Heap Overflow 122 Basic 2066

 Scope 2067

 Array address

complexity

2068

Hard-coded

Password

259 Basic 2047

 Local control flow 2050

 Loop structure 2051

 Container 2052

 Data Type 2049

Unchecked Error

Condition

391 Basic 1992

Memory leak 401 Basic 2058

Uninitialized

variable

457 Data type 2191 Data type is integer

 Data type 2061 Data type is pointer

 Loop Structure 2192

Unintentional

Pointer Scaling

468 Basic 1980

Null Pointer

Dereference

476 Basic 1994

 Index alias level 2000

 Local control flow 1998

 Scope 1996

Leftover Debug

Code

489 Basic 2197

 17

4.2.3 Test Suite SCA-TS-3-CPP (SRD Test Suite 59)

http://samate.nist.gov/SRD/view.php?tsID=59

This test suite can be used to examine whether the tool generates weakness reports

after reporting of each weakness has been suppressed for C++ applications. Coupled

with SCA-TS-3-C (SRD Test Suite 47), it covers the source code weaknesses in C++

listed in Annex A of Source Code Security Analysis Tool Functional Specification

[SCA].

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 1965

Resource

Injection

99 Basic 2013

OS Command

Injection

78 Basic 2028

SQL Injection 89 Basic 1983

Stack Overflow 121 Basic 1971

Heap Overflow 122 Basic 2062

Hard-coded

Password

259 Basic 2043

Unchecked Error

Condition

391 Basic 1739

Memory leak 401 Basic 2054

Uninitialized

variable

457 Data type 2187 Data type is integer

Unintentional

pointer scaling

468 Basic 1979

Null Pointer

Dereference

476 Basic 1993

Leftover Debug

Code

489 Basic 2196

4.3 Test Suites for the Java Language

4.3.1 Test Suite SCA-TS-1-JAVA (SRD Test Suite 63)

http://samate.nist.gov/SRD/view.php?tsID=63

http://samate.nist.gov/SRD/view.php?tsID=59
http://samate.nist.gov/SRD/view.php?tsID=47
http://samate.nist.gov/SRD/view.php?tsID=63

 18

This test suite tests the capability of a source code security analysis tool’s handling of

weaknesses in the Java language. It covers the source code weaknesses in Java listed

in Annex A of Source Code Security Analysis Tool Functional Specification [SCA].

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 2153

 Scope 2154

 Container 2155

 Loop complexity 2156

Resource

Injection

99 Basic 2088

 Scope 2089

 Container 2090

OS Command

Injection

78 Basic 2084

 Scope 2085

 Local control flow 2086

 Loop structure 2087

SQL Injection 89 Basic 2161

 Array index complexity 2162

 Scope 2163

Hard-coded

Password

259 Basic 2091

 Local control flow 2092

 Loop structure 2093

 Container 2094

 Array Index Complexity 2095

Time-of-check

Time-of-use race

condition

367 Basic 2096

Unchecked Error

Condition

391 Basic 2103

Unrestricted

Critical Resource

Lock

412 Basic 2104

Null Dereference 476 Basic 2099

 Address alias level 2105

 Local control flow 2106

 Scope 2107

 19

Leftover Debug

Code

489 Basic 2098

4.3.2 Test Suite SCA-TS-2-JAVA (SRD Test Suite 64)

http://samate.nist.gov/SRD/view.php?tsID=64

This test suite can be used to assess the false positive ratio of the tool under test for

JAVA applications.

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 2157

 Scope 2158

 Container 2159

 Loop complexity 2160

Resource

Injection

99 Basic 2114

 Scope 2115

 Container 2116

OS Command

Injection

78 Basic 2110

 Scope 2111

 Local control flow 2112

 Loop structure 2113

SQL Injection 89 Basic 2164

 Array index complexity 2165

 Scope 2166

Hard-coded

Password

259 Basic 2117

 Local control flow 2118

 Loop structure 2119

 Container 2120

 Array Index Complexity 2121

Time-of-check

Time-of-use race

condition

367 Basic 2122

Unchecked Error

Condition

391 Basic 2123

Unrestricted 412 Basic 2124

http://samate.nist.gov/SRD/view.php?tsID=64

 20

Critical Resource

Lock

Null Dereference 476 Basic 2125

 Address alias level 2128

 Local control flow 2126

 Scope 2127

Leftover Debug

Code

489 Basic 2129

4.3.3 Test Suite SCA-TS-3-JAVA (SRD Test Suite 65)

http://samate.nist.gov/SRD/view.php?tsID=65

This test suite can be used to examine whether the tool generates weakness reports

after the reporting of each weakness has been suppressed for JAVA applications.

Source Code

Weakness

CWE

ID

Code Complexity SRD

Test

case ID

Remark

Basic XSS 80 Basic 2153

Resource

Injection

99 Basic 2088

OS Command

Injection

78 Basic 2084

SQL Injection 89 Basic 2161

Hard-coded

Password

259 Basic 2091

Time-of-check

Time-of-use race

condition

367 Basic 2096

Unchecked Error

Condition

391 Basic 2103

Unrestricted

Critical Resource

Lock

412 Basic 2104

Null Dereference 476 Basic 2099

Leftover Debug

Code

489 Basic 2098

http://samate.nist.gov/SRD/view.php?tsID=65

 21

5 References

[CWE] Common Weakness Enumeration – a community-developed dictionary of

software weakness types, sponsored and managed by The MITRE

Corporation.

http://cwe.mitre.org/

[Fleiss] Fleiss, Joseph L. (1981). Statistical Methods for Rates and Proportions,

2nd ed., John Wiley and Sons, New York, pp 4-8.

[SCA] Source Code Security Analysis Tool Functional Specification Version 1.0.

http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-

268.pdf

[SRD] SAMATE Reference Dataset

http://samate.nist.gov/SRD/

To retrieve test suite, click on “Test Suites” on the tool bar. A list of test

suite will display. Select the required test suite.

http://cwe.mitre.org/
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/SRD/

