

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

DRAFT Source Code Analysis Tool
Functional Specification

Information Technology Laboratory (ITL), Software
Diagnostics and Conformance Testing Division

 15 September, 2006

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

 1
 2

Abstract: 3
 4

Software assurance tools are a fundamental resource for providing an assurance argument for 5
today’s software applications throughout the software development lifecycle (SDLC). Software 6
requirements, design models, source code and executable code are analyzed by tools to 7
determine if an application is truly secure. This document specifies the functional behavior of one 8
class of software assurance tool: the source code analyzer. Because the majority of software 9
weaknesses today are introduced at the implementation phase, a specification that defines a 10
“baseline” source code analysis tool capability can help software professionals select a tool that 11
will meet their software assurance needs. 12

 13

Errata to this version: 14
None 15

 16

 17
 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28
 29

 30
 31

 32
 33

 34
 35

 36
 37

 38
 39

 40
 41

 42
 43

 44
 45

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

 1

Table of Contents2

1 Introduction...1 3

1.1 Purpose..1 4

1.2 Scope...1 5

1.3 Audience..21 6

1.4 Technical Background ...2 7

1.5 Glossary of Terms ...3 8

2 Functional Requirements ...5 9

2.1 High Level View ...5 10

2.2 Requirements for Mandatory Features..5 11

2.3 Requirements for Optional Features ...5 12

3 References ...7 13

Appendix A Source Code Weaknesses ...8 14

Appendix B Code Complexity Variations..12 15

16 16

 17

 18

 19

 20

 21

 22

23

23

23

23

23

1 Introduction 1

 2

The National Institute of Standards and Technology (NIST) is working with the U.S. Department of 3
Homeland Security to determine what the state of the art (SOA) is in software assurance (SwA) tools 4
today. Through the development of tool functional specifications, test suites and tool metrics, the NIST 5
Software Assurance Metrics and Tool Evaluation (SAMATE) project aims to better quantify the state of 6
the art for all classes of software assurance tools. 7

 8

1.1 Purpose 9

This document specifies basic, fundamental functional requirements for source code analysis tools used 10
in software assurance evaluations. Production tools should have capabilities far beyond those indicated 11
here. Many important attributes, like cost and ease of use, are not covered. 12

 13
Accompanying documents detail test cases and methods to ascertain to what extent a tool meets these 14
requirements. The functionality described herein may be embedded in a larger tool with more 15
functionality. The functionality could also be covered by several specialized tools. 16
 17
Source code analysis tools scan a textual (human readable) version of files that comprise a portion or all 18
of an application program (i.e. the files written in a particular programming language). These files may 19
contain inadvertent or deliberate programming weaknesses that could lead to security vulnerability in the 20
executable version of the application program. Source code analysis tools provide one line of defense 21
against such scenarios. Generally, source code analysis tools are used in combination with 22
good software development practices and other software assurance tools to provide a stronger argument 23
for the security of an application. 24

 25
The functional requirements are the basis for developing test cases to measure the effectiveness of 26
source code analysis tools. Each functional requirement will have one or more corresponding test cases 27
in the SAMATE Reference Dataset (SRD), detailed procedures for executing the test, and expected test 28
results. 29

 30

 31

 32

1.2 Scope 33

 34

This specification is limited to general-purpose production software tools that examine source code files 35
for security weaknesses and potential vulnerabilities. Tools that scan other artifacts, like requirements, 36
bytecode or binary code, and tools that execute code are outside the scope. Appendix A of this 37
document, Source Code Weaknesses, specifically addresses C, C++, and Java source code, although it 38
is recognized that particular weaknesses may exist in other languages as well. 39

 40
This document specifies baseline functionality. Critical production tools should have capabilities far 41
beyond those indicated here. Many important attributes, like compatibility with integrated development 42
environments (IDEs) and ease of use, are not addressed. 43
 44
The misuse or proper use of a tool is outside the scope of this specification. 45
 46
The issues and challenges in engineering secure systems and their software are outside the scope of this 47
specification. 48

 49

 50

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

2

1.3 Audience 1

 2

The target audience for this specification is: 3

• Source code analysis and software assurance researchers 4

• Implementers and developers of source code analysis tools 5

• Users and evaluators of source code analysis tools 6

 7

1.4 Technical Background 8

 9

 10
This section gives some technical background, defines terms we use in this specification, explains how 11
concepts designated by those terms are related, and details some challenges in source code analysis for 12
security assurance. 13
 14
No amount of analysis and patching can imbue software with high levels of security or quality or 15
correctness or other important properties. Such properties must be designed in and built in. Good choice 16
of language, platform, and discipline are worth orders of magnitude more than reactive efforts. 17
Nevertheless testing or examination of code has benefits in some situations. 18
 19
Code must be analyzed to determine how different methods or processes affect the quality of the 20
resultant code. If the origin of code has limited visibility, testing or static analysis are the only ways to 21
gain higher assurance. Existing, legacy code must be examined to assess its quality and determine 22
what, if any, remediation is needed. 23
 24
Testing, or dynamic analysis, has the advantage of examining the behavior of software in operation. In 25
contrast, only static analysis can be expected to find malicious trapdoors. Analysis of binary or 26
executable code, including "bytecode," avoids assumptions about compilation or source code semantics. 27
Only the binary may be available for libraries or purchased software. However, source code analysis can 28
give developers feedback on better practices. 29
 30

Remediation is often done in source code. Analysis of higher-level constructs, such as models, designs, 31
use cases, or requirements documents, is possible, too. However, these higher-level artifacts often lack 32
rigor and rarely reflect all the critical detail in source code implementations. Thus static analysis of source 33
code is a reasonable place to work for higher software assurance. 34
 35
Often, different terms are used to refer to the same concept in software assurance and security literature. 36
Different authors may use the same term to refer to different concepts. For clarity we give our 37
definitions. To begin any event which is a violation of a particular system's explicit (or implicit) security 38
policy is a security failure, or simply, failure. For example, if an unauthorized person gains "root" or 39
"admin" privileges or if Social Security numbers can be read through the World Wide Web by 40
unauthorized people, security has failed. 41
 42
A vulnerability is a property of system security requirements, design, implementation, or operation that 43
could be accidentally triggered or intentionally exploited and result in a security failure. (After [NIST SP 44
800-27]) In our model the source of any failure is a latent vulnerability. If there is a failure, there must 45
have been a vulnerability. A vulnerability is the result of one or more weaknesses in requirements, 46
design, implementation, or operation. 47
 48
In the unauthorized privileges example above, the combination of the two weaknesses of allowing weak 49
passwords and of not locking out an account after repeated password mismatches allow the vulnerability. 50
This vulnerability can be exploited by a brute force attack to cause the failure of an unauthorized person 51

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

3

gaining elevated privileges. An SQL injection vulnerability might be exploited several different ways 1
to produce different failures, such as dropping a table or revealing all its contents. If spyware can steal a 2
user's password, it is a vulnerability. But it may be hard to attribute the vulnerability to particular 3
weaknesses in software that can be "fixed." Spyware typically exploits system weaknesses, which 4
require changes at the system level. 5
 6
Sometimes a weakness cannot result in a failure, in which case it is not exploitable and not a 7
vulnerability. Such a weakness may be masked by another part of the software or it may only cause a 8
failure in combination with another weakness. Thus we use the term "weakness" instead of "flaw" or 9
"defect." 10
 11
A source code analysis tool examines software and reports weaknesses it finds. They may be graded 12
according to severity, potential for exploit, certainty that they result in vulnerabilities, etc. Ultimately 13
people must use the reports to decide 14

• which reported items are not true vulnerabilities, 15

• which items are acceptable risks and will not be mitigated, and 16

• which items to mitigate, and how to mitigate them. 17

 18
The report may even lead the user to reject a piece of software altogether as insufficiently secure to use 19
or as needing to be discarded and written from scratch. 20
 21
For several reasons no tool can correctly determine in every conceivable case whether or not a piece of 22
code has a vulnerability. First, a weakness may result in a vulnerability in one environment, but not in 23
another. Second, Rice proved that no algorithm can correctly decide whether or not a piece of code has 24
a property, such as a weakness, in every case. Third, practical analysis algorithms have limits because 25
of performance and intellectual investment. Some vulnerabilities can only be identified if a tool performs 26
inter-file, inter-procedural, or flow-sensitive analysis of the code. Deliberate obfuscation with complex 27
code structures makes the analysis even harder. Fourth, a tool may not have "rules" to find all known 28
vulnerabilities. This is even harder since new exploits and vulnerabilities are being invented all the time. 29
 30
Since no tool can be perfect, a tool may be biased on the side of caution and report questionable 31
constructs. Some of those may turn out to be false alarms or false positives. To reduce time wasted on 32
false alarms, a tool may be biased on the side of certainty and only report constructs which are (almost) 33
certainly vulnerabilities. In this case it may miss some vulnerabilities. A missed vulnerability is called a 34
false negative. Changing the threshold of certainty to report a construct as a vulnerability trades fewer 35
false negatives for more false alarms and vice versa. The ideal would be a tool that reports every real 36
vulnerability (no false negatives) with no false alarms. Even though this is theoretically impossible, utility 37
requires some metric for the tradeoff between false alarms and false negatives. 38

 39

1.5 Glossary of Terms 40

This glossary was added to provide context for terms used in this document. 41

 42

Name Description

baseline functionality The minimally acceptable set of functions that a tool shall
successfully perform to be considered conformant with this
specification.

flow-sensitive analysis Analysis of changes in logical program flow while maintaining

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

4

information about what facts may or will not hold during the
execution of a program.

dynamic analysis Analysis of a computer program through execution.

false negative Failure of a tool to report a weakness, when in fact there is one
present in the code.

false positive Reporting of a weakness by a tool, where there is none.

weakness suppression system A feature of source code analysis tools that permits flagging of a
line of code as “ignorable” by the tool in subsequent source code
scans.

inter-file analysis Analysis of code residing in different files.

inter-procedural analysis Analysis between calling and called procedures within a
computer program.

security vulnerability A property of system security requirements, design,
implementation, or operation that could be accidentally triggered
or intentionally exploited and result in a security failure.

source code A series of statements written in a human-readable computer
programming language.

static program analysis Analysis of a computer program performed without actually
executing the program.

weakness A defect in a a system that may (or may not) lead to a
vulnerability.

 1

 2

 3

 4

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

5

2 Functional Requirements 1

 2

In this section we first give a high-level description of the functional requirements for source code analysis 3
tools, then detail the requirements for mandatory and optional features. 4

2.1 High Level View 5

 6

A baseline level of functionality is required in order for a source code analysis tool to be considered 7
conformant with this specification. A source code analysis tool shall be able to (at a minimum): 8

 9

• Identify a select set of software security weaknesses in source code. 10

• Generate a text report of the security weaknesses that it finds, indicating the source file name and 11
line number(s) where those weaknesses are located. 12

 13

2.2 Requirements for Mandatory Features 14

 15

In order to meet this baseline capability, a source code analysis tool must be able to accomplish the tasks 16
described in the mandatory requirements listed below. The following functional requirements are 17
mandatory and shall be met by all source code analysis tools for the code weaknesses that they claim to 18
identify. 19

 20

SCA-RM-1: The tool shall identify all of the code weaknesses listed in Appendix A. 21

SCA-RM-2: The tool shall generate a text report identifying the code weaknesses that it finds. 22

SCA-RM-3: The tool shall identify the weakness with a name semantically equivalent to those in 23
Appendix A. 24

SCA-RM-4: The tool shall specify the location of a weakness by providing the directory path, file name 25
and line number. 26

SCA-RM-5: The tool shall be capable of identifying any weaknesses within all of relevant the coding 27
constructs listed in Appendix B. 28

SCA-RM-6: The tool shall have an acceptably low “false-positive” ratio. 29

 30

 31

 32

2.3 Requirements for Optional Features 33

 34

The following requirements apply to optional tool features. If the tool supports the applicable optional 35
feature, then the requirement for that feature applies, and the tool can be tested against it. This means 36
that a specific tool might optionally provide none, some or all of the features described by these 37
requirements. 38

 39

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

6

 1

 2

 3

 4

SCA-RO-1: The tool shall produce an XML-formatted report. 5

SCA-RO-2: The tool will not report a weakness instance, which has been suppressed. 6

SCA-RO-3: If a widely accepted dictionary of weaknesses exists, the tool shall identify a weakness with 7
that dictionary’s name and description. 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

7

3 References 1

 2

[CWE] Common Weakness Enumeration, The MITRE Corporation, web site 3
http://cve.mitre.org/cwe/index.html#tree 4

[MIT] 5
Kratkiewicz, K. (2005). Evaluating Static Analysis Tools for Detecting 6
Buffer Overflows in C Code, Master's Thesis, Harvard University, Cambridge, 7
MA, 285 pages, http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf 8

[SP800-27] Engineering Principles for Information Technology Security 9
(A Baseline for Achieving Security), NIST SP 800-27, Revision A, June 10
2004. Available at http://csrc.nist.gov/publications/nistpubs/ 11

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

8

Appendix A Source Code Weaknesses 1

 2

The source code weaknesses listed in this table represent a “base set” of code weaknesses that a source 3
code analysis tool (or combination of source code analysis tools) must be able to identify if they support 4
the analysis of the language in which the weakness exists. Criteria for selection of weaknesses include: 5

 6

• Found in existing code today – The weaknesses listed below are found in real software 7
applications. 8

• Recognized by tools today - Tools today are able to identify these weaknesses in source code 9
and identify their associated file names and line numbers. 10

• Likelihood of exploit is medium to high – The weakness is fairly easy for a malicious user to 11
recognize and to exploit. 12

 13

Because the body of known software weaknesses is evolving (with new ones discovered every day), 14
this list will grow. Additionally, as source code analysis tools mature in their capabilities and are able 15
to identify more software weaknesses, those weaknesses will be added to this list. The names and 16
descriptions in this list are found in [CWE]. 17

 18

 19

Name Description Language(s) Relevant Complexities

Input Validation

Path Manipulation Allowing user input to control paths
used by the application may enable
an attacker to access otherwise
protected files.

C, C++, Java taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

Cross Site
Scripting.Basic
XSS

'Basic' XSS involves a complete
lack of cleansing of any special
characters, including the most
fundamental XSS elements such as
"<", ">", and "&".

C,C++, Java taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

Resource
Injection

 Allowing user input to control
resource identifiers might enable an
attacker to access or modify
otherwise protected system
resources.

C, C++, Java taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

OS Command
Injection

Command injection problems are a
subset of injection problem, in
which the process is tricked into
calling external processes of the
attackers choice through the
injection of control-plane data into
the data plane. Also called “shell
injection”.

C, C++, Java taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

SQL Injection SQL injection attacks are another
instantiation of injection attack, in

C, C++, Java taint, scope, address alias
level, container, local

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

9

which SQL commands are injected
into data-plane input in order to
effect the execution of predefined
SQL commands.

control flow, loop structure,
buffer address type

Range Errors

Stack overflow A stack overflow condition is a
buffer overflow condition, where the
buffer being overwritten is allocated
on the stack (i.e., is a local variable
or, rarely, a parameter to a
function).

C, C++ All

Heap overflow A heap overflow condition is a
buffer overflow, where the buffer
that can be overwritten is allocated
in the heap portion of memory,
generally meaning that the buffer
was allocated using a routine such
as the POSIX malloc() call.

C, C++ All

Format string
vulnerability

Format string problems occur when
a user has the ability to control or
write completely the format string
used to format data in the printf
style family of C/C++ functions.

C, C++ taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

Improper Null
Termination

The product does not properly
terminate a string or array with a
null character or equivalent
terminator. Null termination errors
frequently occur in two different
ways. An off-by-one error could
cause a null to be written out of
bounds, leading to an overflow. Or,
a program could use a strncpy()
function call incorrectly, which
prevents a null terminator from
being added at all. Other scenarios
are possible.

C, C++ taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

API Abuse

Heap Inspection Using realloc() to resize buffers that
store sensitive information can
leave the sensitive information
exposed to attack because it is not
removed from memory.

C, C++ taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

Often Misused:
String
Management

Functions that manipulate strings
encourage buffer overflows.

C, C++ taint, scope, address alias
level, container, local
control flow, loop structure,
buffer address type

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

10

Security Features

Hard-Coded
Password Storing a password in plaintext may

result in a system compromise.

C/C++, Java scope, address alias level,
container, local control
flow, loop structure, buffer
address type

Time and State

Time-of-check
Time-of-use race
condition

Time-of-check, time-of-use race
conditions occur when between the
time in which a given resource (or
its reference) is checked, and the
time that resource is used, a
change occurs in the resource to
invalidate the results of the check.

C, C++, Java asynchronous

Unchecked Error
Condition

Ignoring exceptions and other error
conditions may allow an attacker to
induce unexpected behavior
unnoticed.

C, C++, Java none

Code Quality

Memory leak Most memory leaks result in
general software reliability
problems, but if an attacker can
intentionally trigger a memory leak,
the attacker might be able to launch
a denial of service attack (by
crashing the program) or take
advantage of other unexpected
program behavior resulting from a
low memory condition .

C, C++ scope, address alias level,
container, local control
flow, loop structure

Unrestricted
Critical Resource
Lock

A critical resource can be locked or
controlled by an attacker,
indefinitely, in a way that prevents
access to that resource by others,
e.g. by obtaining an exclusive lock
or mutex, or modifying the
permissions of a shared resource.
Inconsistent locking discipline can
lead to deadlock.

C, C++, Java asynchronous

Double Free
Calling free() twice on the same
value can lead to a buffer overflow.

C, C++ scope, address alias level,
container, local control
flow, loop structure, buffer
address type

Use After Free
Use after free errors sometimes
have no effect and other times
cause a program to crash.

C, C++ scope, address alias level,
container, local control
flow, loop structure, buffer
address type

Uninitialized
variable

Most uninitialized variable issues
result in general software reliability
problems, but if attackers can

C, C++ scope, address alias level,
container, local control
flow, loop structure

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

11

intentionally trigger the use of an
uninitialized variable, they might be
able to launch a denial of service
attack by crashing the program.

Unintentional
pointer scaling

In C and C++, one may often
accidentally refer to the wrong
memory due to the semantics of
when math operations are implicitly
scaled.

C, C++ data type

Improper pointer
subtraction

The subtraction of one pointer from
another in order to determine size is
dependant on the assumption that
both pointers exist in the same
memory chunk.

C, C++ scope, address alias level,
container, local control
flow, loop structure

Null Dereference Using the NULL value of a
dereferenced pointer as though it
were a valid memory address

C, C++ taint, scope, address alias
level, container, local
control flow, loop structure

Encapsulation

Private Array-
Typed Field
Returned From A
Public Method

The contents of a private array may
be altered unexpectedly through a
reference returned from a public
method.

Java, C++ scope, address alias level,
container, local control
flow, loop structure

Public Data
Assigned to
Private Array-
Typed Field

Assigning public data to a private
array is equivalent giving public
access to the array.

Java, C++ scope, address alias level,
container, local control
flow, loop structure

Overflow of static
internal buffer

A non-final static field can be
viewed and edited in dangerous
ways.

Java, C++ scope, address alias level,
container, local control
flow, loop structure

Leftover Debug
Code

Debug code can create unintended
entry points in an application.

C, C++, Java none

 1

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

12

Appendix B Code Complexity Variations 1

 2

In addition to having the capability to locate and identify source code weaknesses listed in Appendix A, a 3
source code analysis tool must be able to find those weaknesses within all of these complex coding 4
structures. A general list of these types of structures, adopted and modified from [MIT] is provided below. 5
Some of the enumerated values are language specific (e.g. the use of pointers in C, C++), however, most 6
are general types of constructs that exist across C/C++ and Java. Equivalent constructs in other 7
languages will be added, as tools for those languages are addressed in this specification. 8

 9

 10

Complexity Description Enumeration

address alias level level of “indirection” of buffer alias
using variable(s) containing the
address

1 or 2

array address complexity level of complexity of the address
value of an array buffer

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

array index complexity level of complexity of the index
value of an array buffer using
variable assignment

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

array length/limit complexity level of complexity of the index of
an array buffer’s length or limit
value

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

asynchronous asynchronous coding construct threads, forked process, signal handler

buffer address type method used to address buffer pointer, array index

container containing data structure array, struct, union, array of structs,
array of unions, class

data type type of data read or written character,integer,floating point,wide
character,pointer,unsigned
character,unsigned integer

index alias level level of buffer index alias
indirection

1or 2

local control flow type of control flow around
weakness

if,switch,cond,goto/label,setjmp,longjmp,
function pointer, recursion

loop complexity component of loop that is complex initialization, test, increment

loop structure type of loop construct in which
weakness is embedded

standard for,standard do while, standard
while, non standard for, non standard do
while, non standard while

memory access type of memory access related to
weakness

read, write

National Institute of Standards and Technology

Information Technology Laboratory

Software Diagnostics and Conformance Testing Division

13

memory location type of memory location related to
weakness

heap, stack, data region, BSS, shared
memory

scope scope of control flow related to
weakness

same, inter-procedural, global,inter-
file/inter-procedural, inter-file/global

taint type of tainting to input data argc/argv, environment variables, file or
stdin, socket, process environment

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

