
Software Security Assessment Tools Review

Software Security Assessment Tools Review

2 March 2009

Jointly funded by:

Assistant Secretary of the Navy
Chief System Engineer

197 Isaac Hull
Washington Navy Yard, DC

and

Naval Ordnance Safety & Security Activity
Box 47, Bldg D-323

3817 Strauss Avenue
Indian Head, MD 20640

Prepared by:

Booz Allen Hamilton
McLean, VA

Software Security Assessment Tools Review

i

Table of Contents

1. Executive Summary .. 1-1
2. Purpose, Scope, and Background .. 2-1
3. Problem Space ... 3-1
3.1 Threat Environment ... 3-1
3.2 Properties of Interest in the Software to be Analyzed ... 3-1
3.3 Nature of Software to be Analyzed ... 3-1
3.4 Techniques for Testing .. 3-1
3.5 Business Case for Security Testing ... 3-2
4. Tool Technologies ... 4-1
4.1 Analysis of Source Code ... 4-3
4.1.1 Static Analysis Code Scanning .. 4-3
4.1.1.1 When to Use Static Analysis Tools ... 4-3
4.1.1.2 Required Skills .. 4-4
4.1.1.3 Potential Benefits .. 4-4
4.1.1.4 Drawbacks ... 4-5
4.1.1.5 Static Analysis Tools ... 4-5
4.1.2 Source Code Fault Injection .. 4-9
4.1.2.1 When to Use Source Code Fault Injection .. 4-9
4.1.2.2 Required Skills .. 4-10
4.1.2.3 Benefits .. 4-10
4.1.2.4 Drawbacks ... 4-10
4.1.2.5 Specific Tools .. 4-10
4.1.3 Dynamic Analysis ... 4-11
4.1.3.1 When to Use Dynamic Analysis ... 4-12
4.1.3.2 Required Skills .. 4-12
4.1.3.3 Benefits .. 4-12
4.1.3.4 Drawbacks ... 4-12
4.1.3.5 Tools .. 4-12
4.1.4 Architectural Analysis ... 4-13
4.1.4.1 Asset Identification .. 4-14
4.1.4.2 Risk Analysis ... 4-14
4.1.4.3 Threat Analysis .. 4-16
4.1.4.4 Architectural Risk Analysis ... 4-18
4.1.4.5 Organizing Risk Information ... 4-19
4.1.4.6 Risk Likelihood Determination ... 4-20
4.1.4.7 Risk Impact Determination ... 4-21
4.1.4.8 Risk Exposure Statement ... 4-22
4.1.4.9 Risk Mitigation .. 4-22
4.1.4.10 When to Apply Risk Analysis ... 4-23
4.1.4.11 Tools .. 4-25
4.1.5 Pedigree Analysis .. 4-27
4.1.5.1 When to Use Pedigree Analysis .. 4-27
4.1.5.2 Benefits of Pedigree Analysis ... 4-28
4.1.5.3 Drawbacks of Pedigree Analysis ... 4-28

Software Security Assessment Tools Review

ii

Table of Contents (cont'd)

4.1.5.4 Pedigree Analysis Tools .. 4-28
4.2 Analysis of Executables .. 4-29
4.2.1 Binary Code Analysis .. 4-29
4.2.1.1 When to Use Binary Analysis ... 4-29
4.2.1.2 Required Skills .. 4-29
4.2.1.3 Benefits .. 4-30
4.2.1.4 Drawbacks ... 4-30
4.2.1.5 Specific Tools and Services .. 4-30
4.2.2 Disassembler Analysis Tools .. 4-31
4.2.2.1 When to Use Disassembler Analysis ... 4-31
4.2.2.2 Benefits .. 4-31
4.2.2.3 Drawbacks ... 4-31
4.2.2.4 Specific Tools and Services for Hire ... 4-32
4.2.3 Binary Fault Injection .. 4-32
4.2.3.1 When to Use Binary Fault Injection .. 4-33
4.2.3.2 Required Skills .. 4-33
4.2.3.3 Benefits .. 4-33
4.2.3.4 Drawbacks ... 4-34
4.2.3.5 Tools .. 4-34
4.2.4 Fuzzing .. 4-34
4.2.4.1 When to Use Fuzzing .. 4-34
4.2.4.2 Required Skills .. 4-35
4.2.4.3 Benefits of Fuzzing ... 4-35
4.2.4.4 Drawbacks ... 4-36
4.2.4.5 Tools: ... 4-36
4.2.5 Malicious Code Detectors ... 4-36
4.2.5.1 Required Skills .. 4-36
4.2.5.2 Benefits .. 4-37
4.2.5.3 Drawbacks ... 4-37
4.2.5.4 Tools .. 4-37
4.3 Analysis of Intermediate Representations ... 4-37
4.3.1 Bytecode Analysis ... 4-38
4.3.1.1 When to Use Bytecode Analysis ... 4-38
4.3.1.2 Required Skills .. 4-38
4.3.1.3 Benefits .. 4-38
4.3.1.4 Drawbacks ... 4-39
4.3.1.5 Open Source Tools .. 4-39
4.3.1.6 Commercial Tools ... 4-40
4.3.1.7 Proprietary Tools Used by Commercial Services Providers 4-40
4.4 Supporting Technologies ... 4-41
4.4.1 Tool Integration and Normalization .. 4-41
4.4.2 Vulnerability Categorizations and Markup Languages ... 4-42
4.4.3 Security Analysis/Test Case/Test Scenario Definition ... 4-42
5. Conclusions ... 5-1

Software Security Assessment Tools Review

iii

Table of Contents (cont'd)

6. References ... 6-1
APPENDIX A Tool Matrix ... 6-1
agileJ StructureViews .. 6-1
Antiparser ... 6-1
Aspect Security AspectCheck ... 6-1
ASTRÉE.. .. 6-1
Black Duck Software.. ... 6-1
Boomerang.. .. A-7
BOON…………. ... 4-37
Borland's Together.. .. A-9
C Code Analyzer (CCA).. .. 6-11
CenterLine Systems CodeCenter.. ... 6-12
checKing.. .. 6-13
CodeScan Labs CodeScan.. ... 6-14
Compuware DevPartner SecurityChecker.. ... 6-15
Coverity Prevent.. .. 6-16
CppCheck.. ... 6-18
Cqual…................... ... 4-37
Csur………………….. .. 4-37
Dfuz………………….. 4-37
Eau Claire... 6-1
EULAyzer.. .. 6-1
Exhaustif.. .. 6-1
Fakebust………………….. ... 4-37
FindBugs.. .. 6-1
Flawfinder.. .. 6-1
Fluid……………….. ... 4-37
Fortify Source Code Analysis Suite 5.2.. ... 6-1
Grammatech CodeSurfer/x86.. .. 6-1
GrammaTech CodeSonar.. ... 6-1
Green Hills Software DoubleCheck.. ... 6-1
Grid-FIT.. ... 6-1
GPF…………………….. .. 4-37
Hammurapi.. .. 6-1
Hex-Rays (formerly DataRescue) IDAPro.. .. 6-1
Holodeck.. .. 6-1
IBM's Rational Software Architect (RSA) Rebranded for WebSphere.. 6-1
ITS4………………….. 4-37
Jlint……………………… ... 4-37
Klocwork K7.. .. 6-1
LAPSE……………….. ... 4-37
LDRA Software Technology TBSecure Plugin.. .. 6-1
MagicDraw.. .. 6-1

Software Security Assessment Tools Review

iv

Table of Contents (cont’d)

MEFISTO.. .. 6-1
MicroGOLD's WithClass.. ... 6-1
Microsoft fxCop.. ... 6-1
Microsoft PREfix and PREfast.. .. 6-1
M Squared Technologies Resource Standard Metrics (RSM).. ... 6-1
ObjectWeb ASM.. .. 6-1
OPTIMA Business Information Technology GmbH OPTIMA Bytecode Scanner..................... 6-1
Ounce 4.0.. ... 6-1
Package javassist.bytecode.analysis (Javassist API).. ... 6-1
Palamida.. ... 6-1
Parasoft C++Test.. ... 6-1
Parasoft Jtest.. .. 6-1
Parasoft .TEST.. ... 6-1
Peach Fuzzing Platform.. ... 6-1
PMD………………….. ... 4-37
Praxis SPARK tool set.. ... 6-1
Programming Research QA.. ... 6-1
RATS (Rough Auditing Tool for Security).. ... 6-1
ReSharper.. ... 6-1
Simics Hindsight.. .. 6-1
Smatch………………….. 4-37
SoftCheck Inspector.. ... 6-1
Sparx System’s Enterprise Architect.. ... 6-1
SPIKE………………….. .. 4-37
Splint…………………….. .. 4-37
StackFrame, LLCTorqueWrench.. ... 6-1
Sulley………………….. ... 4-37
Sun Microsystems JFluid.. ... 6-1
Swat4j………………… .. 4-37
Trusted Labs TL ADT.. ... 6-178
UNO…………………. ... A-79
Veracode (formerly @stake’s analyzer).. ... A-80
Visustin………………….. .. 4-371
Viva 64………………….. ... 4-373
Xception………………….. ... 4-375
Yasca (Yet Another Source Code Analyzer)………………….. ... 4-376

Software Security Assessment Tools Review

v

Tables and Figures

Table 1: Evaluation Summary of Analyses for Source Code, Executables, and Intermediate
Representations ... 1-2

Table 2: Primary Tools by Test Technique ... 4-1
Table 3: Coverity Prevent Additional Features ... 4-6
Table 4: Fortify Source Code Analysis Suite Additional Features ... 4-7
Table 5: Klocwork Additional Features .. 4-8
Table 6: Ounce Additional Features .. 4-9
Figure 1: Process View of Risk Analysis and Risk Management Areas [14] 4-13
Table 7: Artifacts available for Risk Analysis [14] ... 4-15
Table 8: System-Level Artifacts [14] .. 4-15
Table 9: NIST Threat Sources ... 4-17
Table 10: Risk Likelihood Levels ... 4-21
Table 11: Risk Exposure Summary ... 4-22
Table 12: Risk Management Activities defined by NIST ... 4-24

Software Security Assessment Tools Review

 Section 1-1

1. Executive Summary

The Software Security Assessment Tools Review provides detailed information about the
software security tools available in the market place. With the goal of introducing security-
oriented tools into the life cycle of safety-critical applications, this paper focuses on the types of
tools that can be applied in a testing environment that may include software ranging from
embedded systems to large-scale enterprise applications. This paper reviews software security
assessment tools for possible incorporation into a development laboratory environment. The
categories of tools evaluated and detailed in this paper are:

 Static Analysis
 Source Code Fault Injection
 Dynamic Analysis
 Architectural Analysis
 Pedigree Analysis
 Binary Code Analysis
 Disassembler Analysis
 Binary Fault Injection
 Fuzzing
 Malicious Code Detectors
 Bytecode Analysis

For each tool category, the analysis includes information on which stage of the software
development life cycle the tool category specifically targets—as well as a discussion of other
phases that it may be deployed in. This review also discusses the skills required to operate tools
from each category—with the more mature tool categories often having the fewest required
skills. For each tool category, the review also discusses the assessed benefits and drawbacks
associated with the associated testing tools. Table 1 contains a summary table that includes this
information with each of the tool categories. Further analysis of specific tools is located in
Appendix A, including a complete list of the tools found in this paper assessed against a
significant set of characteristics.

Static source code analysis tools proved to be the most mature of the tool categories reviewed in
this paper. These tools have proven to be useful in multiple phases of the software development
life cycle: including development, testing, and acquisition. Static analysis tool vendors offer
multiple versions of their tools focused either towards developers with little background in
security to security code reviewers who are fluent both in security and software development
practices. Static analysis tools, like many other tools, cannot aid in identify architectural-level
flaws. In addition, these tools require that the source code to the application be available.

Source code fault injection tools provide mechanism through which source code can be
instrumented to induce the code to follow control paths that would be otherwise difficult to test
for. These tools have proven to be useful in multiple phases of the software development life
cycle, but show the most promise in the testing phase; they can also serve as an effective aid
throughout the development phase. Due to the nature of source code fault injection, these tools
require a deep understanding of the software being tested. In return, testers achieve greater code

Software Security Assessment Tools Review

 Section 1-2

coverage and a lower false positive rate than other testing methods. However, like static analysis
tools, these tools require that the source code to the application be available.

Dynamic analysis tools provide mechanisms to interface with the running application and
monitor its behavior. Like source code analysis tools and source code fault injection, this tool
category is very mature, but only recently have dynamic analysis tools become focused on
security issues. These tools can be used throughout the development life cycle, but have shown
to be most useful during the development and testing phases. Dynamic analysis tools often
require an understanding of the application’s build process and its composition—to best identify
false positives. In most environments, the primary drawback associated with dynamic analysis is
in the high level of expertise required to discern false positives.

Architectural analysis, while not a tool category per se, is a mature set of processes that
organizations can use to identify architectural or design defects within the software. A number
of tools are available to aid this analysis, with most requiring an understanding of Unified
Modeling Language (UML). Architectural analysis is best applied during the design phase of the
development life cycle. The primary drawback associated with architectural analysis is the high
level of expertise required—testers must have a thorough understanding of both the software
itself and of the architectural analysis process.

Pedigree analysis tools are among the newest entrants into the security testing field. While
primarily aimed at maintaining a record of the pedigree of the code used to develop software
(e.g., the specific license and version of the original open source code base from which the code
was adapted), these tools can correlate published security vulnerabilities in open source
applications against the code within software that may have been adapted from those projects.
These tools can be used in development or later in the life cycle. While pedigree analysis tools
can serve to greatly benefit organizations in which open source software is commonly used, they
rely on publicly available vulnerability information—meaning custom-developed source code or
low-profile open source projects may not benefit from these tools.

Like pedigree analysis, binary code analysis tools are new entrants to the software testing field,
with only one primary tool available in this space. Unlike many other tool categories, these tools
are available for binary code—including commercial off-the-shelf (COTS) products or legacy
applications—without potentially violating licensing agreements. As such, binary analysis aims
to be used during the acquisition phase of the software development life cycle with little or no
required skills on the part of the user. The primary drawback associated with these tools is the
difficulty of extrapolating the program’s logic directly from the binary—potentially resulting in
false negatives from these tools.

Disassembler analysis, like binary code analysis, allows binary code to be examined for security
vulnerabilities. In this process, testers aim to develop an intermediate representation (e.g.,
decompiled code in a high level language) that can be better analyzed than the binary itself.
Like binary analysis tools, these tools can be used during the acquisition phase. Often, they are
used during the testing phase to ensure that the compiled code will perform as expected. Due to
the large amount of manual analysis that must be performed, disassemble analysis requires a
high level of understanding of binary code and how compilers generate binary from source code.

Software Security Assessment Tools Review

 Section 1-3

Binary fault injection tools provide mechanisms through which safety- or security-related faults
can be sent to the application while it is running. These tools have proven to be useful in
multiple phases of the software development life cycle, but show the most promise in the testing
phase. Unlike source code fault injection, binary fault injection does not require knowledge of
the application’s source—as such, the potential for false positives is reduced. Binary fault
injection can successfully be performed with little specific training. However, additional
analysis may be required to determine the best course of action for mitigating any defects
identified by these tools.

Fuzzing tools provide mechanisms through which random inputs can be sent to the application
while it is running. These tools have proven to be useful in multiple phases of the software
development life cycle, but show the most promise in the testing phase. Unlike other injection
technologies, fuzzing tools must often be customized for a specific software application to better
identify potential defects (purely random input will often be rejected by the application). As
with binary fault injection, additional analysis may be required to determine the best course of
action for mitigating any defects identified by these tools.

Malicious code detectors are still being heavily researched within the academic community. The
goal of these tools is to make a determination as to whether the binary is inherently malicious.
Due to the relative infancy of these tools, they are not yet robust enough to be incorporated into a
testing regime. While current tools are still under development, researchers aim to provide fully
automated solutions for malicious code detection requiring little or no interaction from the tester.

Bytecode analysis tools are similar to both static source code analysis tools and binary analysis
tools, providing benefits associated with each. Because bytecode is similar to a binary
representation of the source code, it provides more specific information about the program’s
execution. However, unlike traditional binary, bytecode still provides some high level semantic
information about the program—reducing the effort associated with discerning the software
logic. There are two primary types of bytecode analysis tools available: those integrated with
static source code analysis (specifically tools that scan Java or .NET source) and those developed
for pure bytecode analysis. Pure bytecode analysis tools are commonly used in the testing or
acquisition phase of the software life cycle and may require the tester to have a basic
understanding of bytecode to improve tool accuracy. The primary drawback of bytecode
analysis tools is that they focus only on one specific language’s bytecode (e.g., Java or .NET),
requiring multiple tools for an organization that develops in more than one language.

This review also discusses a number of supporting technologies that testers can take advantage of
when analyzing the security of software. While many of these technologies, such as the
Software Assurance Ecosystem, are not yet robust or fully adopted within industry, they may
prove useful in the future. Some technologies, such as the Security Content Automation Protocol
(SCAP) and related standards, are embraced by government organizations and are being
increasingly adopted by vendors.

Software Security Assessment Tools Review

 Section 1-2

Summary of Evaluation
Key:
X*- To be most beneficial X+ - In some cases
 X% - When possible X# - e.g., compilation

Static
Analysis

Code
Scanning

Source
Code Fault

Injection

Dynamic
Analysis

Architectural
Analysis

Pedigree
Analysis

Binary
Code

Analysis

Disassembler
Analysis

Binary
Fault

Injection
Fuzzing

Malicious
Code

Detector

Byte
Code

Analysis

When to Use
Requirements X
Design X*
Implementation X* X X X X* X X X X X X*
Testing X X* X* X X X X X* X* X X
Production X X X X X X X X X X X
Acquisition X X X X X X* X* X X X* X

Required Skills (Understanding of…)
Underlying source code X
Underlying development methodology X# X X
Implementing language X X X%
Binary X+ X
Bytecode X
Testing methodology X X X X X X X

Benefits
Reduces cost over system life X X X X X X X X X X X
Educates developers about secure programming X X X
Rechecks legacy code X X X X X X X
Automates repetitive and tedious aspects of source
code security audits

X X

Checks for good programming style X X

Increased test coverage X X X

Increased accuracy X X
No need for source code X X X X X X X X
Improved accuracy and coverage X X X X
Reduces the amount of testing necessary X
No disassembly X X X X X X X X
Guaranteed the analysis is performed on the actual
product

 X+ X X X X X X X

Drawbacks
No architectural-level flaws X X X X X X X
Thorough understanding of the software X X X X
Required expertise X X X X X
Requires use of open source software X
Lack of tool availability X X X
Licensing concerns X
Reliance on a primary vendor X
Additional analysis X X X X X X
Additional preparation X X X X
Limited to a single language X

Table 1: Evaluation Summary of Analyses for Source Code, Executables, and Intermediate Representations

Software Security Assessment Tools Review

 Section 2-1

2. Purpose, Scope, and Background

The purpose of this paper is to provide detailed information about software security tools that
can also be applied to software safety during the software development lifecycle and system
integration. This paper can be used by software experts, as well as the casual user, to select the
binary analysis tools, source code analysis tools, and black box testing tools based on the specific
characteristics, strengths, and limitations of the tool. Selection of the tool or combination of
tools in advance ensures an informed decision is made about the security and safety of the
software developed.

This paper evaluates the software security assessment tools for possible incorporation into a
testing program. Like most common testing environments, the expected environment in which
these tools may be run is a testing workstation running Linux, Solaris or Windows with support
for an Integrated Development Environment (IDE). The target testing program for this review is
an existing testing program that analyzes developed software for safety-critical concerns. Safety
and security are increasingly being recognized as two related properties. For example, if a
hacker is able to gain control of a safety-critical system, then it can no longer be considered safe.
In contrast, certain security-critical systems may make security decisions that will indirectly
affect the safety of users or other entities relying on these systems. Further, increasing adoption
of net-centricity and network-enabled systems by DoD exposes many safety-critical systems to
threats that had previously been relegated to information sharing systems.

This whitepaper aims to provide an overview of the software security tools available to
organizations wishing to implement a security testing program. The scope of analysis in this
paper has been limited to information available from individual vendors and other publicly
available sources, as well as the authors’ experiences while running the tools in different
environments and performing analysis of these tools in other contexts. As such, each section
will provide a discussion of what stage of the software development life cycle each tool category
targets, the generic skills required to operate a certain category of tools, and the benefits and
drawbacks associated with each of the tool categories. In addition, this review contains an
analysis of the tools currently available on the market in each of these categories in Appendix A
as well as an attached, searchable spreadsheet.

Software Security Assessment Tools Review

 Section 3-1

3. Problem Space

This section defines the problem space for this whitepaper. Sections include details about the
threat environment and properties of interest that will be evaluated by the tools suggested in this
whitepaper.

3.1 Threat Environment

This whitepaper assumes that the software components that these tools will be used to analyze
are safety-critical software-intensive systems with network connectivity, but are not specifically
Web-based. As discussed in Section 2, many safety-critical testing labs are increasingly seeing
the need for security testing. As such, the threat environment associated with network-enabled
software systems includes malicious external entities as well as malicious insiders. As such,
thorough software security testing is necessary to minimize the potential exploitable
vulnerabilities that will exist in the software once it has been deployed.

3.2 Properties of Interest in the Software to be Analyzed

Two critical security properties of interest in the software being analyzed are correctness and
reliability. Tools that verify these properties include source code analyzers, malicious code
detectors, and fuzz testers. These tools verify that the software is operating as expected, and can
handle exceptions without impacting the availability of the software or integrity of the data it
stores or processes.

Safety is examined from the perspective of the delta between general software “goodness” (e.g.,
fault tolerance) and survivability. For example, exceptions must be handled and cannot result in
shutdown or failure. Tools that assess safety properties include fault injection tools, but exclude
tools for gauging general correctness and quality.

3.3 Nature of Software to be Analyzed

This whitepaper assumes that the software to be analyzed is embedded software. Some tools
described in this whitepaper will assist the evaluation of embedded software by examining the
environment surrounding the software and the ability to penetrate the system to access the
embedded software.

3.4 Techniques for Testing

A variety of techniques is available for examining source code and embedded software. This
whitepaper examination will include tools with varying levels of interaction, from tool-assisted
reviews to near fully automated analysis of binary executables, analysis of source code, and
analysis of intermediate representations, including bytecode and the results of disassembly.

Software Security Assessment Tools Review

 Section 3-2

3.5 Business Case for Security Testing

In recent years, organizations have found substantial improvements in software security through
the use of formal reviews and testing. For example, Microsoft’s Security Development Lifecycle
(SDL) provides strong emphasis on security testing during software development. Using SDL,
Microsoft introduced many security improvements in its operating system (OS) and browser
offerings. [1] Similar efforts, such as John Viega’s CLASP and SEI’s TSP-Secure, have shown
observable security improvements in software projects.

By addressing security review results, a significant reduction in security flaws can be achieved—
even if these security reviews are performed late in the software lifecycle. As noted by Lavenhar
in “Business Case” [2], “there are limited data available that discuss the return on investment of
reducing security flaws in source code.” Nevertheless, a number of studies have shown benefits
through improvements in the software development lifecycle (SDLC) processes [3]. In many
environments, software security is often dismissed as a luxury. In other cases, attempts to
shorten development schedules or decrease costs lead to reductions in software security testing
practices. Security testing is often pushed to the testing or deployment phase of the software
development lifecycle. A number of studies have shown that reducing software security and
software safety efforts will result in longer development time and more security or safety defects.

One of the earliest studies of the importance of software quality is outlined by Jones in 1991 [4].
“In the 1970s, studies performed by IBM demonstrated that software products with the lowest
defect counts also had the shortest development schedules” [2]. These studies identified poor
quality as one of the most common reasons for overruns. In 1993, a Software Engineering
Institute survey found that more than 60 percent of organizations assessed suffered from
inadequate quality assurance [5]. While these studies focused specifically on quality-related
defects, security and safety are increasingly being included as an important aspect of quality.

Research has shown that organizations that can prevent or address defects early in the system’s
lifecycle can achieve significant improvements to the overall cost and schedule of the project.

If an organization can prevent defects or detect and remove them early, it can realize a
significant cost and schedule benefit. A number of studies, outlined by Jones [6], have shown
that reworking defective requirements, design, and code typically consumes 40 to 50 percent of
the total cost of software development [6]. In 1988, Boehm and Papaccio found that every hour
an organization spends on defect prevention will reduce repair time from three to ten hours [7].
More recently, through research with the Security Quality Requirements Engineering
methodology, Carnegie Melon’s Software Engineering Institute has shown that it is possible to
optimize security defect mitigation to maximize the benefits outlined by Boehm and Papaccio
[8]. Organizations can take advantage of similar methodologies to maximize the quality of the
system for their associated budget.

Software Security Assessment Tools Review

 Section 4-1

4. Tool Technologies

This section presents the tool technologies reviewed in several categories. The tools described
by test technique are defined in Table 2.

Test Technique Tools
Static Analysis Code
Scanning

Coverity Prevent Fortify Source Code
Analysis Suite

Klocwork K7
Ounce

Source Code Fault
Injection

MEFISTO-L Grid-FIT

Dynamic Analysis Daikon Valgrind Taintcheck
Architectural Analysis Enterprise Architect

MagicDraw
RSA

Together
StructureViews

Visustin
WithClass

Pedigree Analysis Black Duck EULAyzer Palamida
Binary Code Analysis Vericode
Disassembler Analysis Boomerang

Codesurfer
IDA
OpenRCE.org

WiSA
Simics Hindsight

Binary Fault Injection Exhaustif Holodeck Xception
Fuzzing GPF Peach SPIKE

Sulley
Malicious Code Detector Fakebust Functional Extraction
Byte Code Analysis AspectCheck

ASM
BCEL
FindBugs

FxCop
Javassist API
JBA
JFluid

OPTIMA Bytecode
Scanner
SofCheck Inspector
TL ADT
TorqueWrench

Table 2: Primary Tools by Test Technique

Each tool examination will include:

 A description of the technology
 A general assessment of the technology’s strengths and shortcomings, including

capabilities, expertise required, accuracy and quality of results, support for analysis and
interpretation, and integration with other tools

 Examples of specific tools and services-for-hire that leverage the technology (where
applicable)

 Where in the system lifecycle these tools are used.

Where services-for-hire are available, the description will include the costs, lead time, and
reliability of estimates for those services. The comprehensive matrix of these services is located
in Appendix A.

The matrix includes the following criteria against which each tool can be compared:

 Supported languages –Programming languages the tool supports; it is important to note
that some tools may be language-agnostic

 Supported platforms where the tool runs – The platforms on which the tool must be run.

Software Security Assessment Tools Review

 Section 4-2

 Supported platforms where the target resides – There are cases where the target platform
may be different from the tool platform. This separate field will allow for clarification
when necessary

 Supported compilers and IDEs –Compilers or development environments supported by
the tool. In many cases, the tool will be compiler-agnostic or supported by popular IDEs

 Remote usage – Some tools may not require access to the physical platform on which the
target resides

 Finds or checks for (tool category) – Each tool may be a member of one or more of the
tool categories outlined in this paper. As such, readers may wish to view only tools from
a certain set of categories

 Lifecycle position – While many tools can be used at any point within the software
development lifecycle, readers may be interested in identifying the tools available for
each specific point in the lifecycle

 Scalability – This field will signify what level of complexity is supported by the tool.
However, scalability is a difficult criteria to measure and may not be available for all
tools

 Ability to identify comments in code – Tools that can identify comments in code can aid
reviewers in both understanding the code itself, as well as locating information that may
have been inadvertently left in the comments

 Ability to identify debug code – Tools that can identify debug code can aid reviewers in
locating potential security vulnerabilities related to the execution of unintended debug or
testing code

 Ability to discover unused code – The ability to identify unused code can aid reviewers in
finding sections of the application that may have be inadvertently unreached or portions
of the application that may be activated in certain conditions

 Tool uses Common Weakness Enumeration (CWE) definitions – This field identifies
whether the tool supports the Common Weaknesses Enumeration

 Frequency of rule base updates – This field signifies how often the tool’s database is
updated. This is usually a higher frequency for commercial tools than open source tools

 Ability to modify existing rule bases – This field signifies whether the tool supports
custom modifications to specific rules

 Ability to modify add rule bases – This field signifies whether the tool supports custom
extensions to the rule base, allowing organizations to add their own specific requirements

 Ability to provide mitigation suggestions – This field notes the level of skill required to
operate the tool. Tools that provide mitigation suggestions can be operated with less
background knowledge than other tools

 Cost – This field identifies how the pricing model of the tool is structured. It may be
infeasible to provide explicit cost information for most commercial tools

 Licensing – This field identifies how the tool is licensed. For open source tools, this will
specify the license under which the tool is readily available

 Vendor technical support – Organizations may require extra paid support while some
tools, particularly open source tools, may offer little or no support

 Vendor services support – This field will signify whether the vendor will provide custom
services to an organization

Software Security Assessment Tools Review

 Section 4-3

 Required training/expertise – This field will outline what expertise or training is required
before a reviewer can use the tool

 Vendor training available – This field will outline what training is offered by the vendor
or third parties for reviewers interested in becoming proficient in use of the tool.

4.1 Analysis of Source Code

This section provides an overview of information on the techniques available for analyzing
source code.

4.1.1 Static Analysis Code Scanning

As identified by Michael and Lavenhar in Source Code Analysis Tools – Overview [9], a static
source code security analyzer is a tool that aids analysts in locating security-related issues in
software. According to the authors, “The impetus for security analyzers originally came from
the realization that many software vulnerabilities are found in reusable library functions; thus,
programs could be scanned to check whether they contain any calls to those functions. This
process is similar to opening the source code in an editor and searching for the name of
vulnerable functions like strcpy() and stat()” [9].

Modern security analyzers are more sophisticated, with the ability to use data- and control-flow
analysis to locate subtler bugs and reduce false positives. While security analyzers are used to
make human analysts more efficient by automating certain mechanical tasks in the review
process, these tools are still not capable of replacing a human analyst [9]. Nevertheless, one
important aspect of modern security analyzers is that many act as a compiler or rely on the
output generated by compiler front-ends1 to better analyze the structure and flow of the program.
It is important to note that modern compilers, to an extent, act as security analyzers—they offer
protection against buffer overflows and when all warnings are enabled, many security-related
warnings can be presented to the developer at compile time. Moving some security analysis to
the compiler has shown to be an effective technique for mitigating some of the most egregious
security vulnerabilities (e.g., overflow errors and the use of unsafe library functions).

4.1.1.1 When to Use Static Analysis Tools

Static analysis tools are frequently used during source-code audits and walkthroughs, with the
primary goal of increasing security analysts’ efficiency [9]. In addition, most static analysis
tools can be integrated within developers’ IDEs so they can be used during development,
increasing the potential of detecting and mitigating vulnerabilities earlier in the lifecycle of the
application. Even though static analysis tools can be used throughout the development lifecycle,
they should be employed as early as possible. Problems found earlier are usually easier and less
expensive to fix [9].

1
 Modern compilers are composed of two parts. The front-end processes the source code and generates parse trees,

which are then used by the back-end to generate the binary code.

Software Security Assessment Tools Review

 Section 4-4

The limitations of static analysis tools must also be considered. Static analysis tools are not able
to detect most design- or architecture-level flaws; they are meant to work on source code.
Extrapolating design- or architectural-level details from the source code is a hard problem that
researchers are still working on. Similarly, static analysis tool scanners are not currently well
suited for finding integration bugs that may occur between application components.

Some static analysis tools are designed to enforce coding-style best practices and act as coding-
style checkers. The relationship between security-oriented static analysis tools and coding-style
checkers is increasingly being blurred. Nevertheless, to be effective in this role, these tools must
be used early in the development process. It is often prohibitively expensive to bring the
software into compliance with analyzer-enforced guidelines [9].

Those analyzers that try to deduce software behavior usually emphasize technology that reduces
false alarms (e.g., apparent vulnerabilities that actually turn out to be unexploitable). Reducing
false alarms also reduces the amount of work required to fix issues an analyzer finds. While it is
not a good practice to postpone security analysis, these analyzers might be useful in situations
where security analysis cannot begin during the early development stages, such as in cases where
legacy code has to be audited.

One of the primary features of modern static analysis tools is the use of technology that reduces
false positives2 [9]. Because one of the primary roles of the security analyst is to verify the
tool’s findings, reducing false positives reduces the amount of work the analyst has to perform.

Because they work directly against the source code, static analysis tools can be used at any point
in the development lifecycle where source code artifacts are available. It is best to begin
performing security analysis as soon as code is being generated (i.e., by integrating the static
analysis tool with the developers’ IDEs), but in situations where an organization cannot deploy
the tool until later in the software’s life cycle, the results from a static analysis tool can still be
highly beneficial to understanding an organization’s security posture.

4.1.1.2 Required Skills

Most static analysis tools are targeted at users with varying degrees of skills, from developers to
security analysts. For developers, these tools provide a description of the vulnerability and tips
and techniques for mitigating the vulnerability. Static analysis tools are more powerful in the
hands of experienced security professionals who have a strong background in the application’s
source language. With an understanding of the development language and basic information
assurance concepts, the analyst can better determine whether a specific finding is a false positive
or a mitigation strategy that fits better with the design goals of the application as a whole.

4.1.1.3 Potential Benefits

Static analysis tools have the following potential benefits:

2
 False positives are vulnerabilities identified by the analysis tool that are not exploitable.

Software Security Assessment Tools Review

 Section 4-5

 Reducing costs over the system lifetime – Security vulnerabilities identified early in the
lifecycle are cheaper to fix

 Educating developers about secure programming – The list of insecure programming
practices is long and continues to grow. This makes it difficult for developers to ensure
full compliance with secure programming guidelines, especially since most developers
are not trained in secure programming. A good static analysis tool not only finds
problems, but also explains what is wrong and how to fix it. This provides developers
with hands-on feedback on how to improve their own programming practices

 Rechecking legacy code – Even if the legacy code was developed with security in mind,
it is inevitable that new classes of vulnerabilities will have come to light since the code
was developed. Static analysis tools can help identify these issues

 Automating repetitive and tedious aspects of source code security audits – Static analysis
tools free up human security analysts to identify more difficult problems, such as
architectural or design flaws, that have security implications

 Checking for good programming style – These tools can often check coding style from a
security standpoint. Keep in mind that the tool will check for its own idea of what
constitutes “good style” unless it is customized. Customization can be time consuming
and requires a certain amount of expertise.

4.1.1.4 Drawbacks

Static analysis tools are not designed to find complex architecture- or design-level flaws, and
they are not well suited for finding integration bugs. These tools are also somewhat limited
when it comes to analyzing large systems, such as those consisting of many executable
components or heterogeneous layers. It should be emphasized that, like human auditors, static
analysis tools will not find all of the vulnerabilities in a software system. A static analysis tool
will only be able to find a certain subset of the vulnerabilities in a given piece of software, and
that subset will not change unless the scanner is reconfigured or updated with a newer version.
Static analysis tools look for a fixed set of patterns or rules in the code. Although more
advanced tools allow new rules to be added over time, if a rule has not yet been written to find a
particular problem, the tool will never find that problem. Therefore, it is important not to rely on
static analysis tools as the sole means of securing software source code.

4.1.1.5 Static Analysis Tools

A list of the analyzed static analysis tools are below.

Product: Coverity Prevent

Description: Finds quality issues and security vulnerabilities using static source code analysis
in C and C++ code. It is a pure analyzer with a simple interface. This product has no
management console. The only way to see what has changed between runs of the analyzer is to
run diff, a programming utility from Unix that identifies what has changed in a source file.
Dashboards or other displays of project status are nonexistent. Further details are described in
Table 3.

Software Security Assessment Tools Review

 Section 4-6

Supported Languages Detailed Description
Supported
Platforms

Supported C/C++ Compilers

Arm CC
G++
GCC
Green Hills compiler
HP-UX compiler
IAR compiler
Intel compiler for C/C++
Intel Microsignal Architecture
compiler
Java JDK (1.4 and higher)
Metrowerks CodeWarrior
MS Visual Studio
PICC compiler
Sun CC
TI Code Composer C compiler
Wind River Diab compiler

Checks include:

API usage errors
Buffer overflow
Cross-site scripting
Dangling stack

references
Denial of service
File corruption
Flawed branch logic
Format string

vulnerabilities
Improper bounds

checking
Incorrect allocation

sizes
Insecure access

control
Integer overflows
Logic errors

Memory corruption
Memory leaks
Non-null terminated

strings
Null pointer

dereferencing
Out-of-bounds array

access
Privilege escalations
SQL injection
Stack overflow
Stack smashing
Stack string overruns
System resource leaks
Use of freed resources
Use of uninitialized data

FreeBSD
HP-UX
Linux
Mac OS X
NetBSD
Solaris Sparc
Solaris X86
Windows

Table 3: Coverity Prevent Additional Features

Product: Fortify Source Code Analysis (SCA) Suite

Description: Analysis is conducted at a semantic, rather than syntactical, level. This means that
the product understands what the code is doing. For example, the product can map out data
flows and recognize that untested, user-entered data has been passed to a routine. The routine
may be correct in its functioning but unaware that the data passed to it has been corrupted in a
way that unhinges the application. Because the Fortify engine understands the code, it can
monitor execution and data flows through multiple modules and identify the points where unsafe
data is touched without first being verified. Few solutions can find intermodule security
problems of this kind.

Fortify generates a large XML file containing data on all identified vulnerabilities. This file is
then analyzed by the Workbench, which displays the information in a user-friendly format.
Unless programmers are up to date on the nature of specific coding vulnerabilities, they are
likely to find new items flagged by Fortify. The product catches not only buffer over-runs and
opportunities for SQL injection, but also more esoteric issues.

Because the number of generated warnings can be large, the Audit Workbench automatically
assigns severity ratings and enables the creation of filters so that only items of interest are
displayed. The display not only lists the vulnerabilities and explanations, it also takes developers
directly to the specific line of code.

Fortify SCA results can integrate with Fortify software’s centralized, web-based reporting and
control console to make findings and metrics, including trends within projects, comparisons

Software Security Assessment Tools Review

 Section 4-7

between groups, and more, available to key stakeholders. Further details are described in Table
4.

Supported Languages Detailed Description Supported Platforms
Supports mixed language
analysis of ASP.NET,
C/C++, C#, Java, JSP,
PL/SQL,T-SQL, VB.NET,
XML, and other .NET
languages.

Supported IDEs

Microsoft Visual Studio
IBM Rational Application
Developer
Eclipse

Checks over 118 vulnerability categories
including:

Windows, Solaris,
Linux, HP-UX, AIX,
and Mac OS X Buffer overflow

Command injection
Cross-site scripting
Denial of service
Format string
Integer overflow
Log forging

Password management
Path manipulation
Privacy violation
Race condition
Session fixation
SQL injection
System information leak
Unreleased resources

Table 4: Fortify Source Code Analysis Suite Additional Features

Product: Klocwork

Description: This tool seamlessly integrates into today’s most popular development
environments. Klocwork’s patented static source code analysis technology extends management
insight, auditor analysis, and developer assistance across the following critical development
challenges:

 Automatically detects operation-affecting defects early in the process
 Finds security vulnerabilities in software and improves overall application security
 Understands large code bases and simplifies their structure
 Measures and tracks key quality indicators throughout the release cycle
 Allows for customization of the analysis to suit an organization’s quality and security

priorities.

K7 can perform analysis based on Java source code and bytecodes, the latter being Java’s form
of an executable file. If the bytecodes contain debug information, K7 can trace defects back to
specific lines of code. If not, the tool can identify that a certain type of bug has been found. This
option enables sites that rely on third-party Java components to screen them for possible defects
before use and to identify the type of defect to the vendor.

A separate utility presents a detailed pictorial analysis of the complex relationships between files
and functions. K7 can identify relationships that would indicate bugs, such as a library of
functions making calls to an application. K7 also has extensive reporting capabilities. The
management console can generate a PDF (filters enable managers to include or exclude a wide
variety of data), exportable text, or XML files. Further details are described in Table 5.

Software Security Assessment Tools Review

 Section 4-8

Supported Languages Detailed Description Supported Platforms
C/C++
Java

Supported Compilers

GNU GCC/G++
ARM
Microsoft Visual C++
Green Hills
Wind River Diab
Sun Forte
MetroWerks
Metaware
Hitachi h38
TI tms470
Sun Java Compiler

Supported IDEs

Eclipse 3.0, 3.1, 3.2
Microsoft Visual Studio 6, 2002, 2003
IBM Rational Application Developer 6.0
Wind River Workbench 2.3, 2.4, 2.5
QNX Momentics 6.3 (SP2)

C/C++ Vulnerability
Categories

Access problems
Buffer overflow
DNS spoofing
Ignored return values
Injection flaws
Insecure storage
Unvalidated user input

Java Vulnerability Categories

Denial of service
Injection flaws (e.g. SQL
injection)
Unvalidated input
Mobile code security
Broken session management
Cross-site scripting
Improper errors handling
Broken access control

Sun Solaris 8-10, Red Hat
Linux 9.0, Red Hat
Enterprise Linux 3.0 - 4.0,
SUSE Linux 9.3, Windows
XP Professional, Windows
2000 Professional,
Windows 2000 Server, and
Windows Server 2003

Table 5: Klocwork Additional Features

Product: Ounce

Description: Ounce automatically analyzes source code through the use of a language processor
that parses the application to create a Common Intermediate Security Language (CISL). The
CISL captures multi-dimensional information about each call site, allowing Ounce to refine
vulnerability data through three different levels of analysis. Ounce determines vulnerabilities by
tracking the flow of data through an application, using cross-module, cross-language, semantic,
and data flow analysis to understand the complex interrelationships between individual calls,
modules, data elements, and processes.

Ounce separates real vulnerabilities from potential ones, allowing security analysts, quality
assurance (QA) teams, and developers to instantly click to confirmed vulnerabilities for focused
remediation efforts. Ounce also sorts results by severity (high, medium, and low) and by type
(buffer overflow, race condition, privilege escalation, etc.), and Ounce’s Security
Knowledgebase offers suggestions to the developer for correcting the vulnerability or exception.
Ounce allows the developer to make the choice to correct or modify the code on a case-by-case
basis because the developer typically understands more about the desired behavior of the
application. Customers may tailor the Security Knowledgebase to specific security and policy
standards and apply those standards consistently across the enterprise. Further details are
described in Table 6.

Software Security Assessment Tools Review

 Section 4-9

Supported
Languages

Detailed Description
Supported
Platforms

C/C++, Java, JSP,
ASP.NET, VB.NET,
and C#

Supported IDEs

Microsoft Visual
Studio
IBM Rational
Application
Developer
Eclipse

Vulnerability Categories

Buffer overflows
Privilege escalation
Race conditions in C and C++
Input validation errors
SQL injection vulnerabilities
Cross-site scripting errors
Basic design flaws (such as proper implementation of
access control)
Basic policy violations (e.g., is cryptography in use and is it
strong enough?)

Windows,
Solaris, Linux,
and AIX

Table 6: Ounce Additional Features

4.1.2 Source Code Fault Injection

According to the Information Assurance Technical Analysis Center (IATAC) State of the Art
Report on Software Security Assurance, fault injection is a form of dynamic analysis in which
the source code is “instrumented” by inserting changes, then compiling and executing the
instrumented code to observe the changes in state and behavior that emerge when the
instrumented portions of code are executed [10]. This is separate from the form of fault injection
discussed in Section 4.2.3, where the faults are injected through the application’s inputs.

In fault injection, the goal is to analyze the effects of a single fault within the software through
the application as a whole. Using this information, the tester can extrapolate the impact of a
particular fault on the software as a whole, perhaps leading to exploitable vulnerabilities.

Fault injection has a large following in the software safety field, particularly in environments
where the software must continue operating safely regardless of environmental or internal
effects. In some cases (e.g., embedded devices), it may not be practical to alter the software to
handle any new defects, leading to increased testing requirements. Fault injection has emerged
as a common security testing technique. The ability to inject potential changes into the source
code itself allows testers to ensure that all possible code paths are tested. In contrast,
complicated interactions that lead to a specific code path may be difficult to implement from
outside of the system itself.

4.1.2.1 When to Use Source Code Fault Injection

Source code fault injection tools can be used at any point in the development lifecycle where
source code artifacts are available. Unlike many forms of source code analysis, the full benefits
of source code fault injection may not be fully realized until a substantial portion of the software
application is available for integration or unit testing because one of the primary aspects of
source code fault injection is in fault propagation analysis. While identifying aspects of the
software-intensive system that may be susceptible to faults early on will aid in mitigating these
defects, it is likely that the most complex—and potentially the most hazardous—defects will not
surface until later in the software development lifecycle. Nevertheless, as with any software

Software Security Assessment Tools Review

 Section 4-10

analysis tool, it is important to deploy source code fault injection as early in the software
development lifecycle as possible.

4.1.2.2 Required Skills

Many fault injection tools are targeted at users with a strong understanding of the fault injection
process and the code base against which testing will be performed. Some commercial vendors
(e.g., Security Innovation’s Holodeck) offer tools that can be used with less experience in this
field of testing. Many of the tools discussed in Section 4.1.2.5 are academic in nature, requiring
more experience and understanding to use the tools and process their results.

4.1.2.3 Benefits

The benefits of fault injection tools include:

 Increased test coverage – By injecting faults directly into the source code, testers can
ensure increased test coverage. This is in contrast to traditional testing approaches where
test coverage is determined by providing the appropriate set of inputs to the application.

 Increased accuracy – By specifically modifying the source code to inject faults, testers
have greater assurance that a specific condition will lead to a potentially executable or
unsafe action within the application. Accuracy can be further increased by devising
traditional testing methods that will replicate the injected fault.

4.1.2.4 Drawbacks

One of the primary drawbacks associated with software fault injection tools is the added
requirement that the reviewer have a thorough understanding of the software to be tested. This is
important to ensure that the faults injected into the software make logical sense. For example,
injecting faults into the application that could not occur during a real operating scenario may
increase the false-positive rates associated with software fault injection. Ideally, a skilled tester
could ensure that there are no false positives in results produced by software fault injection.

A further concern when using software fault injection tools is that they require additional manual
labor. Identifying which aspects of the software should be modified for testing requires
substantial analysis of the software architecture and data structures in use. As such, the test team
should either be fully briefed by the software developers and architects or be involved in
software fault injection testing throughout the development of the application.

4.1.2.5 Specific Tools

A number of fault injection tools are available on the market. However, many COTS tools that
support source code fault injection more readily identify themselves as binary fault injection
tools. Those tools are found in Section 4.2.3.5. The following tools are examples of pure source
code fault injection tools:

 MEFISTO-L – The Multi-Level Error/Fault Injection in Simulation Tool (MEFISTO) is
a source-code fault injection tool for the VHDL hardware description language.
Developed in the mid 1990s, MEFISTO is one of the most commonly referenced tools

Software Security Assessment Tools Review

 Section 4-11

for performing source-based fault injection.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=7613&arnumber=315656&coun
t=48&index=40

 Grid-FIT – An implementation of the Fault Injection Technology (FIT) framework that
performs network-level fault injection on deployments of the Globus Grid and other web
services-based systems. http://www.allhands.org.uk/2006/proceedings/papers/607.pdf

4.1.3 Dynamic Analysis

According to the IATAC State of the Art Report on Software Security Assurance, dynamic
analysis occurs when “the compiled executable is run and fed a set of sample inputs while the
reviewer monitors and analyzes the data (variables) the program produces as a result [10]. In
The Concept of Dynamic Analysis [11], Ball describes two types of analysis:

 Coverage concept analysis produces dynamic control flow invariants for a set of
executions, which can then be compared with statically-derived invariants to identify
desirable changes to the test suite that will enable it to produce better test results

 Frequency spectrum analysis counts the number of executions of each path through each
function during a single run of the program.

Reviewers can then perform a third analysis looking for specific patterns in the program’s
execution, such as uncaught exceptions, assert failures, dynamic memory errors, and security
problems [10].

The most prominent form of dynamic analysis for security testing is in the web application
vulnerability assessment arena. Tools from this arena can operate on a black-box
implementation of an application and determine to some extent the security posture of the
application itself. This is due, in large part, to the relatively simple communications channels
between web applications and users (HTTP GET and HTTP POST), allowing these tools to
easily identify inputs and outputs associated with the program.

Dynamic analysis tools have been used within the safety and quality community for some time.
One of the earliest examples of a dynamic analysis tool is the IBM OLIVER toolkit. OLIVER
provided developers with insight into the operation of a running program (similar to modern
debuggers) while providing facilities to ensure that certain program errors are prevented during
runtime [12].

While modern debuggers (e.g., GDB and the Microsoft .NET debugger) provide some dynamic
analysis capability, they are specifically targeted to functional testing. While it is possible to use
these tools to augment security or safety testing (many of the tools discussed in other sections
rely on the information generated by debugging frameworks), they are insufficient for
performing security or safety-related dynamic analysis. Nevertheless, a number of tools are
available both commercially and through open source to aid in dynamic analysis.

Software Security Assessment Tools Review

 Section 4-12

4.1.3.1 When to Use Dynamic Analysis

The majority of dynamic analysis tools are designed to be used during the development phase of
the software lifecycle. Many of these tools are aimed at identifying traditionally difficult-to-test
defects. In some cases, these tools focus on defects associated with memory errors or race
conditions which may manifest themselves in unexpected ways later in the software lifecycle.

4.1.3.2 Required Skills

Because the way different dynamic analysis tools are run varies, the skills required to use each
tool also varies. A number of dynamic analysis tools behave as simple, stand-alone testing tools
which are run against an existing application. Other dynamic analysis tools must be linked with
the target application, requiring the tester or developer to modify the software’s compilation
procedures. Many of the dynamic analysis tools aimed at finding memory errors require
recompilation and a full understanding of the underlying application.

The Debian OpenSSL libraries offer an example of the effects of misapplying the results of
dynamic analysis. In September 2006, changes were made to the Debian version of the
OpenSSL libraries to address the results of output from the tool Valgrind, resulting in the
introduction of a security vulnerability that was identified in 2008. Because the results of
Valgrind were misapplied, many servers were deployed with insecurely generated secure socket
layer (SSL) keys [13].

4.1.3.3 Benefits

The benefits of dynamic analysis tools include:

 No need for source code – Some dynamic analysis tools do not require access to the
source code, allowing COTS applications to be analyzed

 Improved accuracy and coverage – By integrating with the running binary application,
many dynamic analysis tools can improve accuracy and coverage over traditional testing
techniques, including source code analysis.

4.1.3.4 Drawbacks

The primary drawback associated with dynamic analysis tools is in the level of expertise required
to use them. As the Debian OpenSSL incident shows, users need both an understanding of the
dynamic analysis tool and a full understanding of the target code base to adequately address and
mitigate the findings from dynamic analysis. Similarly, the dynamic analysis tools identified in
this effort require access to the source code.

4.1.3.5 Tools

A number of dynamic analysis tools are available on the market. The following tools are the
most commonly used and robust security-oriented dynamic analysis tools identified during this
review:

Software Security Assessment Tools Review

 Section 4-13

 Daikon – While not a security- or safety-specific dynamic analysis tool, Daikon shows
the potential of dynamic analysis. Daikon examines running software to provide
information about likely invariants, which can be important in understanding the
underlying operations or structure of the software itself.
http://groups.csail.mit.edu/pag/daikon/

 Valgrind – Valgrind automates testing for memory-related errors, including memory
leaks. Since its debut, Valgrind has evolved into a more general dynamic analysis and
profiling system. Valgrind offers a suite of tools that can be used to gain a better
understanding of the software, including call graph analysis (callgrind), thread profiling
(helgrind), heap profiling, and cache analysis. While none of these tools are inherently
security- or safety-specific, Valgrind is highly customizable. http://valgrind.org/

 Taintcheck – Based on the Valgrind framework, Taintcheck uses dynamic analysis to
identify security defects within COTS software.
http://www.stanford.edu/~stinson/paper_notes/tainting/taintcheck.txt

4.1.4 Architectural Analysis

Paco Hope, Steven Lavenhar, and Gunnar Peterson have defined architectural risk assessment as
a process for identifying flaws in software architecture and determining risks to information
assets that result from those flaws. Specifically, “The process of architectural risk assessment
finds flaws in software that expose information assets to risk, prioritizes the risks based on their
estimated impact to the business, develops mitigations for those risks, and reassesses the risk to
determine the efficacy of the mitigations that have been developed and implemented. This
section examines the architectural risk analysis of software threats and vulnerabilities and
assesses their impacts on assets. This section also describes the process of risk analysis, which is
broken down into sections on asset identification, risk analysis, risk mitigation, and risk
management and measurement” [14].

Figure 1 illustrates the architectural risk analysis process.

Asset
Identification

Architectural Risk Analysis

Threats Vulnerabilities

Risk
Mitigation

Risk Management
and Measurement

Risk Analysis

Implementation &
Operations

Figure 1: Process View of Risk Analysis and Risk Management Areas [14]

Software Security Assessment Tools Review

 Section 4-14

Architectural risk assessment is composed of point-in-time and ongoing processes [14]. As
software evolves, code, functionality or entire components may be added or removed, resulting
in changes to the architecture itself. Similarly, the body of known attack patterns is always
growing. As such, Hope et al. argue that ambiguity analysis is always necessary, though over
time it can focus primarily on new requirements or new functionality. Nevertheless, it is
important to periodically review the entire system again, taking into account the architectural-
level changes that may have occurred since the last risk assessment. Even if the architecture
does not change, as upgrades or patches are applied to existing components, existing problems
will be addressed but new defects will likely be introduced. The following subsections will
highlight the risk analysis process.

4.1.4.1 Asset Identification

The first step in any risk analysis process begins by identifying the assets that must be protected.
Assets can be identified as anything of value to the organization. Successful risk analysis
depends on the accurate identification of components of the software and any related systems.
To successfully identify assets, the reviewer should look beyond the software development team
and include the views of the organization or managers deploying the software. This provides
insight into the goals and constraints of the software, as well as an understanding of the impact of
software failures.

Information assets may take the form of physical hardware, the logical databases on which
application information is stored, audit records created by the software, user credentials, or other
information related to the software’s goals. Beyond identifying each asset, the reviewer should
identify which criteria are important for each asset. For example, the integrity of sensor data
provided by an embedded system may be more important than the availability of that data.
Successful identification of assets can be achieved through a series of interviews with
stakeholders.

With knowledge of the specific assets within the system, it should be possible to identify which
software modules or components manipulate each asset. Analysis should spiral outward from an
asset to determine which software elements read, write, modify, or monitor that information. All
information assets should be compiled in a list to be coordinated with risk analysis.

To aid with the understanding of requirements for specific assets, organizations can take
advantage of the concept of asset classes defined in National Institute of Standards and
Technology (NIST) Special Publication 80-60, Guide to Mapping Types of Information and
Information Systems to Security Categories, and the Federal Information Processing Standards
Publication 199, Security Categorization of Federal Information and Information Systems. The
asset class, along with exposure and the combination of threat and vulnerability, defines the
overall impact to the organization. The impact is then combined with probability to complete a
well-formed risk statement.

4.1.4.2 Risk Analysis

Once assets have been appropriately identified, the reviewer can begin assessing the architectural
risks for a software system. As part of this process, the boundaries of the software system should

Software Security Assessment Tools Review

 Section 4-15

be identified, as well as the resources, integration points, and information that constitute the
system. Once the boundaries are defined, many artifacts are required or desired for review.
These include, but are not limited to, the artifacts in Table 7.

Software business case
Functional and non-functional requirements
Enterprise architecture requirements
Use case documents
Misuse and abuse case documents
Software architecture documents describing logical, physical, and
 process views
Data architecture documents
Detailed design documents, such as UML diagrams, that show
 behavioral and structural aspects of the system
Software development plan
Transactions

Security architecture documents
Identity services and management
 architecture documents
Quality assurance plan
Test plan
Risk management plan
Software acceptance plan
Problem resolution plan
Risk list
Issues list
Project metrics
Programming guidelines
Configuration and change
 management plan
Project management plan
Disaster recovery plan
System logs
Operational guides

Table 7: Artifacts available for Risk Analysis [14]

Reviewers may also take advantage of system-level documents when performing a risk analysis.
For example, the artifacts in Table 8 provide lower-level information about the software system,
but are more likely to be readily available than some of the documents described in Table 8.

System documentation and data
 criticality (e.g., the system’s value or
 importance to the organization)
Documentation of the system and data
 sensitivity
System security policies governing the
 software (organizational policies,
 federal requirements, laws, and
 industry practices)
Management controls used for the
 software (e.g., rules of behavior and
 security planning)

Information storage protection that safeguards system and data
 availability, integrity, and confidentiality
Flow of information pertaining to the software (e.g., system
 interfaces and system input and output flowchart)
Technical controls used for the software (e.g., built-in or add-on
 security products that support identification and authentication,
 discretionary or mandatory access control, audit, residual
 information protection and encryption methods)

Table 8: System-Level Artifacts [14]

The goal of the these activities is to produce one or more documents that depict the vital
relationships between critical parts of the system. It is often not possible to model and depict all
interrelationships. Using information gathered through asset identification and from security
best practices, the diagrams and documents gradually take shape.

Before the risk assessment commences, reviewers should research and clearly understand each
element of the assessment. The following information covers best practices and further defines

Software Security Assessment Tools Review

 Section 4-16

each element in a well-formed risk assessment. Use the following list to help collect material to
be used as inputs into the risk assessment process:

 New business drivers – Understand the organization’s priorities, including any
organizational changes that have occurred, such as mergers and acquisitions, that may
have changed the technology base

 Previous risk assessments – If available, review previously performed risk assessments.
The risk assessment team may have to reconcile the new assessment against previous
work

 Audits – Review any audit reports that are relevant to the risk assessment. Audit results
should be addressed in the assessment

 Security incidents – Use past incidents to identify key assets, understand the value of
assets, identify prevalent vulnerabilities, and highlight control deficiencies

 Industry events – Identify new trends in the organization and external influences. These
include government regulations and laws and industry best practices that may
significantly affect the organization’s risk posture

 Bulletins – Review known security issues that are identified by organization such as U.S.
Computer Emergency Response Team (CERT), the SANS Institute, and applicable
software vendors

 Information security guidance – Industry standards can be leveraged to improve or help
justify the risk assessment process or identify new control strategies. International
standards are another key input.

This guidance incorporates concepts from many standards, including the NIST Special
Publication series and the International Organization for Standardization . Careful evaluation
and application of standards allows users to share the work of other professionals and provide
additional credibility with organization stakeholders. It may be helpful to reference standards
during risk discussions to ensure the assessment covers all applicable areas of information
security.

4.1.4.3 Threat Analysis

Prior to performing a full risk analysis of the system, it makes sense to identify the threats that
face the system. Threats are agents that violate the protection of information assets and site
security policy. Threat analysis identifies for a specific architecture, functionality, and
configuration. Threat analysis may assume a given level of access and skill level that the
attacker may possess. Threats may be mapped to vulnerabilities to understand how the system
may be exploited. A mitigation plan is composed of countermeasures that are considered
effective against the identified vulnerabilities that the threats exploit.

Attackers who are not technologically sophisticated are increasingly performing attacks on
systems without really understanding what it is they are exploiting because the weakness was
discovered by someone else. These individuals are not looking to target specific information or a
specific company, but rather to use knowledge of a vulnerability to scan the entire Internet for
systems that possess that vulnerability. Table 9, developed by NIST, summarizes potential threat
sources.

Software Security Assessment Tools Review

 Section 4-17

Threat Source Motivation Threat Actions
Cracker Challenge

Ego
Rebellion

System profiling
Social engineering
System intrusion and break-ins
Unauthorized system access

Computer
criminal

Destruction of information
Illegal information disclosure
Monetary gain
Unauthorized data alteration

Computer crime (e.g., cyber stalking)
Fraudulent act (e.g., replay, impersonation, and
 interception)
Information bribery
Spoofing
System intrusion
Botnets
Malware, trojans, viruses, worms, and spyware
Spam
Phishing

Terrorist Blackmail
Destruction
Exploitation
Revenge
Monetary gain
Political gain

Bomb
Information warfare
System attack (e.g., distributed denial of service)
System penetration
System tampering

Industrial
espionage

Competitive advantage
Economic espionage
Blackmail

Economic exploitation
Information theft
Intrusion on personal privacy
Social engineering
System penetration
Unauthorized system access (access to classified,
 proprietary, or technology-related information)

Insiders (poorly
trained,
disgruntled,
malicious,
negligent,
dishonest, or
terminated
employees)

Curiosity
Ego
Intelligence
Monetary gain
Revenge
Unintentional errors and
 omissions (e.g., data entry
 and programming errors)
Wanting to help the company
 (victims of social
 engineering)
Lack of procedures or training

Assault on an employee
Blackmail
Browsing of proprietary information
Computer abuse
Fraud and theft
Information bribery
Input of falsified, corrupted data
Interception
Malicious code (e.g., viruses, logic bombs, and
 trojans)
Sale of personal information
System bugs/intrusion/sabotage
Unauthorized system access

Table 9: NIST Threat Sources

Further complicating the prevention of specific attacks is that an attacker’s intent is not always
clear. Both internal and external threat sources may exist, and an attack taxonomy should
differentiate between attacks that require insider access to a system and attacks initiated by
external sources. Internal attacks may be executed by threat actors such as disgruntled
employees and contractors. It is important to note that non-malicious use by threat actors may
result in system vulnerabilities being exploited. Internal threat actors can act on their own or
under the direction of an external threat source (e.g., an employee may install a screensaver that

Software Security Assessment Tools Review

 Section 4-18

contains a trojan). Internal threat agents currently account for the majority of intentional attacks
against government and commercial enterprises.

There are three main types of external threats:

 Structured external threats are generated by a state-sponsored entity, such as a foreign
intelligence service. The resources supporting the structured external threat are usually
high and sophisticated

 Transnational threats are generated by organized non-state entities, such as drug cartels,
crime syndicates, and terrorist organizations. Such threats generally do not have as many
resources as the structured threats (although some of the larger transnational threat
organizations may have more resources than smaller structured threat organizations).
The nature of the transnational external threat makes it more difficult to trace and provide
a response.

 Unstructured external threats are usually generated by individuals such as crackers.
Threats from this source typically lack the resources of either structured or transnational
external threats, but may nonetheless be very sophisticated. The motivation of such
attackers is often, but not always, less hostile than that underlying the other two classes of
external threat. Unstructured threat sources usually limit attacks to information system
targets and employ computer attack techniques. New forms of loosely-organized virtual
hacker organizations are emerging.

With a thorough understanding of the threats facing the system, organizations can better target
their efforts in performing the risk analysis.

4.1.4.4 Architectural Risk Analysis

Once the documents and diagrams have been assembled, reviewers can begin the actual
architectural risk analysis. Three activities guide architectural risk analysis—known
vulnerability analysis, ambiguity analysis, and underlying platform vulnerability analysis [14].
By identifying and examining the conditions that must be met for vulnerabilities to be exploited
and assessing the states that the system may enter upon exploitation, organizations can gain
further insight into the security posture of the software entity.

 Vulnerability Analysis – There are a number of known vulnerabilities documented
throughout software security literature. Known vulnerability analysis considers the
architecture against a body of known bad practices or good principles for confidentiality,
integrity, and availability.

 Ambiguity Analysis – Ambiguity is a source of vulnerabilities when it exists between
requirements or specifications and development. Architecture’s role is to eliminate
potential misunderstandings between business requirements for software and developer
implementation of the software’s actions. Ambiguity analysis aims to identify where the
requirements are ambiguously stated and the implementation and architecture disagree or
fail to resolve the ambiguity.

 Underlying Platform Vulnerability Analysis – The goal of this step is to develop a list of
application or system vulnerabilities that could be accidentally triggered or intentionally
exploited and result in a security breach or violation of the system’s security policy.

Software Security Assessment Tools Review

 Section 4-19

When credible threats can be combined with the vulnerabilities uncovered in this
exercise, a risk exists that requires further analysis and mitigation.

Hope, Lavenhar and Peterson further specify that the types of vulnerabilities that exist and the
methodology needed to determine whether the vulnerabilities are present will vary depending on
which phase in the SDLC the risk assessment occurs. In the requirements phase, the search for
vulnerabilities should focus on the organization’s security policies, planned security procedures,
non-functional requirement definitions, use cases, and misuse and abuse cases. In the
implementation phase, the identification of vulnerabilities should include more specific
information, such as the planned security features described in the security design
documentation. For fielded applications, the process of identifying vulnerabilities should include
an analysis of the software security features and the security controls, technical and procedural,
used to protect the system. Fielded systems can also use the results of system tests and reports
from users to identify problems [14].

In addition, online vulnerability references should be consulted. Mailing lists, the National
Vulnerability Database, and the vendor’s website should provide information about existing
vulnerabilities. These sites and lists should be consulted to make the vulnerability list current for
a given architecture.

4.1.4.5 Organizing Risk Information

After completing the risk analysis, reviewers must organize the information such that informed
risk mitigation decisions can be taken. Risk involves many components across assets, threats,
vulnerabilities, and controls. Experience shows that the following questions help discussion
participants understand the components of risk and uncover more information:

 What asset is being protected?
 How valuable is the asset to the organization?
 What threats (both known and potential) to the asset must be avoided?
 How might loss or exposures occur?
 What is the extent of potential exposure to the asset?
 What is the organization doing to reduce the probability or the extent of damage to the

asset?
 What actions can be taken to reduce the probability of damage in the future?

A common pitfall in performing a risk assessment is to focus primarily on technology
vulnerabilities. Experience shows that the most significant vulnerabilities often occur because of
undefined processes or inadequate accountability for information security. Do not overlook the
organizational and leadership aspects of security during the data-gathering process. For
example, the inability to enforce updates on managed systems may lead to a breach of the
integrity of information residing on those systems. Clear accountability and enforcement of
information security policies is an issue in many organizations.

The combination of threats and vulnerabilities illustrates the risks that the system is exposed to.
Shirey [15] provides a model of risks to a computer system related to disclosure, deception,
disruption, and usurpation. Threats may target these risk classes:

Software Security Assessment Tools Review

 Section 4-20

 Disclosure – Dissemination of information to an individual(s) for whom the information
should not be available

 Deception – Risks that involve unauthorized change and reception of malicious
information stored on a computer system or data exchanged between computer systems

 Disruption –Access to a computer system is intentionally blocked as a result of an attack
or other malicious action. It is important to note that in some cases, performance
degradation can be as harmful as performance interruption

 Usurpation – Unauthorized access to system control functions.

Risk classification assists in the communication and documentation of risk management
decisions. Threats and vulnerabilities conspire to participate in one or more risk categories; thus,
mitigation mechanisms must also address one or more risk categories. Threats and
vulnerabilities may combine to create additional weaknesses in the system.

4.1.4.6 Risk Likelihood Determination

Having determined what threats are important and what vulnerabilities might exist, it can be
useful to estimate the likelihood of the possible risks. In software security, “likelihood” is a
qualitative estimate of how likely a successful attack will be based on analysis and past
experience. Because this estimate is based on past experience, this likelihood cannot account for
new types of attacks or vulnerabilities that have not yet been discovered, and may not accurately
reflect the probability of a successful attack. Nonetheless, the concept of likelihood can be
useful when prioritizing risks and evaluating the effectiveness of potential mitigations.

The following factors must be considered in the likelihood estimation:

 The threat’s motivation and capability
 The vulnerability’s directness and impact
 The effectiveness of current controls.

The threat’s motivation and capability vary. Some vulnerabilities are direct and have severe
impacts. For example, a vulnerability is direct and severe if it allows a database server to be
compromised directly from the Internet using a widely distributed exploit kit. An indirect
vulnerability that is less severe is one that requires an exploit payload to pass unmodified
through several different systems only to produce a log entry that might cause an unexpected
failure in the logging system.

The effectiveness of current security controls characterizes how high the bar is set for an
intentional attacker or the likelihood of an accidental failure. For example, simple user IDs and
passwords can be compromised more easily than most two-factor authentication systems.
Adding a second authentication factor raises the bar for a would-be threat. However, if the
second factor in the authentication is a biometric thumbprint reader that can be spoofed with
latent image recovery techniques, the additional controls are not as effective.

The likelihood is a subjective combination of motivation, directness of vulnerability, and
compensating controls. These factors culminate a rating of high, medium, or low. The
likelihood levels are described in Table 10.

Software Security Assessment Tools Review

 Section 4-21

High
The three qualities are all weak. A threat is highly motivated and sufficiently capable, a
vulnerability exists that is severe and direct, and controls to prevent the vulnerability from being
exploited are ineffective.

Medium
One of the three qualities is compensating, but the others are not. The threat is perhaps not
very motivated or is not sufficiently capable, the controls in place may be reasonably strong, or
the vulnerability might be indirect or not very severe.

Low
Two or more of the three qualities are compensating. The threat might lack motivation or
capability. Strong controls might be in place to prevent or significantly impede the vulnerability
from being exploited. The vulnerability might be very indirect or very low impact.

Table 10: Risk Likelihood Levels

4.1.4.7 Risk Impact Determination

Independent of likelihood and controls, the risk impact must be determined. This impact is the
consequences the business will face if the worst-case scenario in the risk description comes to
pass. The analysis must also account for other credible scenarios that are not the worst case, yet
are severe enough to warrant attention. The three aspects of risk impact determination are:

 Identify Threatened Assets – The assets threatened by the impact of this risk and the
nature of what will happen to the assets must be identified. Common impacts to
information assets include loss of data, corruption of data, unauthorized or unaudited
modification of data, unavailability of data, corruption of audit trails, and insertion of
invalid data.

 Identify Business Impact – The business will suffer some impact if an attack takes place.
It is important to characterize the impact as specifically as possible. Risk management
efforts are almost always funded by management in the organization whose primary
concern is monetary. Management support and understanding can be assured only by
driving software risks out to fiscal impacts.

 Impact Locality – All impacts will have a locality in space, time, policy, and law. In
addition to characterizing the monetary impact, the location in other dimensions may be
useful or required. For example, if an encryption key is stored unencrypted, it matters
whether that key is in the dynamically allocated RAM of an application on a trusted
server, on the hard disk of a server on the Internet, or in the memory of a client
application. Likewise, laws and policies apply differently depending on where data is
stored and how data exposures occur. Impacts may be localized in time or within
business and technical boundaries.

Technical risk impact determination is supported by artifact analysis. There are a number of
processes available for software risk identification, including the use of automated tools and the
application of checklists and guidelines. The method used should strive to quantify risks in
concrete terms. Examples of artifact quality metrics include, but are not limited to, the number
of defects, the number of critical risks, identified risks by type, and progress against acceptance
criteria.

As with risk likelihood, subjective high, medium, and low rankings may be used to determine
relative levels of risk for the organization.

Software Security Assessment Tools Review

 Section 4-22

Two types of impact classes may have a more global impact. One is risks that may impact a
domain system, such as a national or enterprise-wide system that is by its nature a single point of
failure. The other concerns cascade failure, where failures in a technical system like the Domain
Name Service may cascade across other systems and domains.

4.1.4.8 Risk Exposure Statement

The risk exposure statement combines the likelihood of the risk occurring with the impact of the
risk. The product of these two sets of analyses provides the overall summary of risk exposure for
the organization for each risk. Table 11 describes a method of generating the risk exposure
statement.

 Impact

 Low Medium High

Likelihood

High Medium High High

Medium Low Medium High

Low Low Low Medium

Table 11: Risk Exposure Summary

The risk exposure statement generalizes the overall exposure of the organization for the given
risk and offers more visibility to both impact and likelihood. The risk exposure statement gives
the organization more control over risk management, but does not require all risks to be
eliminated.

4.1.4.9 Risk Mitigation

The risks that have been identified and characterized through the process of risk analysis must be
considered for mitigation. Mitigation of a risk changes the architecture of the software or the
business in one or more ways to reduce the likelihood or impact of the risk. Formal and informal
testing, such as penetration testing, may be used to test the effectiveness of the mitigations.
Although changing how the business operates (e.g., insuring against impacts of risks) is a valid
response to risk, it is outside the scope of architecture assessment, so it will not be covered here.

Mitigations to architectural flaws are almost always more complicated than mitigating
implementation bugs. Addressing these flaws often requires cooperation between multiple
modules, systems, or classes, and the cooperating entities may be managed and implemented by
different teams. Thus, when a flaw is found, the fix usually requires agreement across multiple
teams, testing of several integrated modules, and synchronization of release cycles that may not
always be present in the different modules.

Reducing the likelihood of a risk can take several forms. Raising the bar in terms of the skills
necessary to exploit a vulnerability is often a first step. For example, changing authentication
mechanisms from user ID and password to pre-shared public key certificates can make it more
difficult to impersonate a user. Reducing the period of time that a vulnerability is available to

Software Security Assessment Tools Review

 Section 4-23

exploit is another way to reduce the likelihood of a risk. If sessions expire after 10 minutes of
inactivity, the window of opportunity for session hijacking is about 10 minutes long.

Reducing the impact of a risk can take several forms. Most developers immediately consider
eliminating the vulnerability altogether or fixing the flaw so that the architecture cannot be
exploited. Cryptography can help when applied correctly. It is easier to detect corruption in
encrypted data than in unencrypted data, and encrypted data is harder for an attacker to use if it is
obtained. From a business point of view, it may make more sense to build functionality that logs
and audits any successful exploits. Remediating a broken system may be prohibitively
expensive, whereas adding enough functionality to have a high probability of stopping an exploit
in progress might be sufficient.

Many mitigations can be described as either detection or correction strategies. Depending on the
cost of making failure impossible through correction, it may be more cost effective to enable
systems to detect and repair failure quickly and accurately. Imagine a software module that is
temperamental and tends to crash when provided bad input and cannot be modified or replaced.
A focus on correction would add business logic to validate input and ensure that the software
module never received input that it could not handle. By contrast, a focus on correction would
add monitoring or other software to watch for the module to crash and try to restart the module
quickly with minimal impact.

Mitigation is never without cost. The fact that remediating a problem costs money makes the
risk impact determination step even more critical. Mitigations can often be characterized in
terms of their cost to the business—man-hours, cost of shipping new units with the improved
software, delay entering the market with new features because old ones must be fixed, etc.
However, the ability to characterize the cost of mitigation cost is of little value unless the cost of
the business impact is known.

It is important to note that risk mitigation mechanisms may introduce threats and vulnerabilities
to the system and will need to be analyzed. The risk analysis process is iterated to reflect the
mitigation’s risk profile.

4.1.4.10 When to Apply Risk Analysis

For an application that is in the initiation or design phase, information necessary to perform the
architectural risk assessment can be derived from the design or requirements documents. For an
application under development, it is necessary to define key security rules and attributes. System
design documents and the system security plan can provide useful information about the security
of software in the development phase. For software that has been fielded, data is collected about
the software in the production environment, including data for system configuration,
connectivity, and documented and undocumented procedures and practices. The system
description is informed by the underlying security infrastructure or future security plans for the
software.

In addition to reviewing the SDLC artifacts, questionnaires and interviews are useful in gathering
information relevant to the risk assessment of the application. Policy documents, system
documentation, and security-related documentation such as audit reports, risk assessment reports,

Software Security Assessment Tools Review

 Section 4-24

system test results, system security plans, and security policies can also provide important
information about the security controls used by and planned for the software.

In cases where the application is already in production or uses resources that are in production
(e.g., databases, servers, and identity systems), these systems may have already been audited and
assessed. These assessments, when they exist, may provide a rich set of analysis information.

Risk management is a continual process that regularly reevaluates business risks from software
throughout the software’s lifetime. Table 12 (taken from NIST SP800-34) describes the risk
management activities that take place at various times during the lifecycle of a software system.

SLC Phase Phase Characteristics Risk Management Activities

Initiation The need for software is expressed
and the purpose and scope of the
software is documented

Information assets are identified. Business
impacts related to violation of the information
assets are identified. Risks are considered in
the system requirements, including non-
functional and security requirements, and a
security concept of operations is developed.

Development
or Acquisition

The software is designed, purchased,
programmed, developed, or
otherwise constructed

The risks identified during this phase can be
used to support the security analyses of the
software and may lead to architecture or design
tradeoffs during development.

Implementation The system security features are
configured, enabled, tested, and
verified

The risk management process supports the
assessment of the system implementation
against the requirements and within the
modeled operational environment. Decisions
regarding identified risks must be made prior to
system operation.

Operation or
Maintenance

The system performs its functions.
Typically, the system is being
modified on an ongoing basis through
the addition of hardware and
software and by changes to
organizational processes, policies,
and procedures.

Risk management activities are performed for
periodic system reauthorization (or
reaccreditation) or when major changes are
made to the software in its operational
production environment (e.g., new features or
functionality).

Table 12: Risk Management Activities defined by NIST

Due to cost, complexity, and other constraints, not all risks may be mitigated. Organizations
may seek to accept the risk as a “cost of doing business.” Risk management categorizes the
controls that mitigate risks and tracks their efficacy over time through testing, log analysis,
auditing, and other means. Risk measurement is a tool used to monitor the risk exposure of the
organization over time. Metrics provide quantitative analysis information that may be used to
judge the relative resilience of the system. Andrew Jaquith [16] provides guidelines that security
metrics must adhere to:

 Be consistently measured – The criteria must be objective and repeatable
 Be cheap to gather – Using automated tools (such as scanning software or password

crackers) helps

Software Security Assessment Tools Review

 Section 4-25

 Contain units of measure – Time, dollars, or some numerical scale should be included,
not just traditional green, yellow, or red risks

 Be expressed as a number – Give the results as a percentage, ratio, or other actual
measurement. Do not provide subjective opinions such as low risk or high priority.

Ongoing objective measurement provides insight into the effectiveness of risk management
decisions and enables improvement over time. While the software industry as a whole currently
lacks agreed-upon standards for precise interval scale metrics, software teams can adopt ordinal
scale metrics that place events, controls, and security posture on a continuum. Ordinal scale
metrics provide data that can be used to drive decision support by allowing visibility and
modeling of the ranking of security metrics. Security metrics collection and analysis benefits
from consistency. Although the measurements may emphasize specific aspects of the problem
(counting lines of code to gauge complexity) while ignoring other aspects of the problem
(interfaces to code), the trend data gained by using consistent measures remains valuable.

4.1.4.11 Tools

Unfortunately, there are no tools available that facilitate the understanding of a software
architecture. However, graphically-based tools that support UML and reverse engineering of
source code are useful in the architectural risk assessment process. These tools include:

 Borland's Together – This tool is a set of Eclipse plugins that provides UML 1.4
modeling, multi-language support, physical data modeling, design patterns, source code
design pattern recognition, code template design and reuse, documentation generation,
and code audits and metrics. Together adds language-neutral UML 2.0 diagramming,
business process modeling, logical data modeling, logical-to-physical data model
transformation, and custom pattern support. Borland’s strategy is to focus on tool
integration, enabling best-of-breed strategies. Borland’s model-driven development
(MDD) strategy is to offer application development teams a choice of tools and
approaches rather than channeling them into a single modeling notation. Borland is
active in the Object Management Group (OMG), leading the Graphical Model
Framework (GMF) for Eclipse, and is also active in the Open Systems Group. Borland’s
Together Visual modeling tool is based on UML2, BPMN, and MOF; it provides key
features for software architects, designers, and coders. Together uses the OMG’s Query
View Transformation (QVT) standard in model-to-model transformations and provides
support for UML Object Constraint Language (OCL) 2.0. This includes audits and
metrics, which are provided at both the model and code level and are defined in industry
standard OCL. Overall, Borland provides a platform of common services and a set of
practitioner tools within the broader scope of application life-cycle management.

 AgileJ StructureViews – This tool is a commercial Java visualization product that is
deployed as an Eclipse Feature. The product brings together aspects of the Eclipse JDT
Java model, set theory, class diagrams, and XP/Agile methods. The output resembles
reverse-engineered CASE tool drawings. The Eclipse JDT model performs a number of
functions in the Eclipse Java IDE, including populating the package explorer and type
hierarchy trees. AgileJ StructureViews taps into that same source of information to
populate its class diagrams. The visualizations are UML class diagrams, which can be
printed or exported as JPEG images. Class diagrams appear alongside the source file

Software Security Assessment Tools Review

 Section 4-26

editor in the Eclipse IDE, and navigation is possible from any element on a diagram back
to its source code. To comply with the XP goal of minimal documentation, no
presentation-specific information is stored with a diagram. From the list of class names,
all other information, including class members, inner classes, inheritances, associations
and dependencies, is derived from Eclipse. The intention is that the diagrams only serve
to increase comprehension of the coding model which they illustrate.

 IBM’s Rational Software Architect (RSA) – This tool is a comprehensive modeling
and development environment that leverages the UML for designing architecture for C++
and Java 2 Enterprise Edition (J2EE) applications and web services. RSA is built on the
Eclipse open-source software framework and includes capabilities focused on
architectural code analysis, C++, and MDD with the UML for creating resilient
applications and web services. RSA provides visual construction tools to expedite
software design and development and supports reverse transformations from Java to
UML and C++ to UML. RSA enables model management for architectural re-factoring
(e.g., split, combine, compare, and merge models and model fragments).

 MicroGOLD’s WithClass – This tool is a feature-rich UML modeling tool. This
product allows the user to draw UML diagrams, generate code, and reverse engineer
popular object-oriented (OO) languages, including C++. Java, Delphi , VB, IDL, Perl,
PHP, C#, and VB.Net. WithClass draws all UML type 1.x diagrams. VBA can be used
to create add-ins to extend the functionality of the tool.

 MagicDraw – This tool is a visual UML modeling and CASE tool. This product
facilitates analysis and design of object-oriented systems and databases. MagicDraw
provides full support for J2EE, C#, C++, CORBA IDL programming languages, .NET,
XML Schema, and WSDL, as well as database schema modeling, data definition layer
(DDL) generation, and reverse engineering facilities. MagicDraw’s reverse engineering
capability allows generation of UML models from Java, C#, C++, CORBA IDL, EJB 2.0,
DDL, CIL (MSIL), WSDL, and XML Schema source code. In addition, the product
supports automatic generation of sequence diagrams from Java source code and adds a
more detailed view of the system. MagicDraw’s automatic report-generation engine
produces comprehensive requirements, software design documentation, and other types
of reports in HTML, PDF, and RTF formats. MagicDraw UML generates artifacts that
match industry standard software development processes. The report engine allows users
to generate up-to-date reports based on original templates with layout and formatting
specified. MagicDraw runs on a wide variety of operating systems, including Windows
98/ME/NT/2000/XP/Vista, Solaris, OS/2, Linux, HP-UX, AIX, MacOS (X), and other
platforms that support Java 5 and 6.

 Sparx System’s Enterprise Architect – This tool is a comprehensive UML analysis and
design tool. Enterprise Architect provides complete traceability from requirements
analysis and design artifacts through to implementation and deployment. Enterprise
Architect is built upon the UML 2 specification. This product can display UML profiles
to extend the modeling domain and includes model validation to ensure integrity. This
tool combines business processes, information, and work flows into one model using
extensions for BPMN and the Eriksson-Penker profile. Supported diagrams include
object, composite, package, component, deployment, use case, communication, sequence,
interaction, activity, state, and timing.

Software Security Assessment Tools Review

 Section 4-27

 Visustin Flow Chart Generator – This tool is an automated program for generating
flow charts. Visustin can be used to create flowcharts and UML activity diagram-style
charts from source code. Visustin accepts source code files as input and supports a total
of 31 programming languages. Supported languages include Ada, ASP, assembler,
BASIC, C/C++, C#, Clipper, COBOL, ColdFusion, Fortran, Java, JSP, JavaScript,
LotusScript, Pascal/Delphi, Perl, PHP, PL/SQL, PowerScript, PureBasic, Python,
QuickBASIC, REALbasic, T-SQL, VB, VBA, VB.NET, Visual FoxPro, and XSLT.
Visustin creates a flow chart or an activity diagram using automated layout routines. The
user can also draw a flow chart manually. The resulting flow chart can be printed, saved
in multiple bitmap and vector formats, or exported to external programs (e.g., Microsoft
Word, Visio, and PowerPoint). Visustin provides several source code metrics, including
McCabe cyclomatic complexity and Decision density.

4.1.5 Pedigree Analysis

Many organizations are taking advantage of open source software, which can provide cost
savings and other improvements by relying on a (potentially) well-tested and robust code base.
In addition to leveraging open source software, organizations may extend the software to
customize it for their own internal purposes. This provides a number of benefits to the
organization, including reducing development time.

The trend of embracing open source software has led to concern within the software community.
One of most common concerns facing organizations is that developers or projects may
incorporate open source software without the full backing of an organization’s legal department,
possibly resulting in future licensing issues. Similarly, many organizations are may be unaware
of the pedigree of the source code within their own software-intensive systems. From a
security—and potentially safety—perspective, this may result in organizations foregoing
important patches for open source software that has been co-opted into a larger organizational
software base.

A number of vendors have developed pedigree analysis tools, which can scan software within an
organization and highlight its original source. Any software from an external source (most
commonly open source software) can be correlated to a project name and version number against
which licensing and patching concerns can be resolved. Beyond identifying external source
code, pedigree analysis tools can be useful in identifying the components of the code that have
been custom developed. These components may require more thorough testing than the external
source code.

4.1.5.1 When to Use Pedigree Analysis

Pedigree analysis tools do not directly scan for vulnerabilities in the way that static analysis
scanners do. Instead, pedigree analysis tools aim to improve an organization’s security posture
by identifying non-developmental components and providing insight into any unmitigated
security vulnerabilities that may be introduced by these components.

Because they work directly against the source code, pedigree analysis tools can be used at any
point in the development lifecycle where source code artifacts are available. As with any

Software Security Assessment Tools Review

 Section 4-28

analysis of source code, it is best to begin performing the analysis as soon as code is being
generated. Unlike with static analysis tools, pedigree analysis tools do not need to be integrated
with development tools or even used by developers. Instead, they can be incorporated into
regular audits of the source to identify new or questionable material within the source. Even in
situations where an organization cannot deploy the tool until later in the software’s lifecycle, the
results from a pedigree analysis tool can still be important in understanding an organization’s
security posture.

4.1.5.2 Benefits of Pedigree Analysis

Static analysis tools have the following benefits:

 Reducing costs associated with analyzing the source – Separating non-developmental
code from custom developed code reduces the costs associated with reviewing the
software for vulnerabilities

 Reducing costs over the system lifetime – Vulnerabilities from incorporated components
identified early in the lifecycle are cheaper to fix.

 Educating developers – In some cases, developers may be unaware of the consequences
of incorporating and extending external code into a system (e.g., some organizations may
be maintaining their own forked version of an existing software code base, increasing the
difficulties associated with patch management).

4.1.5.3 Drawbacks of Pedigree Analysis

Pedigree analysis tools have limited use in situations where a large portion of the code base is
custom developed or relies on less-popular open source software. Not all open source projects
receive equal scrutiny in regards to security analysis, potentially resulting in vulnerabilities that
may not be disclosed by a pedigree analysis tool. Similarly, open source projects focusing on
small communities of contributors and users may not be included in pedigree analysis tool
database.

4.1.5.4 Pedigree Analysis Tools

There are currently few tools that perform pedigree analysis. Some of the primary tools include
Palamida, Blackduck Software, and the open source EULAyzer tool.

 Palamida – This tool automates scanning source code and finds intellectual property and
licensing issues. Palamida offers additional services aimed at resolving security defects
occurring in externally developed software. http://www.palamida.com/

 Black Duck Software – Automatic tool for scanning source code and finding intellectual
property and licensing issues. The analyses are performed based on patterns of licenses
and known packages (e.g., SF.net). http://www.blackducksoftware.com/index.html.

 EULAyzer – Open source tool for analyzing license agreements to gain a better
understanding of how the software can be used.
http://www.javacoolsoftware.com/eulalyzer.html.

Software Security Assessment Tools Review

 Section 4-29

4.2 Analysis of Executables

This section will provide an overview of information on the techniques available for analyzing
executables. These techniques will be described in detail in the following subsections.

4.2.1 Binary Code Analysis

Binary code analysis automates the process of reviewing binary code for security- or safety-
related issues. One of the goals for binary analysis tools, as identified in Safety Checking of
Machine Code [17], is to allow for more freedom in developing the application rather than
forcing safe (or secure) libraries or source languages on the developer. This is increasingly
important in an environment where the source code is unavailable because binary code may be
the only construct to be examined.

Binary code analysis tools are similar to disassembler analysis tools. Both types of tools perform
analysis on the most readily available software artifact—the binary executable. The primary
distinction between these two forms of tools is that binary analysis tools directly analyze the
binary opcodes (or their assembler equivalents) of the software rather than the higher-level
instructions they may represent. Due to the effort required to perform such analysis, there are
few commercially available tools that perform this type of analysis. The @stake SmartRisk
Analyzer, introduced in 2004, directly analyzed binary executables for potential vulnerabilities.
In part due to the expensive computational requirements it imposed, commercial availability of
the SmartRisk Analyzer was short-lived. The underlying technology of the SmartRisk Analyzer
powers the security analysis service offered by Veracode.

4.2.1.1 When to Use Binary Analysis

Binary analysis tools are commonly used at the end of the software development lifecycle.
Often, the goal is to determine the security or safety of COTS products prior to purchase. This is
important because many COTS vendors are unwilling (or unable, due to licensing agreements) to
offer the source code for review, leaving binary analysis as the only way to scan the application.

For binary analysis tools that are offered as a service (e.g., those offered by Veracode), it may be
impractical for an organization to deploy binary analysis against its own internally-developed
software—particularly with the availability of source code analysis tools. Nevertheless, the
binary represents the final and definitive version of the software. While static analysis can prove
useful, the source code does not represent the exact sequence of actions that will be performed
by the software. In contrast, binary analysis has the potential discern security vulnerabilities that
may not exist within the code itself.

4.2.1.2 Required Skills

With the relative dearth of pure binary analysis tools—Veracode is the primary vendor in this
space—there are few skills required when using this technique. For example, Veracode users
need only upload the target binary files to the Veracode Website. In contrast, some of the more
advanced tools being researched (e.g., those discussed in academic papers) require a more in-

Software Security Assessment Tools Review

 Section 4-30

depth understanding of binary opcodes and their assembler equivalents to truly understand the
results of the tool or even what is occurring within the application itself.

4.2.1.3 Benefits

Binary analysis tools have the following potential benefits:

 No need for source code – Binary analysis tools would allow COTS applications to be
fully analyzed without access to vendor-provided source code or documentation

 No disassembly – The primary difference between pure binary analysis tools and
disassembler-based tools is the need to disassemble the binary itself. In many situations,
this is prohibited by the licensing agreement in place with the vendor. As such, pure
binary analysis allows for thorough exploration of the application without violating
licensing agreements.

4.2.1.4 Drawbacks

As mentioned above, one of the primary drawbacks associated with binary analysis tools is the
relative lack of availability. Predicting the execution of a large binary application is a hard
problem and is currently the focus of a number of research projects. In addition, existing binary
analysis tools require that the application be compiled with debugging enabled, providing very
important information about variables and controls paths within the binary itself. This
requirement can be problematic because most applications are compiled without debugging
enabled for size and performance optimization.

4.2.1.5 Specific Tools and Services

There are a limited number of binary analysis tools available on the market as the academic
community is focused mostly on prototypes while there is one primary COTS vendor in this
field. These two sources are listed below:

 Thesis-ware – There are a number of research projects that take advantage of binary
analysis. Unfortunately, the majority of this research has yet to leave academic settings
and has not progressed beyond the initial academic papers or thesis in which the tools are
introduced. One such example is in Safety Checking of Machine Code [17]

 Veracode (formerly @stake’s analyzer) – Incubated by Symantec and launched as its
own company in 2006, Veracode offers third-party analysis of binary executables. By
offering their binary analysis as a service, Veracode’s tools can run with the large amount
of resources consistent with the difficulty of binary analysis. For comparison, @stake’s
SmartRisk Analyzer required one gigabyte of memory in 2004. In addition, Veracode’s
offering of binary analysis as a service allows them to cooperate with COTS vendors in
ways that would be unavailable to direct customers, much like traditional testing
laboratories. http://www.veracode.com/.

Software Security Assessment Tools Review

 Section 4-31

4.2.2 Disassembler Analysis Tools

Disassembler analysis tools are similar to binary analysis tools in that they automate the process
of reviewing the binary for security or safety concerns. However, disassemble analysis tools
provide intermediate representations (or high-level language representations) of the binary to be
analyzed. As such, disassembler tools can provide a higher level of semantic information than
the binary itself.

The majority of current tools and techniques are used for:

 Standards compliance analysis to ensure coding of the source followed coding standards
 Reengineering analysis prior to migration of legacy code from an old host (e.g.,

mainframe) to a new host.
 Safety analysis to ensure that specific conditions have been met.

The methodology in place for using existing tools for safety and security assessment of
disassembled code first relies on performing a successful disassembly and, in some instances,
decompilation to a high-level language. The primary tool used in the research and development
(R&D) community is Hex-Rays’ Interactive Disassembler (IDA). IDA is a static, interactive
disassembler that targets the majority of processor and assembler languages. Due to the high-
interaction required by IDA, many organizations have developed tools to automate this process.
One such example is Grammatech’s CodeSurfer/x86, which is an extension to IDA.

4.2.2.1 When to Use Disassembler Analysis

Like binary analysis tools, disassembler analysis tools are commonly used at the end of the
software development lifecycle. There is a good deal of ambiguity introduced by disassembling
binary code. In an environment where source code is available, directly analyzing the source
code may be preferred over disassembler analysis. The binary code is the final output of the
application and some organizations may need to perform analysis of the results of compilation in
addition to the source code itself. Nevertheless, these tools lend themselves to being deployed at
any phase in the lifecycle in which binary code is available.

4.2.2.2 Benefits

Disassembler analysis tools have the following benefits:

 No need for source code – Ideally, binary analysis tools would allow COTS applications
to be fully analyzed without access to vendor-provided source code or documentation

 Guaranteed analysis – Because the analysis is performed on the final output,
organizations can be guaranteed that the binary code scanned is the same as the binary
code that will be run.

4.2.2.3 Drawbacks

As mentioned above, one of the primary drawbacks associated with disassembler analysis tools
is their need to disassemble existing binaries, which can run counter to the license agreement

Software Security Assessment Tools Review

 Section 4-32

through which the binaries may be made available. These licensing issues can sometimes be
addressed. In some cases (e.g., analyzing malicious code or custom-developed software)
licensing issues may not be a concern. Nevertheless, the reliance that many of these tools have
on a single major tool—IDA—leaves them vulnerable to issues facing the base tool. In
particular, IDA has known issues where it may not accurately analyze the underlying binary,
potentially resulting in the propagation of incorrect information through the rest of the analysis.
Similarly, IDA’s reliance on manual review of the underlying binary can lead to human error
propagating throughout much of the analysis of the software system.

4.2.2.4 Specific Tools and Services for Hire

A large number of tools are available for disassemble analysis. The following list highlights the
majority of analysis tools available for use:

 IDA Disassembler and Debugger – Offered by Hex Rays, IDA is one of the most
popular disassemblers in use. IDA provides a large number of features for analyzing and
disassembling binary code. In addition, Hex Rays offers older versions of IDA Pro free
for non-commercial use. http://www.hex-rays.com/idapro/

 Codesurfer – An extension to IDA pro that aids in the analysis of C and C++ binaries.
Built on the Wisconsin Program-Slicing tool, CodeSurfer provides call graphs and other
analysis tools for improved understanding of source code.
http://www.grammatech.com/products/codesurfer/overview.html

 Boomerang – An open source project that aims to offer an alternative to IDA.
Boomerang development was halted in 2006, but its source code remains available.
http://boomerang.sourceforge.net/

 Wisconsin Safety Analyzer – University of Wisconsin’s WiSA project offers a number
of tools that extend IDA Pro and Codesurfer, specifically for safety analysis. Specific
projects include the Sandia BREW project [18]. http://www.cs.wisc.edu/wisa/

 OpenRCE.org – A website offering community-developed plugins for the IDA Pro
disassembler. http://www.openrce.org/

 Virtutech – The Simics Hindsight reverse execution debugger aids organizations in the
analysis of binary executables, specifically for embedded systems.
http://www.virtutech.com/products/simics_hindsight.html

4.2.3 Binary Fault Injection

Like source code fault injection, binary fault injection was originally developed by the software
safety community to reveal flaws that occur only when certain failure conditions are present.
While source code fault injection instruments the code such that faults will be forced to occur,
binary fault injection focuses on likely faults that will occur in the real-time operation of the
software (e.g., memory faults or other error conditions provided by the processor). In the safety
community, the goal is to ensure that these faults do not result in unsafe execution of the
software. In the security community, the goal of these faults is to simulate anomalies, attack
patterns, or unintentional faults that would lead the software to enter a vulnerable state.

Binary fault injection is similar to fuzz testing. The primary goal is to induce the software to
enter a state through the application of invalid data. Binary fault injection accomplish this

Software Security Assessment Tools Review

 Section 4-33

through the application of error conditions that software may receive rather than specifically
providing invalid data to the software. Environment faults are particularly useful to test because
they are likely to reflect real-world attack scenarios. Because of the complexity of the fault
injection testing process, it tends to be used only for software that requires very high confidence
or assurance.

As mentioned in Section 4.1.2, the goal is to analyze the effects of a single fault within the
software through the application as a whole. Using this information, the tester can extrapolate
the impact of a particular fault on the software as a whole that can lead to exploitable
vulnerabilities.

4.2.3.1 When to Use Binary Fault Injection

Binary fault injection tools can be used at any point in the development lifecycle where binary
artifacts are available. As with source code fault injection, the full benefits of binary fault
injection may not be fully realized until a substantial portion of the software application is
available for integration or unit testing because one of the primary aspects of all fault injection is
in fault propagation analysis. Organizations may benefit from performing binary fault injection
in a simulated deployment environment to better test the effects of likely faults on the system.
As with any software analysis tool, it is important to deploy binary fault injection as early in the
software development lifecycle as possible.

4.2.3.2 Required Skills

Unlike source code fault injection, many fault injection tools are targeted at users without a deep
understanding of the fault injection process or a strong understanding of the code base against
which testing will be performed. Many of the commercial vendors provide simple user
interfaces and test scripts that can be run against the target system. As with any testing
technique, the quality of analysis and mitigation strategies will be affected by the reviewer’s
background. Nevertheless, important findings can be identified by injecting simple binary faults
into the system (e.g., memory or input/output faults, which are common in a deployment
environment).

4.2.3.3 Benefits

Fault injection tools have the following benefits:

 Increased test coverage – While not to the level of coverage offered by source code fault
injection, binary fault injection tools can simulate events and environmental conditions
that traditional testing methods may be unable to replicate

 Repeatability – By simulating the effects of environmental faults on the application,
reviewers can ensure that results are repeatable. If these conditions occur in a deployed
environment, it may be difficult to repeat the effects to determine the exact cause of the
issue.

Software Security Assessment Tools Review

 Section 4-34

4.2.3.4 Drawbacks

Binary fault injection tools require users to perform more detailed fault propagation analysis to
understand the root cause of errors resulting from supplied faults. Unlike source code fault
injection, reviewers are unaware of the exact point at which the fault was injected and may need
to have a very thorough understanding of the underlying code base. Some fault injection tools
resolve this issue by combining fault injection with dynamic analysis, allowing reviewers to
follow the flow of the software throughout the testing cycle.

4.2.3.5 Tools

A number of these tools also support source code fault injection, but their primary stated purpose
is for binary fault injection. It is interested to note that few, if any, open source binary fault
injection tools are available on the market. The list below highlights the three primary binary
fault injection tools identified in this review:

 Holodeck – A binary fault injection tool with security-specific capabilities. Through a
mixture of fault injection and fuzz testing, Holodeck aims to provide improved security
testing through its dynamic analysis capabilities.
http://www.securityinnovation.com/holodeck/

 Exhaustif – A binary fault injection tool that simulates many of the errors that may occur
while software is deployed. Specifically aimed at embedded systems and control
systems, which must have high fault tolerance, Exhaustif has been extended to support
distributed systems. http://www.exhaustif.es/

 Xception – A binary fault injection tool that simulates an embedded processing
environment. Xception provides support for a variety of operating systems, including
Windows 2000, LynxOS, and Linux. http://www.xception.org/

4.2.4 Fuzzing

Fuzzing is described in “Enhancing the Development Lifecycle to Produce Secure Software”
[19] as supplying “random invalid data (usually produced by modifying valid input) to the
software via its environment or another software component.” Fuzzing is often implemented via
a “fuzzer,” a program or script that submits a combination of inputs to the software to reveal how
that software responds. Fuzzers are generally specific to a particular type of input, such as HTTP
input, and are written to be used to test a specific program; as such, they are not easily reusable.

Takanen et al. [20] describe fuzz testing in detail in their book, Fuzzing for Software Security
Testing and Quality Assurance. Fuzz testing is a form of negative testing. In negative testing,
reviewers verify that the system meets requirements by providing it with invalid data (e.g.,
supplying an eight character password to a system requiring ten characters). Fuzz testing takes
this a step further by introducing randomness.

4.2.4.1 When to Use Fuzzing

Fuzzing tools can be used at any point in the development lifecycle. In fact, various fuzzing
tools fit better in different points in the development lifecycle. Some fuzzing tools can be used

Software Security Assessment Tools Review

 Section 4-35

in tandem with unit testing, which is performed whenever developers complete a portion of the
software and prior to committing changes to the source code repository. Other fuzzing tools are
used during integration testing—analyzing the effects of fuzzed input on the various components
that comprise the software system. Further fuzzing tools can be used to analyze COTS products,
either before selection or after deployment, to determine the security properties and robustness of
these tools before they are integrated with the rest of the software-intensive system. Fuzzing
tools can also be used on deployed software to identify existing issues so that mitigation
strategies can be crafted.

4.2.4.2 Required Skills

As outlined in [19], effective fuzz testing requires the tester to have a thorough understanding of
the software being tested and how it interfaces with external entities whose data will be
simulated by the fuzzer. Testers would benefit from a thorough understanding of the concepts
behind fuzz testing. A number of resources are available (including [20]) on the Internet.

Most fuzz testing tools are provided as a framework on which a specific tool can be built. Many
of the techniques and methods for generating fuzzed data are provided by these frameworks.
Testers are expected to provide the “glue code” that will interface directly with the software
application. Some fuzzer frameworks are generic, which is useful for developing highly
complex fuzzing test cases, but requires detailed knowledge of the interfaces being tested and the
framework itself. More dynamic fuzzers are also available. These fuzzers “learn” the interface
between the software and the test tool by observing valid communication. Perturbations are then
added to the valid communication to introduce fuzzed data into the system.

When performing fuzz testing, testers need to have the appropriate expertise to diagnose errors
within the application. The results of random inputs may not immediately manifest themselves
within the system. Some data may be inadvertently stored as state information within the
application’s memory and will affect its behavior in an unknown fashion.

4.2.4.3 Benefits of Fuzzing

Fuzz testing provides the following benefits:

 Increased code coverage – By introducing random information into testing, organizations
can ensure wider test coverage beyond that of pure functional testing

 Corner cases – Random inputs can provide insight into how corner cases affect the
system. These can aid in identifying portions of the application that may have logic
errors

 Additional test cases – Through the use of random inputs, test cases that would not be
covered by methodical, deterministic testing can be introduced

 Repeatable – While fuzz testing introduces a random element to security testing, it is
nevertheless repeatable. Recording the input sent to the system or storing the random
seeds used to generate the tests will ensure that testing is repeatable.

Software Security Assessment Tools Review

 Section 4-36

4.2.4.4 Drawbacks

The primary drawback of fuzz testing lies in the complexity of analyzing its results. In many
cases, it may be necessary to use dynamic analysis or a debugger to follow the execution of the
random input. Random input can result in program flow that is contrary to design or
expectations. Similarly, reviewers may face difficulty in correctly crafting a fuzzer for the
application itself. Providing random input, while possibly important, is usually insufficient for
fuzz testing. In most applications, a certain level of invalid data will cause the entire stream of
input to be rejected, resulting in a waste of effort on the part of the reviewers.

4.2.4.5 Tools

As mentioned in Section 4.2.4.2, the majority of fuzzing tools are available as a framework that
must be extended and customized for each application being tested. As such, the majority of
fuzzing tools publicly available are open source, allowing organizations to easily extend and
adapt the framework for their own needs. These tools include:

 SPIKE – A fuzzing framework that allows users to develop fuzzing tools tailored to their
applications or environments. http://www.immunitysec.com/resources-freesoftware.shtml

 Sulley – A fuzzing framework that allows users to take advantage of multiple extensible
components. Sulley provides tools for data representation, data transmission and target
monitoring. http://www.fuzzing.org/wp-content/SulleyManual.pdf

 GPF – An evolutionary fuzzer that attempts to “learn” protocols prior to generating fuzz
test cases against the target software. http://www.vdalabs.com/tools/efs_gpf.html

 Peach Fuzzing Platform – Peach provides tools for generation and mutation-based
fuzzing with a large community of developers and users. http://peachfuzzer.com/

4.2.5 Malicious Code Detectors

Malicious code detectors find the hallmarks of malicious logic embedded in programs. This is
contrast to software aimed primarily at finding delivered malware (e.g., viruses, worms, spyware,
etc.). In some cases, the techniques and methods used to perform malicious code detection may
be similar to reverse engineering or dynamic analysis techniques. However, instead of
identifying the security properties of the binary being analyzed, malicious code detectors aim to
make a determination as to whether the binary is inherently malicious.

These tools are still in the early phases of research and development and are not yet robust
enough to be incorporated into an organization’s development environment. Some organizations
have begun taking advantage of virtualization and virtual machine introspection (where the
operation of the virtual machine is monitored from outside of the machine itself) to determine
whether software is malicious. This is in contrast to the detectors discussed in this section,
which focus more specifically on monitoring the binary itself.

4.2.5.1 Required Skills

In this field’s current state, the majority of tools require some understanding of the concept.
Many of these tools are only available in the academic community and are still under

Software Security Assessment Tools Review

 Section 4-37

development. However, the goal of these tools, however, is to automate the process of malicious
code detection, which would result in fewer skills required on the part of the security analyst.

4.2.5.2 Benefits

The primary benefit associated with malicious code detectors is the ability to determine, through
an automated process, the intent of a supplied binary application. Many concerns associated
with malicious code detection revolve around the fact that malicious code purposefully or
inadvertently inserted into a software application does not, at first glance, appear to be malicious.
These tools aid reviewers in identifying and understanding obfuscated logic that would identify
the existence of malicious code within an application.

4.2.5.3 Drawbacks

Malicious code detectors are currently academic oriented and much of the necessary research is
still under way. As such, tools such as CERT’s functional extraction tool are only effective
against a small subset of malicious code that may exist in a software-intensive system.
Nevertheless, malicious code detectors have the potential to be important aspects of any software
security testing regimen.

4.2.5.4 Tools

The two primary malicious code detectors identified in this review are:

 Fakebust Fake Exploit Code Detector – Fakebust assists with the rapid assessment and
supervised execution of potentially malicious programs such as exploits or utilities of
unknown origin or programs recovered during operating system forensics. Fakebust
provides a sandboxed environment in which the potentially-malicious code can be run.
When the application running within Fakebust begins to request permissions or perform
actions that are outside Fakebust’s accepted boundaries, it will inform the user.
http://www.securiteam.com/tools/6R0061FBFY.html

 Functional Extraction – CERT’s functional extraction tool aims to take advantage of the
power of reverse engineering. Unlike some of the reverse engineering tools currently in
use, functional extraction uses function-theoretic concepts to automate understanding of
the behavior of the program being examined. One of the goals of the project is to more
readily bypass some of the obfuscation techniques that occur in malicious code.
http://www.cert.org/sse/function_extraction.html

4.3 Analysis of Intermediate Representations

The objectives of bytecode, assembler, and object code analyses will be discussed here. This
section will also include the merits of each compared with the others (including source code and
binary code analysis) and analysis of the running system (e.g., penetration testing).

Software Security Assessment Tools Review

 Section 4-38

4.3.1 Bytecode Analysis

Bytecode is an intermediary form of a software executable that is designed to be processed by an
interpreter or compiler before being run directly on machine hardware. The most common
examples of bytecode occur in Java applications and Microsoft .NET’s Common Intermediate
Language (CIL). As an intermediary form of executables, bytecode contains more semantic
information about the program’s execution than an equivalent binary. As such, bytecode has
proven to be a powerful medium against which analysis can be performed.

The main purpose of after development bytecode analysis tools (vs. tools built into runtime code
interpreters) is to establish that the software exhibits properties consistent with quality
objectives. There are no bytecode analysis tools specifically geared towards verifying and
validating software security or safety properties. There is a significant amount of work being
performed in the R&D communities to develop bytecode analysis tools aimed at security and
safety analysis, including defining repeatable methodologies for using current tools. Some
security and safety analysts are already using these tools.

The following subsections include tools that have been successfully used for these types of
analyses when limited to specific foci (e.g., verifying correctness of security functions). The
majority of these tools focus specifically on Java bytecode because it was introduced with the
Java language in the 1990s. Bytecode for many other commonly used development languages
has been recently introduced (e.g., CIL was introduced in 2002 with Microsoft’s Visual Studio
.NET package)

Bytecode scanners provide additional capabilities over pure binary or pure source code-oriented
analysis tools. Bytecode is similar to binary code. It provides a direct representation after
optimization of specific actions to be performed by the application. In addition, bytecode allows
for more information about the intent of the application than pure binary opcodes can provide.
As shown in “Java Bytecode,” [21], bytecode can represent information about coding style and
details about the efficiency of the original high-level code.

4.3.1.1 When to Use Bytecode Analysis

Bytecode analysis tools are commonly used at the end of the software development lifecycle.
However, in many cases, the source code is also available, allowing bytecode analysis and
source code analysis to occur in tandem, improving the accuracy of the results. It is important to
note that these tools can be deployed at any phase in the lifecycle in which bytecode can be
generated.

4.3.1.2 Required Skills

The expertise required for bytecode scanners varies. The majority of these tools do not require
users to be fully versed in a language’s bytecode, but a basic understanding of the language’s
bytecode may be necessary to fully analyze the tool’s output.

4.3.1.3 Benefits

Bytecode scanners provide the following benefits:

Software Security Assessment Tools Review

 Section 4-39

 Improvements over source code analysis – By integrating source code analysis with
bytecode analysis, a number of tool vendors can improve false positive and false negative
rates associated with a particular language

 Improved accuracy – By analyzing the bytecode rather than the high-level language, tools
can focus on a tighter, more restricted program flow

 Checking for good programming style – Because a good deal of program style can be
identified through the bytecode, these tools can offer support for programming style
verification.

4.3.1.4 Drawbacks

Unlike other tools, bytecode analysis tools are strictly limited to software implemented in the
target language, and the majority of these tools only focus on a single target bytecode—Java or
.NET. With the increasing performance benefits that bytecode-based languages are seeing, other
languages have begun supporting their own forms of bytecode. New tools will need to be
developed to allow organizations to leverage bytecode analysis in environments deploying these
new languages. In the future, it is likely that many bytecode analysis scanners will evolve to
support a larger subset of languages than their current form.

4.3.1.5 Open Source Tools

The following open source tools and frameworks are available for bytecode analysis:

 ObjectWeb ASM – This tool performs Java bytecode manipulation and framework
analysis. This tool can be used to modify existing Java classes or to dynamically
generate classes directly in binary form. The framework includes common
transformations and analysis algorithms to enable easy assembly of custom-defined
complex transformations and to custom-generate code analysis tools. This tool is being
used by several research projects interested in safety or security analysis of Java
bytecode. http://asm.objectweb.org/

 Package javassist.bytecode.analysis (Javassist API) – The Java Programming Assistant
(Javassist) tool includes an API for performing data-flow analysis on a Java method’s
bytecode, enabling the analyst to determine the state of the stack and local variable table
at the beginning of each instruction. This API can also be used to validate bytecode, find
dead bytecode, and identify unnecessary checkcasts.
http://www.csg.is.titech.ac.jp/~chiba/javassist/html/javassist/bytecode/analysis/package-
summary.html and http://www.csg.is.titech.ac.jp/~chiba/javassist/

 FindBugs – This tool is an open-source static bytecode analyzer for Java class files
(based on Jakarta BCEL). FindBugs is used to check for null pointer deferences,
synchronization errors, vulnerabilities to malicious code, etc. The tool can be used to
create linkages between the bytecode and the original Java source code to highlight the
location of the causal problem in the source code. http://findbugs.sourceforge.net/ and
http://en.wikipedia.org/wiki/FindBugs

 BCEL – The Byte Code Engineering Library is an API developers can use to analyze,
create, and manipulate Java byte code. It is the basis for automated bytecode analyzers,
including FindBugs. http://jakarta.apache.org/bcel/.

Software Security Assessment Tools Review

 Section 4-40

4.3.1.6 Commercial Tools

The following commercial tools and frameworks are available for bytecode analysis:

 StackFrame, LLCTorqueWrench – This static Java bytecode analysis tool looks for
violations of coding standards and practices and some coding problems. This tool is
probably not relevant for the applications being reviewed for this paper.
http://www.stackframe.com/TorqueWrench/

 IBM Security Research Java Bytecode Analysis (JABA) – JABA is a component of
IBM’s AlphaWorks Security Workbench Development Environment for Java (a.k.a.
SWORD4J). SWORD4J is a set of Eclipse plug-ins that collectively perform static
analysis of Java programs. http://www.research.ibm.com/javasec/JaBA.html and
http://www.alphaworks.ibm.com/tech/sword4j

 Sun Microsystems JFluid – This tool requires the instrumentation of the bytecode or
object code that will be analyzed by the tool. This tool is still considered an R&D
application and is not yet ready for extensive use.
http://research.sun.com/techrep/2003/smli_tr-2003-125.pdf.

According to NIST’s SAMATE site, the following COTS tools also perform bytecode analysis.
Based on the tool and vendor webpages, it is difficult to determine if the tools perform the
necessary analyses, and if so, whether the analyses are relevant for security and safety. Tool
descriptions are based on the info provided by SAMATE.

 SofCheck Inspector – This tool creates assertions for each module to prove system
assertions and the absence of runtime errors. This tool works with Java.
http://www.sofcheck.com/products/inspector.html

 Microsoft - FxCop – This tool checks .NET-managed code assembly conformance to
Microsoft .NET framework design guidelines. Microsoft claims the tool looks for more
than 200 defects in library design, globalization, naming conventions, performance,
interoperability, portability, security, and usage.
http://code.msdn.microsoft.com/codeanalysis/Release/ProjectReleases.aspx?ReleaseId=5
53.

4.3.1.7 Proprietary Tools Used by Commercial Services Providers

The following tools do not appear to be available for purchase or licensing. They are used by
service providers to do analyses for hire.

 OPTIMA Business Information Technology GmbH OPTIMA Bytecode Scanner –
This tool is used in OPTIMA’s code review services. The tool performs pattern and data
flow analyses, and is designed to detect the maximum number of security problems (even
at the risk of generating more false positives). For example, the tool can be modified to
perform a validation that “untaints” an object. OPTIMA has used this tool to analyze
cryptography and other security-specific functional implementations. The tool is scalable
for large projects (large code bases) and has been used by OPTIMA on a number of such
code reviews. The tool is not fully automated. OPTIMA relies on expert human analysis
assisted by the tool. http://www.optimabit.com/en/optima/home.html

Software Security Assessment Tools Review

 Section 4-41

 Aspect Security AspectCheck – Aspect Security uses AspectCheck in code review
services to check for security-critical calls in Java and .NET applications, including
ASP.NET, C#, and VB.NET.
http://www.aspectsecurity.com/documents/Aspect_S3_Securing_J2EE_Services.ppt

 Trusted Labs TL ADT – This tool is used as part of Trusted Labs’ security evaluation
services (including white box (source code) static analysis). The Trusted Labs analyst
runs TL ADT to automate code reviews in connection with certification and accreditation
(C&A) using TL ADT. The tool is used to challenge the Java application bytecode
against a set of security rules defined by or for the certification authority. Implementing
the rules inside TL ADT allows the Trusted Labs analyst to examine the source code.
http://www.trusted-labs.com/se_services.html.

4.4 Supporting Technologies

While tools are an important aspect of any software security testing regimen, there are a number
of technologies currently available and under development that can aid organizations and
reviewers. Organizations can take advantage of test case generators, which will aid in preparing
security test plans for software; test oracles, which provide information about the expected
results for specific tests; and other technologies. This section describes a subset of these
technologies and how they can be used within a security testing framework.

4.4.1 Tool Integration and Normalization

In 2006, Kris Britton of the National Security Agency (NSA) Center for Assured Software
(CAS) observed that the level of integration of software security tools has not reached a point
where these tools can support “meta-analysis,” where tools can incorporate the results of one
another and interpret, rank and adjust confidence levels appropriately [22]. Most security testing
tools cover only a small subset of test patterns or vulnerabilities associated with software.

To aid the ability of tools to work together, the OMG Software Assurance Special Interest Group
is developing the Software Assurance Ecosystem. The ecosystem is a suite of OMG
specifications that can be leveraged together to improve interoperability among tools. These
specifications include:

 Knowledge Discovery Metamodel (KDM) – This specification provides an ontology that
can be used to describe key aspects of software, improving interoperability among tool
outputs.

 Semantics of Business Vocabulary and Rules– This specification provides the basis for a
formal, natural language interpretation of compliance rules, security policies, or other
criteria against which the software will be analyzed.

Hatha Systems offers a set of tools, KDM Analytics, that implement these OMG specifications.
While these tools are not yet offered as standalone COTS products for testers, Hatha Systems
aims to foster the development of these specifications with the goals of increasing
interoperability among major tool vendors.

Software Security Assessment Tools Review

 Section 4-42

4.4.2 Vulnerability Categorizations and Markup Languages

Over the past few years, a number of vulnerability classification and markup language efforts
have emerged. To reign in the effects of competing standards and specifications, NIST launched
the Information Security Automation Program (ISAP) and the SCAP. Through ISAP and SCAP,
NIST has identified a set of vulnerability classifications and markup languages that form the
basis for SCAP-support. Currently, the National Vulnerability Database offers services that
comply with many of these standards.

The major SCAP standards are:

 Common Vulnerabilities and Exposures (CVE) – CVE provides a standard name and
identifier for individual vulnerabilities and exposures that have been publicly identified

 Common Configuration Enumeration (CCE) – CCE provides a standard name and
identifier for individual configuration issues associated with software components

 Common Platform Enumeration (CPE) – CPE provides a standard name and identifier for
specific systems, platforms, and packages

 Common Vulnerability Scoring System (CVSS) – CVSS provides a metric for
quantitatively communicating the impact of a specific vulnerability

 Extensible Configuration Checklist Description Format (XCCDF) – XCCDF provides a
language for writing security checklists, benchmarks, and related documents

 Open Vulnerability and Assessment Language (OVAL) – OVAL provides a language for
describing system information, including its current state, as well as the results of a
vulnerability assessment.

Where OMG aims to improve tool interoperability through improved analysis of the output of
multiple tools, NIST provides organizations with a common set of languages that can serve the
basis for future interoperability efforts. While many of these standards may not be directly
applicable in an embedded environment, they may be adapted for use. For example, XCCDF
may be used to define checklists for embedded Linux distributions while OVAL can be used to
describe the results of the assessment of an existing software intensive system. Taking
advantage of existing NIST standards may be useful in ensuring that test results can be repeated
and that mitigation strategies can be documented for the long period of time many embedded
systems are deployed.

4.4.3 Security Analysis/Test Case/Test Scenario Definition

This sub-section focuses on a variety of techniques and methodologies for organizations
interested in improving their security posture through improved testing definition. One major
current area of research is in attack patterns. Attack patterns are primarily being investigated in
government and industry and are commonly used to:

 Specify explicit requirements against which software security can be tested
 Avoid design and implementation issues that would make the software vulnerable to

known attack patterns
 Include criteria and checks in design and code reviews, security tests, and post-

deployment vulnerability assessments [10].

Software Security Assessment Tools Review

 Section 4-43

Attack patterns form the basis for abuse and misuse cases, threat models, and attack trees.
However, because attack patterns rely on knowledge of attacks that have occurred in the past,
they are a reactive technology. If attackers devise a new attack pattern, software developed and
tested against attack patterns would remain vulnerable. Nevertheless, there is consensus that the
improved discovery, avoidance, and mitigation of vulnerabilities to known attack patterns will
improve the security of software in general. Taking advantage of other testing techniques in
tandem with attack patterns will further improve software security.

Academia focuses primarily on attack trees, which are similar to attack patterns in many
respects. Attack trees (also known as threat trees or attack graphs) provide a visual
representation of possible attacks against the system. In practice, portions of an attack tree may
be based on attack patterns as described earlier. Using this visual representation, organizations
can better capture information for use in generating abuse and misuse cases, security
requirements, and test patterns. In some environments, these attack trees may aid in the risk
analysis process as well, aiding assessors in gaining a full understanding of the vulnerabilities
within a system.

One of the primary drawbacks of attack trees in their current form is that it is difficult for
individuals not skilled in security to effectively use them. Because a tree is generated based on
security-relevant conditions within the software, unskilled analysts may generate incomplete
trees. Similarly, analysts without a full grasp of the software system may make inadequate
assumptions about the system itself.

Software Security Assessment Tools Review

 Section 5-1

5. Conclusions

Organizations wishing to take advantage of tools and techniques for software security testing
need to be aware of the range of tools currently offered across the different types of tools and the
specific aspects of the software development lifecycle against which these tools can be applied.
The current software security market is focused almost entirely on source code analysis, resulting
in a large number of robust tools that organizations may deploy to improve security analysis. In
addition, organizations can take advantage of efforts under way to standardize reporting results
among tools and evaluate these tools. Source code analysis tools are limited by the languages
supported, primarily C and Java. Software written using other languages may have to rely on
less robust or less well-understood source code analysis tools.

Due in large part to the increasing deployment of bytecode-based languages (e.g., Java and
.NET), tools that perform bytecode analysis are increasingly prevalent. One of the primary
drawbacks of these tools is that they are often coupled with source code analysis scanners. For
example, tools that analyze Java or .NET-based code for security vulnerabilities perform
bytecode analysis in tandem for improved understanding of the source code, resulting in fewer
false positives and false negatives. Pure bytecode analysis tools still prove powerful and can be
an asset to any organizations wishing to improve their software security posture.

The majority of current disassembler analysis tools specifically aid in the manual assessment of
disassembled binary. Much of the existing research is aimed at improving the rate at which these
tools can operate, automating much of the existing process. Fully decompiled source code, along
with the original binary, allows organizations to take advantage of the robust technologies
available in source code analysis tools against existing binary (either legacy or COTS) software.

Related to disassembly analysis tools is the field of binary analysis. As it currently stands, only
one tool and service is available to perform binary analysis of existing executables.
Organizations wishing to perform analysis of COTS products or legacy software can take
advantage of Veracode’s technology. Outside of Veracode, there is little active academic
research in the field of pure binary analysis, and much of this research focuses on disassembly to
analyze binary components.

Both source-based and binary-based fault injection have a plethora of tools available on the
market. Due to its status as one of the earliest research areas in non-functional testing and the
heavy reliance on this form of testing used in the safety community, there is a good deal of
research and commercially-available tools. Increasingly, fault injection tool vendors are also
offering security-related services following the convergence between the software safety and
security communities.

In the near future, organizations expect to be able to take advantage of additional tool categories.
Specifically, pedigree analysis, which only recently became available with the popularity of open
source software, will aid organizations in tracking source code components throughout the
development lifecycle. Similarly, organizations should be able to use interoperability standards
and methods currently being researched and deployed—either by OMG, NIST, or other
organizations. With the ability to generate machine-readable reports from software security

Software Security Assessment Tools Review

 Section 5-2

testing tools, organizations will be able to better analyze and compare the results and perform
adequate risk analyses.

Over the long term, organizations will likely be able to take advantage of improvements in
binary analysis, disassemble analysis, and malicious code detection—the research required to
improve these types of tools is similar. Techniques for automating the understanding of binary
code has the potential to drastically improve security testing capabilities throughout the software
development lifecycle, much as techniques for automating understanding of source code has in
the past few years.

Software Security Assessment Tools Review

 Appendix A-1

6. References

[1] Michael Howard and Steve Lipner. “The Security Development Lifecycle.” Microsoft Press,
2006.

[2] Steven Lavenhar. “Business Case” https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/code/212-BSI.html.

[3] Dennis Goldenson and Diane Gibson. “Demonstrating the Impact and Benefits of CMMI:
An Update and Preliminary Results.”
http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03sr009-revised.pdf.

[4] Capers Jones. “Applied Software Measurement: Assuring Productivity and Quality.”
McGraw-Hill. New York, 1991.

[5] David H. Kitson and Stephen Masters. “An Analysis of SEI Software Process Assessment
Results, 1987-1991.” Proceedings of the Fifteenth International Conference on Software
Engineering. Baltimore, Maryland. May 17 – 21, 1993. Washington, DC. IEEE Computer
Society Press, 1993. Pages 68 – 77.

[6] Capers Jones. “Programming Productivity.” McGraw-Hill. New York, 1986.

[7] Barry Boehm and Philip N. Papaccio. “Understanding and Controlling Software Costs.”
IEEE Transactions on Software Engineering 14, 10. October 1988. Pages 1462 – 1477.

[8] Jonathan Caulkins et al. “Optimizing Investments in Security Countermeasures.” IEEE
Security and Privacy. http://doi.ieeecomputersociety.org/10.1109/MSP.2007.117.

[9] Christoph Michael and Steven Lavenhar, Build Security In. “Source Code Analysis Tools –
Overview.” 2006. https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/code/263-BSI.html.

[10] Karen Goertzel, et al. “Software Security Assurance.” IATAC.
http://iac.dtic.mil/iatac/download/security.pdf.

[11] Thomas Ball, Bell Laboratories. “The Concept of Dynamic Analysis.” Proceedings of the
7th European software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of Software Engineering, pages 216 – 234.

[12] IBM OLIVER. Wikipedia.
http://en.wikipedia.org/wiki/IBM_OLIVER_(CICS_interactive_test/debug).

[13] SSLKeys. Debian Wiki. http://wiki.debian.org/SSLkeys.

[14] Paco Hope, Steven Lavenhar, Gunnar Peterson, and Cigital. “Architectural Risk Analysis.”
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/architecture/10-BSI.html.

[15] R. Shirey. “Security Architecture for Internet Protocols: A Guide for Protocol Designs and
Standards.” Internet Draft, November 1994.

Software Security Assessment Tools Review

 Appendix A-2

[16] Andrew Jaquith, Yankee Group, and CIO Asia. “A Few Good Metrics.” 2005. http://cio-
asia.com/ShowPage.aspx?pagetype=2&articleid=2560&pubid=5&issueid=63.

[17] Zhichen Xu, Barton Miller, and Thomas Reps. “Safety Checking of Machine Code.” ACM
SIGPLAN Notices. ftp://ftp.cs.wisc.edu/paradyn/papers/Xu00Safety.pdf.

[18] Louis Kruger. “The BREW Project at Sandia.”
http://www.cs.wisc.edu/wisa/presentations/2005/02/louis.pdf.

[19] Karen Goertzel et al. “Enhancing the Development Life Cycle to Produce Secure
Software.” DACS, 2008.

[20] Ari Takanen, Jared D. Demott, and Charles Miller. “Fuzzing for Software Security Testing
and Quality Assurance.” Artech House, 2008.

[21] Peter Haggar, IBM developerWorks. “Java bytecode.”
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/.

[22] Kris Britton (NSA CAS). “NSA Center for Assured Software.” Presentation to the Director
of Central Intelligence’s Information Security and Privacy Advisory Board, Gaithersburg, MD.
NIST Computer Security Division Computer Security Resource Center, March 21, 2006).
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2006-03/K_Britton-March2006-color-
ISPAB.pdf.

Software Security Assessment Tools Review

 Appendix A-1

APPENDIX A Tool Matrix

Software Security Assessment Tools Review

 Appendix A-2

Product AgileJ StructureViews
Description Commercial Java visualization product that is deployed as

an Eclipse Feature. The product brings together aspects
of the Eclipse JDT Java Model, Set Theory, Class
Diagrams, and XP/Agile Methods. The output resembles
reverse engineered CASE tool drawings. The Eclipse
JDT model performs a number of functions in the Eclipse
Java IDE, including populating the package explorer and
type hierarchy trees. AgileJ StructureViews taps into that
same source of information to populate its class diagrams.
The visualizations are UML class diagrams, which can be
printed or exported as JPEG images. Class diagrams
appear alongside the source file editor in the Eclipse IDE,
and navigation is possible from any element on a diagram
back to its source code. To comply with the XP goal of
minimal documentation, no presentation-specific
information is stored with a diagram. From the list of
class names, all other information, including class
members, inner classes, inheritances, associations and
dependencies, is derived from Eclipse. The intention is
that the diagrams only serve to increase comprehension of
the coding model which they illustrate

URL http://www.agilej.com/
Supported Languages Java
Supported Platforms Where Tool Runs Eclipse
Supported Platform Where Target Resides
Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Risk Analysis
Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to 1,000,000
LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of Vulnerabilities No
Frequency of Rule Base Updates by Tool
Provider

N/A

Ability of Testers to Modify Existing Rule Bases N/A
Ability of Testers to Add New Rule Bases N/A
Ability to provide suggestions for mitigating
vulnerabilities (Remediation). If able, is it Active
or Passive?

N/A

Cost (Hourly/ Flat Fee) [AVAILABILITY] Commercial
Licensing
Vendor Technical Support Yes
Vendor Services / Professional services support No
Required training or experience level to operate High
Vendor provided (or 3rd party provided)
training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-3

Product antiparser
Description A fuzz testing and fault injection API
URL http://antiparser.sourceforge.net/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Fuzz Testing
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional services
support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-4

Product Aspect Security AspectCheck
Description Aspect Security uses AspectCheck in code review services to check

for security-critical calls
URL www.aspectsecurity.com/
Supported Languages ASP.Net, C#, Java, VB.Net
Supported Platforms Where Tool
Runs

Supported Platform Where Target
Resides

Supported Compilers
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Bytecode analysis
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Unknown
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

Unknown

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial Service

Licensing
Vendor Technical Support Unknown
Vendor Services / Professional services
support

Yes

Required training or experience level
to operate

Unknown

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-5

Product ASTRÉE
Description Identifies undefined code constructs or run-time errors, such as out-

of-bounds array indexing or arithmetic overflow.
URL http://www.astree.ens.fr/
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Linux

Supported Platform Where Target
Resides

Supported Compilers
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Advertises significant scalability

Ability to Identify Comments in Code
Ability to Discover Debug Code
Ability to Discover Unused Code
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

N/A

Ability of Testers to Add New Rule
Bases

N/A

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Research & Development Tool, Linux version is free

Licensing BSD
Vendor Technical Support None
Vendor Services / Professional services
support

None

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

None

Comments No updates being made to tool

Software Security Assessment Tools Review

 Appendix A-6

Product Black Duck Software
Description Automatic tool for scanning source code and finding intellectual

property and licensing issues. The analyses are performed based on
patterns of licenses and known packages (e.g., SF.net). Unlike
Palamida, Black Duck does not perform security-specific analyses.
URL: http://www.blackducksoftware.com/index.html

URL http://www.blackducksoftware.com/
Supported Languages Unknown
Supported Platforms Where Tool
Runs

Unknown

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Pedigree Analysis
Lifecycle Position(s) Development, Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-7

Product Boomerang
Description open source decompiler
URL http://boomerang.sourceforge.net/
Supported Languages C
Supported Platforms Where Tool
Runs

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Reverse Engineering
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing BSD
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-8

Product BOON
Description Performs integer range analysis to determine if an array can be

indexed outside its bounds
URL http://www.cs.berkeley.edu/~daw/boon/
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Linux

Supported Platform Where Target
Resides

Supported Compilers GCC
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

N/A

Ability of Testers to Add New Rule
Bases

N/A

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing
Vendor Technical Support None
Vendor Services / Professional
services support

None

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

None

Comments No updates being made to tool

Software Security Assessment Tools Review

 Appendix A-9

Product Borland's Together
Description A set of Eclipse plugins that provides UML 1.4 modeling,

multi-language support, physical data modeling, design
patterns, source code design pattern recognition, code
template design and reuse, documentation generation, and
code audits and metrics. Together adds language-neutral
UML 2.0 diagramming, business process modeling,
logical data modeling, and logical to physical data model
transformation and custom pattern support. Borland’s
strategy is to focus on tool integration, enabling best-of-
breed strategies. Borland’s MDD strategy is to offer
application development teams a choice of tools and
approaches, rather than channeling them into a single
modeling notation. Borland is active in the OMG, leading
the Graphical Model Framework (GMF) for Eclipse, and
is also active in the Open Systems Group. Borland’s
Together Visual modeling tool is based on UML2,
BPMN, and MOF; it provides key features for software
architects, designers, and coders. Together uses the
OMG’s QVT standard in model-to-model transformations
and provides support for UML Object Constraint
Language (OCL) 2.0. This includes audits and metrics,
which are provided at both the model and code level and
are defined in industry standard OCL. Overall, Borland
provides a platform of common services and a set of
practitioner tools within the broader scope of application
life-cycle management

URL http://www.borland.com/us/products/together/index.html
Supported Languages UML, XML, QVT, OCL, MDA, EMF
Supported Platforms Where Tool Runs Linux, Mac OS X, Solaris, Windows
Supported Platform Where Target Resides
Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Risk Analysis
Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to 1,000,000
LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of Vulnerabilities No
Frequency of Rule Base Updates by Tool
Provider

N/A

Ability of Testers to Modify Existing Rule Bases N/A
Ability of Testers to Add New Rule Bases N/A
Ability to provide suggestions for mitigating
vulnerabilities (Remediation). If able, is it Active
or Passive?

N/A

Cost (Hourly/ Flat Fee) [AVAILABILITY] Commercial
Licensing
Vendor Technical Support Yes
Vendor Services / Professional services support No

Software Security Assessment Tools Review

 Appendix A-10

Required training or experience level to operate High
Vendor provided (or 3rd party provided)
training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-11

Product C Code Analyzer (CCA)
Description Tests for out-of-bounds array indexing and arithmetic overflow.
URL http://www.drugphish.ch/~jonny/cca.html
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Linux, Windows (cygwin)

Supported Platform Where Target
Resides

Unix, Linux, Windows

Supported Compilers GCC, MSVC
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Yes (successfully scanned the Linux kernel)

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

Yes (through modification)

Ability of Testers to Add New Rule
Bases

Yes (through modification)

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing BSD
Vendor Technical Support None
Vendor Services / Professional
services support

None

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

None

Comments The product is designed to minimize false positives.

Software Security Assessment Tools Review

 Appendix A-12

Product CenterLine Systems CodeCenter
Description Detects incorrect pointer values, illegal array indices, bad function

arguments, type mismatches, and uninitialized variables.
URL http://www.ics.com/products/centerline/codecenter/
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Sun SPARC, Solaris

Supported Platform Where Target
Resides

Unix

Supported Compilers clcc, GCC, SPARC-C
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

N/A

Ability of Testers to Modify Existing
Rule Bases

N/A

Ability of Testers to Add New Rule
Bases

N/A

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing Commercial
Vendor Technical Support Multiple tiers
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-13

Product checKing
Description Monitors the quality of software development process, including

violations of coding rules.
URL http://www.optimyth.com/checKing
Supported Languages Java, JSP, JavaScript, XML, HTML
Supported Platforms Where Tool
Runs

Unix, Linux

Supported Platform Where Target
Resides

Supported Compilers Unknown
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

N/A

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Unknown

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-14

Product CodeScan Labs CodeScan
Description Inspects web source code for security vulnerabilities and source code

quality issues
URL http://www.codescan.com/
Supported Languages ASP
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Windows

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

100,000 LOC

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code Yes
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

"Regularly"

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing Annual Subscription
Developer: $1000

Vendor Technical Support Technical support and software maintenance are included as part of
the subscription contract.

Vendor Services / Professional
services support

Required training or experience level
to operate

Vendor provided (or 3rd party
provided) training available

Comments

Software Security Assessment Tools Review

 Appendix A-15

Product Compuware DevPartner SecurityChecker
Description Identifies known and potential security vulnerabilities
URL http://www.compuware.com
Supported Languages C
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Windows

Supported Compilers MSVC, Java JDK
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code Yes
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing Free, Professional
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-16

Product Coverity Prevent
Description Finds quality problems and security vulnerabilities using static

source code analysis. Checks include:
-API usage errors
-Buffer overflow
-Buffer overflows
-Cross-site scripting
-Dangling stack references
-Denial of service
-File corruption
-Flawed branch logic
-Format string vulnerabilities
-Improper bounds checking
-Incorrect allocation sizes
-Insecure access control
-Integer overflows
-Logic errors
-Memory corruption
-Memory leaks
-Non-null terminated strings
-Null pointer dereferences
-Out-of-bounds array access
-Privilege escalations
-SQL injection
-Stack overflow
-Stack smashing
-Stack string overruns
-System resource leaks
-Use of freed resources
-Use of uninitialized data

URL http://www.coverity.com
Supported Languages C, C++, C#, Java
Supported Platforms Where Tool
Runs

FreeBSD, HP-UX, Linux, Mac OS X, NetBSD, Solaris SPARC,
Solaris X86, Windows

Supported Platform Where Target
Resides

Supported Compilers Arm CC, G++, GCC, Green Hills compiler, HP-UX compiler, IAR
compiler, Intel compiler for C/C++, Intel Microsignal Architecture
compiler, Java JDK (1.4 and higher), Metrowerks CodeWarrior, MS
Visual Studio, PICC compiler, Sun CC, TI Code Composer C
compiler, Wind River Diab compiler

Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Up to 4,000,000 LOC

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code Yes
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

Unknown

Frequency of Rule Base Updates by
Tool Provider

Unknown

Software Security Assessment Tools Review

 Appendix A-17

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing Commercial
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-18

Product CppCheck
Description Identifies memory leaks, buffer overruns and many other common

errors
URL http://cppcheck.wiki.sourceforge.net/
Supported Languages C
Supported Platforms Where Tool
Runs

Linux, Windows

Supported Platform Where Target
Resides

Supported Compilers GCC, DJGPP
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Monthly

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-19

Product CQual
Description Uses type qualifiers to perform a taint analysis, which detects format

string vulnerabilities
URL http://sourceforge.net/projects/cqual/
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Linux

Supported Platform Where Target
Resides

Supported Compilers GCC
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-20

Product Csur
Description Identifies cryptographic protocol-related vulnerabilities
URL http://www.lsv.ens-cachan.fr/Software/csur/
Supported Languages C
Supported Platforms Where Tool
Runs

Unknown

Supported Platform Where Target
Resides

Unknown

Supported Compilers Unknown
Can Tool be used Remotely? Unknown
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Unknown
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Unknown
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing Unknown
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-21

Product Dfuz
Description A remote protocol fuzzer
URL http://genexx.org/dfuz/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Linux, Unix

Supported Platform Where Target
Resides

Linux, Unix

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Fuzz Testing
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

"Regularly"

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing Limited
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-22

Product Eau Claire
Description Identifies array bounds errors, null pointer dereferences, and the use

of dangerous string functions
URL http://www.vantuyl.com/chess/EauClaire/
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers Unknown
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

By request

Licensing Unknown
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Unknown

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-23

Product EULAyzer
Description Open source tool for analyzing license agreements to find interesting

words and phrases. In evaluation of the latest version (June 2006),
the tool did not perform well and conducted no security-relevant
analyses.

URL http://eulayzer.en.softonic.com/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Pedigree Analysis
Lifecycle Position(s) Acquisition
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-24

Product Exhaustif
Description A binary fault injection tool that aims to simulate many of the errors

that may occur while software is deployed. Specifically aimed at
embedded systems and control systems, which must have high fault
tolerance, Exhaustif has been extended to support distributed
systems.

URL http://www.exhaustif.es/
Supported Languages N/A
Supported Platforms Where Tool
Runs

RTEMS

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Fault Injection
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Unknown
Vendor Services / Professional
services support

Unknown

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-25

Product Fakebust
Description A program that controls executable activity to assess potentially

malicious programs
URL http://freshmeat.net/projects/fakebust/
Supported Languages C
Supported Platforms Where Tool
Runs

Linux

Supported Platform Where Target
Resides

Linux

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Malicious Code Detector
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Unknown
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

Unknown

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-26

Product FindBugs
Description Static bytecode analyzer based on Jakarta BCEL
URL http://findbugs.sourceforge.net/
Supported Languages Java
Supported Platforms Where Tool
Runs

Unix, Linux

Supported Platform Where Target
Resides

Supported Compilers Sun JDK, Eclipse, Netbeans, Jboss
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Twice-monthly

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing LGPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-27

Product Flawfinder
Description Detects use of risky functions, buffer overflow (strcpy()), format

string ([v][f]printf()), race conditions (access(), chown(), and
mktemp()), shell metacharacters (exec()), and poor random numbers
(random()).

URL http://www.dwheeler.com/flawfinder/
Supported Languages C
Supported Platforms Where Tool
Runs

Unix, Linux

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-28

Product Fluid
Description Analysis based verification for attributes such as race conditions,

thread policy, and object access with no false negatives. Emphasis on
code safety, security, API compliance, and other attributes of
dependability.

URL http://www.fluid.cs.cmu.edu:8080/Fluid
Supported Languages Java
Supported Platforms Where Tool
Runs

Windows, Linux

Supported Platform Where Target
Resides

Supported Compilers Eclipse
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Not available

Licensing
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-29

Product Fortify Source Code Analysis Suite 5.2
Description Fortify's analysis is done at a semantic, rather than syntactical, level.

For example, it can map out data flows and recognize that untested,
user-entered data -- always a potential threat -- has been passed to a
routine. Because the Fortify engine understands the code, it can
monitor execution and data flows through multiple modules and
identify the points where unsafe data is touched without first being
verified. Few solutions today can find intermodule security problems
of this kind. Fortify checks over 118 vulnerability categories
including :
-Buffer Overflow
-Command Injection
-Cross-Site Scripting
-Denial of Service
-Format String
-Integer Overflow
-Log Forging
-Password Management
-Path Manipulation
-Privacy Violation
-Race Condition

Fortify generates a large XML file containing data on all the
vulnerabilities it finds. This file is then analyzed by the Workbench,
which displays the information in a user-friendly format. Unless
programmers are up-to-date on the nature of specific coding
vulnerabilities, they are likely to be surprised by what Fortify flags.
The product catches not only buffer over-runs and opportunities for
SQL injection, but also more-esoteric issues.

Because the number of generated warnings can be rather large, the
Audit Workbench automatically assigns them severity ratings and
enables the creation of filters,
so that only items of interest are displayed. The display not only lists
the vulnerabilities and the explanations, but also takes developers
directly to the offending line
of code.

Fortify SCA results can integrate with Fortify Software’s centralized,
Web-based reporting and control console to make findings and
metrics, including trends within
projects, comparisons between groups and more, available to key
stakeholders

URL http://www.fortify.com
Supported Languages ASP.NET, Classical .ASP, C, C++, C#, Java, JSP, PHP, PL/SQL, T-

SQL, VB.NET, Visual Basic 6, XML, COBOL
Supported Platforms Where Tool
Runs

Windows, Solaris, Linux, HP-UX, AIX and Mac OS X

Supported Platform Where Target
Resides

Supported Compilers IBM Rational Application Developer, Eclipse, MS .NET, GCC
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development

Software Security Assessment Tools Review

 Appendix A-30

Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code Yes
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Quarterly

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-31

Product Grammatech CodeSonar
Description Identifies null-pointer dereferences, divide-by-zeros, buffer

over- and underruns
URL www.grammatech.com/products/codesonar/
Supported Languages C, C++, Ada
Supported Platforms Where Tool Runs Windows, Linux, Solaris, OS X
Supported Platform Where Target Resides
Supported Compilers ARM, GCC, Green Hills C Compiler, Hi-Tech C Compiler,

Intel C/C++ Compiler, MSVS, Renesas, Sun CC,
TiCodeComposer, Wind River

Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to 1,000,000
LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of Vulnerabilities No
Frequency of Rule Base Updates by Tool
Provider

Unknown

Ability of Testers to Modify Existing Rule
Bases

No

Ability of Testers to Add New Rule Bases Yes
Ability to provide suggestions for mitigating
vulnerabilities (Remediation). If able, is it
Active or Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee) [AVAILABILITY] Commercial
Licensing
Vendor Technical Support Yes
Vendor Services / Professional services
support

No

Required training or experience level to
operate

Medium

Vendor provided (or 3rd party provided)
training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-32

Product Green Hills Software DoubleCheck
Description Identifies like buffer overflows, resource leaks, invalid pointer

references, and violations of ... MISRA.
URL www.ghs.com/products/doublecheck.html
Supported Languages C, C++
Supported Platforms Where Tool
Runs

Supports embedded development with the following processors:
Power Architecture, x86/Pentium, Blackfin, MIPS, Intrinsity, Lexra,
StarCore, M32R, ColdFire, 680x0/683xx, CPU32, SH, Alpha, ZSP,
ARM/Thumb, XScale, StrongARM, SPARC/SPARClite, V8xx,
MCORE, TriCore, ST100, i960, RAD6000, RH32, FR

Supported Platform Where Target
Resides

Embedded systems

Supported Compilers Green Hills, GCC, Arm CC, Hi-Tech C Compiler, Intel C/C++
Compiler, MSVC, Renesas, Sun CC, Ti CodeComposer, Wind River
C and C++

Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-33

Product Grid-FIT
Description An implementation of the FIT framework that performs network-

level fault injection on deployments of the Globus Grid and other
Web services-based systems

URL http://www.allhands.org.uk/2006/proceedings/papers/607.pdf
Supported Languages SOAP
Supported Platforms Where Tool
Runs

Globus Grid

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Fault Injection
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Research

Licensing
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-34

Product GPF
Description Automated testing technique (fuzzing) to find bugs in software
URL http://www.appliedsec.com/developers.html
Supported Languages N/A
Supported Platforms Where Tool
Runs

Linux, Unix

Supported Platform Where Target
Resides

Linux, Unix

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Fuzz Testing
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-35

Product Hammurapi
Description Has a number of inspectors which catch potential programmer errors.
URL http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-

group/index.html
Supported Languages Java
Supported Platforms Where Tool
Runs

Linux, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers Sun JDK, Eclipse
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in Code Yes (if configured)
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing Apache 2.0, LGPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-36

Product Hex-Rays (formerly DataRescue) IDAPro
Description Static, interactive disassembler that targets Windows and Linux,

.NET, JVM; and multi-processor (most CPUs, including Intel, and
RISC) assembler languages.

URL http://www.hex-rays.com/idapro/
Supported Languages N/A
Supported Platforms Where Tool
Runs

JVM, Linux, .Net, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Disassembler Analysis
Lifecycle Position(s) Testing, Acquisition
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing $775-$1470
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-37

Product Holodeck
Description A binary fault injection tool with security-specific capabilities.

Through a mixture of fault injection and fuzz testing, Holodeck aims
to provide improved security testing through its dynamic analysis
capabilities.

URL http://www.securityinnovation.com/holodeck/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Windows

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Fault Injection
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-38

Product IBM's Rational Software Architect (RSA) Rebranded for
WebSphere

Description A comprehensive modeling and development environment that
leverages the UML for designing architecture for C++ and Java 2
Enterprise Edition (J2EE) applications and web services. RSA is
built on the Eclipse open-source software framework and includes
capabilities focused on architectural code analysis, C++, and MDD
with the UML for creating resilient applications and web services.
RSA provides visual construction tools to expedite software design
and development and supports reverse transformations from Java to
UML, and C++ to UML. RSA enables model management for
architectural re-factoring (e.g., split, combine, compare and merge
models and model fragments)

URL http://www-01.ibm.com/software/awdtools/swarchitect/websphere/
Supported Languages Java, UML
Supported Platforms Where Tool
Runs

Linux, Windows

Supported Platform Where Target
Resides

Supported Compilers Eclipse
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Risk Analysis
Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

N/A

Ability of Testers to Modify Existing
Rule Bases

N/A

Ability of Testers to Add New Rule
Bases

N/A

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

N/A

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-39

Product ITS4
Description Detects potentially dangerous function calls, Provides simple risk

analysis
URL www.cigital.com/its4/
Supported Languages C
Supported Platforms Where Tool
Runs

Linux, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

!,000,000 LOC

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing ITS4 License
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-40

Product Jlint
Description Finds bugs, inconsistencies and synchronization problems
URL http://jlint.sourceforge.net
Supported Languages Java
Supported Platforms Where Tool
Runs

Linux, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-41

Product Klocwork K7
Description Klocwork's patented static source code analysis technology implements

management Insight, Auditor Analysis, and Developer Assistance across the
following critical development challenges.
· Finds security vulnerabilities in software and improve overall application
security.
· Understands large code bases and simplify their structure.
· Measures and tracks key quality indicators throughout the release cycle.
· Extensible, allowing customization of the analysis to suit an organization's quality
and security priorities.

C/C++ Vulnerability Categories
· Access problems
· Buffer overflow
· DNS spoofing
· Ignored return values
· Injection flaws
· Insecure storage
· Unvalidated user input

Java Vulnerability Categories
· Denial of Service
· Injection Flaws (e.g. SQL Injection)
· Unvalidated Input
· Mobile Code Security
· Broken Session Management
· Cross-Site Scripting
· Improper Errors Handling
· Broken Access Control

K7 can perform analysis based on Java source code and bytecodes, the latter being
Java's form of executable file. If the bytecodes contain debug information, K7 can
trace defects back to specific lines of code. If not, it can simply identify that a
certain type of bug has been found. This option enables sites that rely on third-
party Java components to screen them for possible defects before use and to
identify the type of defect to the vendor. A separate utility presents a detailed
pictorial analysis of the complex relationships between files and functions. It can
identify odd relationships that would indicate bugs, such as a library of functions
making calls to an application. K7 also has extensive reporting capabilities. The
management console can generate an extensive PDF file (filters enable managers
to include or exclude a wide variety of data), exportable text, or XML files.

URL http://www.klocwork.com/
Supported Languages C, C++, Java, Supported IDEs, Eclipse 3.0, 3.1, 3.2, Microsoft Visual Studio 6,

2002, 2003, IBM Rational Application Developer 6.0, Wind River Workbench 2.3,
2.4, 2.5, QNX Momentics 6.3 (SP2)

Supported Platforms
Where Tool Runs

Solaris 8, Solaris 9, Solaris 10, Red Hat Linux 9.0, Red Hat Enterprise Linux 3.0,
Red Had Enterprise Linux 4.0, SUSE Linux 9.3, Windows XP Professional,
Windows 2000 Professional, Windows 2000 Server, Windows Server 2003

Supported Platform
Where Target Resides

Supported Compilers GNU GCC/G++, ARM, Microsoft Visual C++, Green Hills, Wind River Diab, Sun
Forte, MetroWerks, Metaware, Hitachi h38, TI tms470, Sun Java Compiler

Can Tool be used
Remotely?

Software Security Assessment Tools Review

 Appendix A-42

Finds or Checks for:
(Tool Category)

Source Code Analyzer

Lifecycle Position(s) Development
Scalability (Ability to
scan up to 1,000,000
LOC?)

Unknown

Ability to Identify
Comments in Code

Yes

Ability to Discover Debug
Code

Yes

Ability to Discover
Unused Code

Yes

Tool uses CWE
Definitions of
Vulnerabilities

No

Frequency of Rule Base
Updates by Tool Provider

Unknown

Ability of Testers to
Modify Existing Rule
Bases

Yes

Ability of Testers to Add
New Rule Bases

Yes

Ability to provide
suggestions for mitigating
vulnerabilities
(Remediation). If able, is
it Active or Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical
Support

Yes

Vendor Services /
Professional services
support

Yes

Required training or
experience level to
operate

Medium

Vendor provided (or 3rd
party provided) training
available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-43

Product LAPSE
Description Helps audit Java J2EE applications for common types of security

vulnerabilities found in Web applications.
URL http://suif.stanford.edu/~livshits/work/lapse/
Supported Languages Java
Supported Platforms Where Tool
Runs

Linux, Unix

Supported Platform Where Target
Resides

Supported Compilers Eclipse
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

No

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-44

Product LDRA Software Technology TBSecure Plugin
Description The TBsecure plug-in to TBvision comes complete with the Carnegie

Mellon Software Engineering Institute (SEI) CERT C secure coding
standard. TBsecure identifies security vulnerabilities and enables
implementation of the recent CERT C Secure Coding Standard
version 1.0.

URL www.ldra.com/
Supported Languages C
Supported Platforms Where Tool
Runs

Supports the following processors for embedded development:
ARM7/ARM9, Freescale MC68K, MPC5xx, 6xx & 8xx, Infineon
TriCore, C166, Intel 8051, 80C196, MIPS SmartMIPS, 4Kx,
PowerPC, 5xx, 6xx, 7xx & 8xx, Renesas Super H xx, TI
TMS320Cxx

Supported Platform Where Target
Resides

Supported Compilers Unknown
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-45

Product MagicDraw
Description Visual UML modeling and CASE tool. This tool

facilitates analysis and design of object-oriented
systems and databases. MagicDraw provides full
round-trip support for J2EE, C#, C++, CORBA IDL
programming languages, .NET, XML Schema, and
WSDL), as well as database schema modeling, DDL
generation, and reverse engineering facilities.
MagicDraw’s reverse engineering capability allows
generation of UML models from Java, C#, C++,
CORBA IDL, EJB 2.0, DDL, CIL (MSIL), WSDL,
and XML Schema source code. In addition, the
product supports automatic generation of sequence
diagrams from Java source code and adds a more
detailed view of the system. MagicDraw’s automatic
report generation engine produces comprehensive
requirements, software design documentation, and
other types of reports in HTML, PDF, and RTF
formats. MagicDraw UML generates standard
artifacts that match industry standard software
development processes. The report engine allows
users to generate up-to-date reports based on your
own templates with layout and formatting specified.
MagicDraw runs on a wide variety of operating
systems, including Windows
98/ME/NT/2000/XP/Vista, Solaris, OS/2, Linux, HP-
UX, AIX, MacOS (X), and other platforms that
support Java 5 and 6

URL http://www.magicdraw.com/
Supported Languages Java, C++, UML, IDL
Supported Platforms Where Tool Runs Linux, Mac OS X, Windows
Supported Platform Where Target Resides
Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Risk Analysis
Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to 1,000,000 LOC?) N/A
Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of Vulnerabilities No
Frequency of Rule Base Updates by Tool Provider N/A
Ability of Testers to Modify Existing Rule Bases N/A
Ability of Testers to Add New Rule Bases N/A
Ability to provide suggestions for mitigating
vulnerabilities (Remediation). If able, is it Active or
Passive?

N/A

Cost (Hourly/ Flat Fee) [AVAILABILITY] Commercial
Licensing $149-$2460
Vendor Technical Support Yes
Vendor Services / Professional services support No
Required training or experience level to operate High

Software Security Assessment Tools Review

 Appendix A-46

Vendor provided (or 3rd party provided) training
available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-47

Product MEFISTO
Description The Multi-level Error/Fault Injection in Simulation Tool (MEFISTO) is a

source-code fault injection tool for the VHDL hardware description
language. Developed in the mid 1990s, MEFISTO is one of the most
commonly referenced tools for performing source-based fault injection

URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=7613&arnumber=3
15656&count=48&index=40

Supported Languages VHDL
Supported Platforms Where
Tool Runs

Unknown

Supported Platform Where
Target Resides

Supported Compilers Unknown
Can Tool be used Remotely? No
Finds or Checks for: (Tool
Category)

Fault Injection

Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in
Code

N/A

Ability to Discover Debug Code N/A
Ability to Discover Unused
Code

N/A

Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base
Updates by Tool Provider

Unknown

Ability of Testers to Modify
Existing Rule Bases

Unknown

Ability of Testers to Add New
Rule Bases

Unknown

Ability to provide suggestions
for mitigating vulnerabilities
(Remediation). If able, is it
Active or Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Research

Licensing
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience
level to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-48

Product MicroGOLD's WithClass
Description A feature-rich UML modeling tool. This product allows the user to

draw UML diagrams, generate code, and reverse engineer popular OO
languages, including C++. Java, Delphi , VB, IDL, Perl, PHP, C#, and
VB.Net. WithClass draws all UML type 1.x diagrams. VBA can be
used to create add-ins to extend the functionality of the tool

URL http://www.microgold.com/version3/products.html
Supported Languages C, C++, Java, Delphi, VB, IDL, Perl, PHP, C#, VB.net, UML
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool
Category)

Risk Analysis

Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in
Code

N/A

Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

N/A

Ability of Testers to Modify
Existing Rule Bases

N/A

Ability of Testers to Add New Rule
Bases

N/A

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active
or Passive?

N/A

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience
level to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-49

Product Microsoft fxCop
Description Performs static analysis for Microsoft .NET programs that compile to CIL
URL http://msdn.microsoft.com/en-us/library/bb429476(vs.80).aspx
Supported Languages C#
Supported Platforms Where
Tool Runs

Windows

Supported Platform Where
Target Resides

Supported Compilers MSVS
Can Tool be used Remotely? No
Finds or Checks for: (Tool
Category)

Source Code Analyzer

Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in
Code

No

Ability to Discover Debug Code No
Ability to Discover Unused
Code

No

Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base
Updates by Tool Provider

None

Ability of Testers to Modify
Existing Rule Bases

No

Ability of Testers to Add New
Rule Bases

No

Ability to provide suggestions
for mitigating vulnerabilities
(Remediation). If able, is it
Active or Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free standalone version and integrated in some Microsoft Visual Studio
editions

Licensing
Vendor Technical Support
Vendor Services / Professional
services support

Required training or experience
level to operate

Vendor provided (or 3rd party
provided) training available

Comments

Software Security Assessment Tools Review

 Appendix A-50

Product Microsoft PREfix and PREfast
Description Identifies known and potential security vulnerabilities
URL https://research.microsoft.com/pubs/69125/icse05exp.pdf
Supported Languages C
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where
Target Resides

Supported Compilers MSVS
Can Tool be used Remotely? No
Finds or Checks for: (Tool
Category)

Source Code Analyzer

Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Ability to Identify Comments in
Code

No

Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates
by Tool Provider

None

Ability of Testers to Modify
Existing Rule Bases

No

Ability of Testers to Add New
Rule Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active
or Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Integrated in some Microsoft Visual Studio editions

Licensing
Vendor Technical Support
Vendor Services / Professional
services support

Required training or experience
level to operate

Vendor provided (or 3rd party
provided) training available

Comments

Software Security Assessment Tools Review

 Appendix A-51

Product M Squared Technologies Resource Standard Metrics (RSM)
Description Scans for 50 readability or portability problems or questionable

constructs, e.g. different number of "new" and "delete" key words or
an assignment operator (=) in a conditional (if).

URL http://msquaredtechnologies.com/m2rsm
Supported Languages C, C++, C#, Java
Supported Platforms Where Tool
Runs

Linux, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers MS .NET, Eclipse, Jbuilder, Sun JDK
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-52

Product ObjectWeb ASM
Description Performs Java bytecode manipulation and analysis framework. This

tool can be used to modify existing Java classes or to dynamically
generate classes directly in binary form. The framework includes
common transformations and analysis algorithms to enable easy
assembly of custom-defined complex transformations and to custom-
generate code analysis tools. This tool is being used by several
research projects interested in safety or security analysis of Java
bytecode.

URL http://asm.objectweb.org/
Supported Languages Java
Supported Platforms Where Tool
Runs

Java

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Bytecode analysis
Lifecycle Position(s) Testing, Acquisition
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing Custom
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-53

Product OPTIMA Business Information Technology GmbH OPTIMA
Bytecode Scanner

Description This tool is used in OPTIMA’s code review services. The tool
performs pattern and data flow analyses, and is designed to detect the
maximum number of security problems even at the risk of generating
more false positives. For example, the tool can be modified to
perform a validation that “untaints” an object. OPTIMA has used
this tool to analyze cryptography and other security-specific
functional implementations. The tool is scalable for large projects
(large code bases) and has been used by OPTIMA on a number of
such code reviews. The tool is not fully automated. OPTIMA relies
on expert human analysis assisted by the tool.

URL http://www.optimabit.com/en/optima/home.html
Supported Languages Java
Supported Platforms Where Tool
Runs

Java

Supported Platform Where Target
Resides

Supported Compilers
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Bytecode analysis
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Unknown
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

Unknown

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial Service

Licensing
Vendor Technical Support Unknown
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Unknown

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-54

Product Ounce 4.0
Description Automatically analyzes source code through the use of a language processor,

which parses the application to create a Common Intermediate Security
Language (CISL). The CISL captures multi-dimensional information about
each call site, allowing Ounce to refine vulnerability data through three
different levels of analysis. Ounce determines vulnerabilities by tracking the
flow of data through an application, using cross-module, cross-language,
semantic and data flow analysis to understand the complex interrelationships
between individual calls, modules, data elements, and processes.

Ounce separates real vulnerabilities from potential ones, allowing security
analysts, QA teams, and developers to click instantly to confirmed
vulnerabilities for focused remediation efforts. Ounce additionally sorts results
by severity (high, medium, low) as well as by type (buffer overflow, race
condition, privilege escalation, etc.), and Ounce's Security Knowledgebase
offers suggestions to the developer for correcting the vulnerability or exception.
Ounce allows the developer to make the choice to correct or modify the code
on a case by case basis as the developer typically understands more about the
desired behavior of the application. Customers may tailor the Security
Knowledgebase to specific security and policy standards, and apply those
standards consistently across the enterprise.

Vulnerability Categories
· Buffer overflows
· Privilege escalation
· Race conditions in C and C++
· Input validation errors
· SQL injection vulnerabilities
· Cross site scripting errors
· Basic design Flaws (such as proper implementation of access control)
· Basic Policy Violations (such as is cryptography in use and is it strong
enough)

URL http://www.ouncelabs.com/solutions/ounce-source-code-analysis.asp
Supported Languages C, C++, Java, JSP, ASP.NET, VB.NET, C#, Supported IDEs, Microsoft Visual

Studio, IBM Rational Application Developer, Eclipse
Supported Platforms Where
Tool Runs

AIX, Linux, Solaris. Windows

Supported Platform Where
Target Resides

Supported Compilers MS VC, Eclipse, Sun JDK
Can Tool be used Remotely?
Finds or Checks for: (Tool
Category)

Source Code Analyzer

Lifecycle Position(s) Testing
Scalability (Ability to scan
up to 1,000,000 LOC?)

Ability to Identify
Comments in Code

Yes

Ability to Discover Debug
Code

Yes

Ability to Discover Unused
Code

Yes

Software Security Assessment Tools Review

 Appendix A-55

Tool uses CWE Definitions
of Vulnerabilities

No

Frequency of Rule Base
Updates by Tool Provider

Unknown

Ability of Testers to Modify
Existing Rule Bases

Yes

Ability of Testers to Add
New Rule Bases

Yes

Ability to provide
suggestions for mitigating
vulnerabilities
(Remediation). If able, is it
Active or Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services /
Professional services
support

No

Required training or
experience level to operate

Medium

Vendor provided (or 3rd
party provided) training
available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-56

Product Package javassist.bytecode.analysis (Javassist API)
Description The Java Programming Assistant (Javassist) tool includes an API for

performing data-flow analysis on a Java method’s bytecode, enabling the
analyst to determine the type state of the stack and local variable table at the
beginning of each instruction. This API can also be used to validate bytecode,
find dead bytecode, and identify unnecessary checkcasts.

URL http://www.csg.is.titech.ac.jp/~chiba/javassist/html/javassist/bytecode/analysis
/package-summary.html and http://www.csg.is.titech.ac.jp/~chiba/javassist/

Supported Languages Java
Supported Platforms Where
Tool Runs

N/A

Supported Platform Where
Target Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool
Category)

Bytecode analysis

Lifecycle Position(s) Testing, Acquisition
Scalability (Ability to scan up
to 1,000,000 LOC?)

Unknown

Ability to Identify Comments
in Code

N/A

Ability to Discover Debug
Code

No

Ability to Discover Unused
Code

Yes

Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base
Updates by Tool Provider

Unknown

Ability of Testers to Modify
Existing Rule Bases

Yes

Ability of Testers to Add New
Rule Bases

Yes

Ability to provide suggestions
for mitigating vulnerabilities
(Remediation). If able, is it
Active or Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing Apache
Vendor Technical Support No
Vendor Services /
Professional services support

No

Required training or
experience level to operate

High

Vendor provided (or 3rd
party provided) training
available

No

Comments

Software Security Assessment Tools Review

 Appendix A-57

Product Palamida
Description Automates scanning source code and finding intellectual property and licensing

issues. Palamida offers additional services aimed towards resolving security
defects occurring in externally developed software.

URL http://www.palamida.com
Supported Languages Java, JavaScript, C#, C, C++, Perl, Python, PHP, VB
Supported Platforms Where
Tool Runs

Linux, Windows

Supported Platform Where
Target Resides

Supported Compilers N/A
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool
Category)

Pedigree Analysis

Lifecycle Position(s) Development, Testing
Scalability (Ability to scan
up to 1,000,000 LOC?)

1,000,000 LOC

Ability to Identify
Comments in Code

No

Ability to Discover Debug
Code

No

Ability to Discover Unused
Code

No

Tool uses CWE Definitions
of Vulnerabilities

No

Frequency of Rule Base
Updates by Tool Provider

Unknown

Ability of Testers to Modify
Existing Rule Bases

No

Ability of Testers to Add
New Rule Bases

Yes

Ability to provide
suggestions for mitigating
vulnerabilities
(Remediation). If able, is it
Active or Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services /
Professional services
support

No

Required training or
experience level to operate

Medium

Vendor provided (or 3rd
party provided) training
available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-58

Product Parasoft C++Test
Description Identifies defects, poor constructs, potentially malicious code and

other elements
URL http://www.parasoft.com/jsp/products/home.jsp?product=CppTest
Supported Languages C++
Supported Platforms Where Tool
Runs

Linux, Mac OS X, Solaris, Windows

Supported Platform Where Target
Resides

Supported Compilers GCC, MSVS, MingW, Sun C++
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-59

Product Parasoft Jtest
Description Identifies defects, poor constructs, potentially malicious code and

other elements
URL http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
Supported Languages Java
Supported Platforms Where Tool
Runs

Linux, Mac OS X, Solaris, Windows

Supported Platform Where Target
Resides

Supported Compilers Sun JDK
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-60

Product Parasoft .TEST
Description Identifies defects, poor constructs, potentially malicious code and

other elements
URL http://www.parasoft.com/jsp/products/home.jsp?product=TestNet
Supported Languages C#, VB.Net, MC++
Supported Platforms Where Tool
Runs

Linux, Mac OS X, Solaris, Windows

Supported Platform Where Target
Resides

Supported Compilers MSVS
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-61

Product Peach Fuzzing Platform
Description A SmartFuzzer that is capable of performing both generation and

mutation based fuzzing.
URL http://peachfuzzer.com/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Linux, Mac OS X, Unix, Windows

Supported Platform Where Target
Resides

Linux, Mac OS X, Unix, Windows

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Fuzz Testing
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing MIT
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-62

Product PMD
Description Identifies questionable constructs, dead code, duplicate code
URL http://pmd.sourceforge.net/
Supported Languages Java
Supported Platforms Where Tool
Runs

Linux, Unix

Supported Platform Where Target
Resides

Supported Compilers Sun JDK
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing BSD
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-63

Product Praxis SPARK tool set
Description Identifies ambiguous constructs, data- and information-flow errors,

any property expressible in first-order logic (Examiner, Simplifier,
and SPADE)

URL http://www.praxis-his.com/sparkada/pdfs/SPARK_Brochure.pdf
Supported Languages SPARK (Ada subset)
Supported Platforms Where Tool
Runs

Linux, Mac OS X, Open VMS, Solaris, Windows

Supported Platform Where Target
Resides

Supported Compilers SPARK
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-64

Product Programming Research QA
Description Detects out-of-bounds array indexing
URL http://www.programmingresearch.com/QAC_MAIN.html
Supported Languages C, C++, Fortran, Java
Supported Platforms Where Tool
Runs

Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers Extensive
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Yes
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support
Vendor Services / Professional
services support

Required training or experience level
to operate

Vendor provided (or 3rd party
provided) training available

Comments

Software Security Assessment Tools Review

 Appendix A-65

Product RATS (Rough Auditing Tool for Security)
Description Identifies potential security risks
URL http://www.securesoftware.com/resources/tools.html
Supported Languages C, Perl, Python, PHP
Supported Platforms Where Tool
Runs

Linux, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-66

Product ReSharper
Description Add-on for Visual Studio which provides static code analysis for C#.
URL http://www.jetbrains.com/resharper/
Supported Languages C#
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Supported Compilers MSVS
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Active)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-67

Product Simics Hindsight
Description Reverse execution debugger by virtutech
URL http://www.virtutech.com/products/simics_hindsight.html
Supported Languages
Supported Platforms Where Tool
Runs

Eclipse plugin

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Reverse Engineering
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Unknown

Licensing Commercial
Vendor Technical Support Unknown
Vendor Services / Professional
services support

Unknown

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-68

Product Smatch
Description Simple scripts look for problems in simplified representation of code.

primarily for Linux kernel code
URL http://smatch.sourceforge.net/
Supported Languages C
Supported Platforms Where Tool
Runs

Linux

Supported Platform Where Target
Resides

Supported Compilers GCC
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-69

Product SoftCheck Inspector
Description Creates assertions for each module, tries to prove the system obeys

assertions and the absence of runtime errors. Statically determines
and documents pre- and postconditions for Java methods. Statically
checks preconditions at all call sites

URL http://www.sofcheck.com/products/inspector.html
Supported Languages Ada, Java
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Supported Compilers AdaMagic, AppletMagic
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Unknown
Vendor Services / Professional
services support

Unknown

Required training or experience level
to operate

Unknown

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-70

Product Sparx System’s Enterprise Architect
Description A comprehensive UML analysis and design tool. Enterprise

Architect provides complete traceability from requirements analysis
and design artifacts through to implementation and deployment.
Enterprise Architect is built upon the UML 2 specification. This
product can display UML profiles to extend the modeling domain
and includes model validation to ensure integrity. This tool
combines business processes, information, and work flows into one
model using extensions for BPMN and the Eriksson-Penker profile.
Supported diagrams include object, composite, package, component,
deployment, use case, communication, sequence, interaction,
activity, state, and timing

URL http://www.sparxsystems.com.au/products/ea/index.html
Supported Languages UML, C++, Java, C#, VB.net, VB, Delphi, PHP, Python,

ActionScript
Supported Platforms Where Tool
Runs

Linux, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Risk Analysis
Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

N/A

Ability of Testers to Modify Existing
Rule Bases

N/A

Ability of Testers to Add New Rule
Bases

N/A

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

N/A

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-71

Product SPIKE
Description A fuzzer that exposes APIs for quickly and efficiently developing

network fuzzer protocols
URL http://www.immunitysec.com/resources-freesoftware.shtml
Supported Languages N/A
Supported Platforms Where Tool
Runs

Linux

Supported Platform Where Target
Resides

Linux

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Fuzz Testing
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

"Regularly"

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments Extensive Knowledge of C is required

Software Security Assessment Tools Review

 Appendix A-72

Product Splint
Description Identifies security vulnerabilities and coding mistakes. Similar to

Lint.
URL http://www.splint.org/
Supported Languages C
Supported Platforms Where Tool
Runs

Linux, Solaris, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing GPL
Vendor Technical Support
Vendor Services / Professional
services support

Required training or experience level
to operate

Vendor provided (or 3rd party
provided) training available

Comments

Software Security Assessment Tools Review

 Appendix A-73

Product StackFrame, LLCTorqueWrench
Description This static Java bytecode analysis tool looks for violations of coding

standards and practices and some coding problems. This tool is
probably not relevant for the applications being reviewed for this
paper.

URL http://www.stackframe.com/TorqueWrench/
Supported Languages Java
Supported Platforms Where Tool
Runs

Java

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Bytecode analysis
Lifecycle Position(s) Testing, Acquisition
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-74

Product Sulley
Description A fuzzer development and fuzz testing framework consisting of

multiple extensible components.
URL http://code.google.com/p/sulley/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely?
Finds or Checks for: (Tool Category) Fuzz Testing
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

N/A

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing GPL
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-75

Product Sun Microsystems JFluid
Description This tool requires the instrumentation of the bytecode or object code

that will be analyzed by the tool. This tool may still be considered an
R&D application and is not yet ready for extensive use.

URL http://research.sun.com/techrep/2003/smli_tr-2003-125.pdf
Supported Languages Java
Supported Platforms Where Tool
Runs

Java

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Bytecode analysis
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

In Research

Licensing
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-76

Product Swat4j
Description A model based, goal oriented source code auditing tool
URL http://www.codeswat.com/
Supported Languages Java
Supported Platforms Where Tool
Runs

Eclipse plugin

Supported Platform Where Target
Resides

Supported Compilers Eclipse
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Development
Scalability (Ability to scan up to
1,000,000 LOC?)

1,000,000 LOC

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code Yes
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-77

Product Trusted Labs TL ADT
Description This tool is used as part of Trusted Labs' security evaluation services

(including white box (source code) static analysis). The Trusted
Labs analyst runs TL ADT to automate code reviews in connection
with C&A using TL ADT. The tool is used to challenge the Java
application bytecode (in a CAP file) against a set of security rules
defined by or for the certification authority. Implementing the rules
inside TL ADT allows the Trusted Labs analyst to examine the
source code.

URL http://www.trusted-labs.com/se_services.html
Supported Languages Java
Supported Platforms Where Tool
Runs

Java

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Bytecode analysis
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code Unknown
Ability to Discover Debug Code Unknown
Ability to Discover Unused Code Unknown
Tool uses CWE Definitions of
Vulnerabilities

Unknown

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Unknown

Ability of Testers to Add New Rule
Bases

Unknown

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Unknown

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial Service

Licensing
Vendor Technical Support Unknown
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Unknown

Vendor provided (or 3rd party
provided) training available

Unknown

Comments

Software Security Assessment Tools Review

 Appendix A-78

Product UNO
Description Identifies uninitialized variables, null-pointers, and out-of-bounds

array indexing and "allows for the specification and checking of a
broad range of user-defined properties". Aims for a very low false-
positive rate..

URL http://spinroot.com/uno/
Supported Languages C
Supported Platforms Where Tool
Runs

Linux, Unix, Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Free

Licensing Custom
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-79

Product Veracode (formerly @stake’s analyzer)
Description Veracode provides a suite of tools for static and dynamic analyses of

applications
URL http://www.veracode.com
Supported Languages N/A
Supported Platforms Where Tool
Runs

Veracode.com

Supported Platform Where Target
Resides

Veracode.com

Supported Compilers N/A
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Binary Code analysis
Lifecycle Position(s) Testing, Acquisition
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

Yes

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial Service

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Low

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-80

Product Visustin
Description An automated program for generating flow charts. Visustin can

be used to create flowcharts and UML activity diagram-style
charts from source code. Visustin accepts source code files as
input, and supports a total of 31 programming languages.
Supported languages include Ada, ASP, assembler, BASIC,
C/C++, C#, Clipper, COBOL, ColdFusion, Fortran, Java, JSP,
JavaScript, LotusScript, Pascal/Delphi, Perl, PHP, PL/SQL,
PowerScript, PureBasic, Python, QuickBASIC, REALbasic, T-
SQL, VB, VBA, VB.NET, Visual FoxPro, and XSLT. Visustin
creates a flow chart or an activity diagram using automated
layout routines. The user can also draw a flow chart manually.
The resulting flow chart can be printed, saved in multiple
bitmap and vector formats, or can be exported to external
programs (e.g., Microsoft Word, Visio, and PowerPoint).
Visustin provides several source code metrics, including
McCabe cyclomatic complexity and Decision density

URL http://www.aivosto.com/visustin.html
Supported Languages Ada, ASP, BASIC, C/C++, C#, Clipper, COBOL, ColdFusion,

Fortran, Java, J#, JSP, JavaScript, LotusScript, MASM
assembler, MSP430 assembler, NASM assembler,
Pascal/Delphi, Perl, PHP, PL/SQL, PowerScript, PureBasic,
Python, QuickBASIC, REALbasic, T-SQL, VB.NET, VBA,
Visual Basic, Visual FoxPro, XSLT

Supported Platforms Where Tool Runs Windows
Supported Platform Where Target Resides
Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Risk Analysis
Lifecycle Position(s) Design, Testing
Scalability (Ability to scan up to 1,000,000
LOC?)

N/A

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by Tool
Provider

N/A

Ability of Testers to Modify Existing Rule
Bases

N/A

Ability of Testers to Add New Rule Bases N/A
Ability to provide suggestions for
mitigating vulnerabilities (Remediation). If
able, is it Active or Passive?

N/A

Cost (Hourly/ Flat Fee) [AVAILABILITY] Commercial
Licensing
Vendor Technical Support Yes
Vendor Services / Professional services
support

No

Required training or experience level to
operate

High

Software Security Assessment Tools Review

 Appendix A-81

Vendor provided (or 3rd party provided)
training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-82

Product Viva64
Description Finds problems in porting to 64-bit architecture, e.g. out-of-bounds

indexing or arithmetic overflow. Integrates with Visual Studio.
URL www.viva64.com/
Supported Languages C++
Supported Platforms Where Tool
Runs

Windows 64-bit

Supported Platform Where Target
Resides

Supported Compilers MSVS
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

None

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

No

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-83

Product Xception
Description A binary fault injection tool that simulates an embedded processing

environment.
URL http://www.xception.org/
Supported Languages N/A
Supported Platforms Where Tool
Runs

Linux, Solaris, Windows

Supported Platform Where Target
Resides

Linux, LynxOS, Windows

Supported Compilers N/A
Can Tool be used Remotely? Yes
Finds or Checks for: (Tool Category) Fault Injection
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code N/A
Ability to Discover Debug Code N/A
Ability to Discover Unused Code N/A
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

No

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

No

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Commercial

Licensing
Vendor Technical Support Yes
Vendor Services / Professional
services support

Yes

Required training or experience level
to operate

High

Vendor provided (or 3rd party
provided) training available

Yes

Comments

Software Security Assessment Tools Review

 Appendix A-84

Product Yasca (Yet Another Source Code Analyzer)
Description A plugin-based framework for scanning arbitrary file types, that

aggregates FindBugs, PMD, Jlint, antiC, and Lint4j
URL http://www.yasca.org/
Supported Languages C, C++, Java
Supported Platforms Where Tool
Runs

Windows

Supported Platform Where Target
Resides

Supported Compilers N/A
Can Tool be used Remotely? No
Finds or Checks for: (Tool Category) Source Code Analyzer
Lifecycle Position(s) Testing
Scalability (Ability to scan up to
1,000,000 LOC?)

Unknown

Ability to Identify Comments in Code No
Ability to Discover Debug Code No
Ability to Discover Unused Code No
Tool uses CWE Definitions of
Vulnerabilities

No

Frequency of Rule Base Updates by
Tool Provider

Unknown

Ability of Testers to Modify Existing
Rule Bases

Yes

Ability of Testers to Add New Rule
Bases

Yes

Ability to provide suggestions for
mitigating vulnerabilities
(Remediation). If able, is it Active or
Passive?

Yes (Passive)

Cost (Hourly/ Flat Fee)
[AVAILABILITY]

Open Source

Licensing Various
Vendor Technical Support No
Vendor Services / Professional
services support

No

Required training or experience level
to operate

Medium

Vendor provided (or 3rd party
provided) training available

No

Comments

Software Security Assessment Tools Review

 Appendix A-85

