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ABSTRACT 
Security is becoming a more and more important concern for 
software architecture and software components. Previous 
modeling approaches provide insufficient support for an in-
depth treatment of security. This paper argues for a more 
comprehensive treatment of an important security aspect, access 
control, at the architecture level. Our approach models security 
subject, resource, privilege, safeguard, and policy of 
architectural constituents. The modeling language, Secure 
xADL, is based on our existing modular and extensible 
architecture description language. Our modeling is centered 
around software connectors that provides a suitable vehicle to 
model, capture, and enforce access control. Combined with 
security contracts of components, connectors facilitate 
describing the security characteristics of software architecture, 
generating enabling infrastructure, and monitoring run-time 
conformance. This paper presents the design of the language 
and initial results of applying this approach. This research 
contributes to deeper and more comprehensive modeling of 
architectural security, and facilitates detecting architectural 
vulnerabilities and assuring correct access control at an early 
design stage.  

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Modules and interfaces. 

General Terms 
Design, Security, Access Control, Languages, Secure xADL 

Keywords 
Software architecture, secure software connector, security, 
architectural access control 

1. INTRODUCTION 
Consider the example of spam emails. With more and more 

proliferation of such emails (arguably now there is more spam 
traffic than normal traffic), effectively handling them is 
becoming a prominent security problem. Conceptually there are 
several measures that can be taken to mitigate the issue. The 
most radical route requires changing the email protocols, which 

was invented a quarter century ago for a friendly, trustworthy, 
and benign environment. Before such new protocols can be 
developed and widely deployed, the more realistic solution lies 
in “hardening” the existing facilities. If the administrators of the 
email servers take the responsibility, they can drop mails from 
known spammers, or delay mails from unknown senders, which 
will deter spammers that do not resend their spam. Such 
administrative changes, however, might have adversary effects 
on normal email operations, since they could possibly change 
the otherwise normal latency of emails. The users could also 
adopt their own countermeasures. If their incoming mail servers 
support spam control features, the users can configure the mail 
servers and let them either drop the spasm or filter them to 
special folders. Depending on how accurate the spam filters can 
be, completely dropping the spam might not be the best choice 
since the user will not be aware of the existence of possible 
misclassifications. If the users’ email clients support spam 
filters, which is the case for almost all modern clients, then the 
users can adopt a client-only solution, relying on the client 
filters to be properly trained for filtering spam emails, and 
reviewing such emails for possible misclassifications. If the user 
adopts both a server-filtering solution and a client-filtering 
solution, then the user should be cautious about how these two 
mechanisms interoperate with each other, since the 
configuration results of one solution cannot be easily transferred 
to another solution. This spam filtering example illustrates how 
many components a modern security problem can touch and 
how challenging it might be for the different defensive 
mechanisms to cooperate and provide the desired functionalities 
securely.   

With rapidly advancing hardware technologies and 
ubiquitous use of computerized applications, modern software is 
facing challenges that it has not seen before. More and more 
software is built from existing components. These components 
may come from different sources. This complicates analysis and 
composition, even if a dominant decomposition mechanism is 
available. Additionally more and more software is running in a 
networked environment. These network connections open 
possibilities for malicious attacks that were not possible in the 
past. These situations raise new challenges on how we develop 
secure software.  

Traditional security research has been focusing on how to 
provide assurance on confidentiality, integrity, and availability. 
However, with the exception of mobile code protection 
mechanisms, the focus of past research is not how to develop 
secure software that is made of components from different 
sources. Previous research provides necessary infrastructures, 
but a higher level perspective on how to utilize them to describe 
and enforce security, especially for componentized software, 
has not received sufficient attention from research communities 
so far.  
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Take a popular web server, Microsoft Internet Information 
Server (IIS), as an example. The web server was first introduced 
in 1995. It has gone through several version changes during the 
following years, reaching Version 5.1 in 2001. Along this 
course, it was the source of several vulnerabilities, some of 
which were high profile and have caused serious damages [2]. A 
major architectural change was introduced in 2003 for its 
Version 6.0. This version is much safer than previous versions, 
due to these architectural changes [32]. No major security 
technologies were introduced with this version. Only existing 
technologies were rearchitected for better security. This 
rearchitecting effort suggests that more disciplined approaches 
to utilize existing technologies can significantly improve the 
security of a complex, componentized, and networked software 
system. 

Component-based software engineering and software 
architecture provide the necessary higher-level perspective. 
Security is an emergent property, so it is insufficient for a 
component to be secure. For the whole system to be secure, all 
relevant components must collaborate to ensure the security of 
the system. An architecture model guides the comprehensive 
development of security. Such high-level modeling enables 
designers to locate potential vulnerabilities and install 
appropriate countermeasures. It facilitates checking that security 
is not compromised by individual components and enables 
secure interactions between components. An architecture model 
also allows selecting the most secure alternatives based on 
existing components and supports continuous refinement for 
further development. 

Facing the new challenges of security for networked 
componentized software and given the base provided by 
existing software architecture research, we propose a software 
architecture description language that focuses on access control. 
The language enables a comprehensive treatment of security at 
the architecture level, striving for assurance on correct access 
control among architectural constituents. 

Section 2 of this paper surveys related work. Section 3 
outlines our approach, introducing the base architecture 
description language and the modeling extensions necessary for 
security development. Section 4 gives an example of applying 
the approach to a coalition application. Section 5 summarizes 
initial results of our research and outlines future work.  

2. RELATED WORK 
Since our work is focused on semantically rich secure 

connectors, this section first surveys existing research on 
connector-based software architectures. It also surveys security 
modeling based on other design notations, such as UML.  

2.1. Architectural Connectors 
Architecture Description Languages (ADLs) provide the 

foundation for architectural description and reasoning [18]. 
Most existing ADLs support descriptions of structural issues, 
such as components, connectors, and configurations. Several 
ADLs also support descriptions of behaviors [1, 17]. The 
description of behaviors is either centered around components, 
extending the standard “providing” and “requiring” interfaces, 

or is attached to connectors, if the language supports connectors 
as first class citizens [1]. These formalisms enable reasoning 
about behaviors, such as avoidance and detection of deadlock. 
Some early efforts have been invested on modeling and 
checking security-related behaviors, such as access control [21], 
encryption, and decryption [3]. 

Among the numerous ADLs proposed, some do not support 
connectors as first class citizens [6, 17]. Interactions between 
components are modeled through component specifications in 
these modeling formalisms. This choice is in accordance with 
component-based software engineering, where every entity is a 
component and interactions between components are captured in 
component interfaces. A component has a “provided” interface 
that lists the functionality this component provides. It also has a 
“required” interface that enumerates the functionalities it needs 
in providing its functionality. Interactions between components 
are modeled by matching a component’s “required” interface to 
other components’ “provided” interfaces.  

Embedding interaction semantics within components has 
its appeal for component-based software engineering, where 
components are the central units for assembly and deployment. 
However, such a lack of first class connectors does not give the 
important communication issue the status it deserves. This lack 
blurs and complicates component descriptions, which makes 
components less reusable in contexts that require different 
interaction paradigms [5]. It also hinders capturing design 
rationales and reusing implementations of communication 
mechanisms, which is made possible by standalone connectors 
[7]. We believe a first class connector that explicitly captures 
communication mechanisms provides a necessary design 
abstraction.  

Several efforts are focused on understanding and 
developing connectors in the context of ADLs. A taxonomy of 
connectors is proposed in [19], where connectors are classified 
by services (communication, coordination, conversion, 
facilitation) and types (procedure call, event, data access, 
linkage, stream, arbitrator, adaptor, and distributor). Techniques 
to transform an existing connector to a new connector [27] and 
to compose high-order connectors from existing connectors [16] 
are also proposed. 

However, these efforts are not completely satisfactory. 
They suffer from the fact that they are general techniques. All of 
them aim at providing general constructs and techniques to suit 
a wide array of software systems, which leave them ignoring 
specific needs that arise from different application properties. 
For example, both the connector transformation technique [27] 
and the connector composition technique [16] have been applied 
to design secure applications, but the treatment of security does 
not address the more comprehensive security requirements as 
understood by security practitioners. Those requirements have 
richer semantics. These semantics raise challenges, because the 
general techniques must handle them in a semantically 
compatible way instead of just decomposing the challenges into 
semantically neutral “assembly languages.” These semantics 
also provide opportunities, because they supply new contexts 
and information that can be leveraged. Such extra constraints 
are especially beneficial to the application of formal techniques, 
because these additional conditions could reduce the possible 
state space and lower the decidability and computational cost.  



It is our position that a deeper treatment of security in the 
connector technology is needed for a comprehensive solution to 
the important software security problem. Such a treatment 
should handle and leverage the richer semantics provided by 
specific security properties, such as various encryption, 
authentication, and authorization schemes, instead of equating 
these security features with opaque abstract functions.  

2.2. UML-based Security Modeling 
UML is a standard design modeling language. There have 

been several UML-based approaches for modeling security.  
UMLsec [11] and SecureUML [15] are two UML profiles for 
developing secure software They use standard UML extension 
mechanisms (constraints, tagged values, and stereotypes) to 
describe security properties.   

Aspect-Oriented Modeling [23] models access control as 
an aspect. The modeling technique uses template UML static 
and collaboration diagrams to describe the aspect. The template 
is instantiated when the security aspect is combined with the 
primary functional model. This process is similar to the weaving 
process of aspect-oriented programming. The work described in 
[12] uses concern diagram as a vehicle to support general 
architectural aspects. It collects relevant UML modeling 
elements into UML package diagrams. 

3. SECURE xADL 
This section details the elements of the security modeling 

approach we are taking. We first give an overview of our 
existing architectural description language, and then we outline 
the new modeling capabilities we propose to help assuring 
correct architectural access control. 

3.1. Overview of xADL 
We extend our existing Architecture Description Language 

(ADL), xADL 2.0 [4], to support new modeling concepts that 
are necessary for architectural access control. xADL is an XML-
based extensible ADL. It has a set of core features, and it 
supports modular extensions. 

The core features of xADL support modeling both the 
design-time and run-time architecture of software systems. The 
most basic concepts of architectural modeling are components 
and connectors. Components are loci of computation, and 
connectors are loci of communication. xADL adopt these two 
concepts, and extend them into design-time types and run-time 
instances. Namely, in the design time, each component or 
connector has a corresponding type, a componentType or a 
connectorType. At run-time, each component or connector is 
instantiated into one or more instances, componentInstances or 
connectorInstances. This run-time instance/design-time 
structure/design-time type relationship is very similar to the 
corresponding relationship between the run-time objects, the 
program objects, and the program class hierarchy.  

Each component type or connector type can define its 
signatures. The signatures define what components and 
connectors provide and require. The signatures become 
interfaces for individual components. Note that xADL itself 

does not define the semantics of such signatures and interfaces. 
It only provides the most basic syntactic support to designate the 
locations of such semantics.   

xADL also supports sub-architecture. A component type or 
a connector type can have an internal sub architecture that 
describes how the component type or the connector type can be 
refined and implemented, with a set of components and 
connectors that exist at a lower abstraction level. xADL allows 
specifying the mapping between the signatures of the outer type 
and the signatures of the inner types. This enables composing 
more complex components or connectors from more basic ones.  

xADL has been designed to be extensible. It provides an 
infrastructure to introduce new modeling concepts, and has been 
extended successfully to model software configuration 
management and provide a mapping facility that links 
component types and connector types to their implementations.  

3.2. Modeling Architectural Security 
xADL has provided an extensible foundation for modeling 

architectural concerns. We extend it to model software security, 
focusing on architectural access control. We adopt the same 
modular and extensible approach utilized by the base xADL 
language, starting from a set of core security concepts and 
enabling future extensions. These extensions will eventually be 
subject to the extent that is made possible by both theoretical 
expressiveness and practical applicability.  

3.2.1. Access Control 
Our approach supports multiple security models that are 

being widely used in practice. Our first efforts are directed at the 
classic access control models [13], which is the dominant 
security enforcement mechanism.  

In the classic access control model [13], a system contains 
a set of subjects that has permissions and a set of objects (also 
called resources) on which these permissions can be exercised. 
An access matrix specifies what permission a subject has on a 
particular object. The rows of the matrix correspond to the 
subjects, the columns correspond to the objects, and each cell 
lists the allowed permissions that the subject has over the object. 
The access matrix can be implemented directly, resulting in an 
authorization table. More commonly, it is implemented as an 
access control list (ACL), where the matrix is stored by column, 
and each object has one column that specifies permissions each 
subject possesses over the object. A less common 
implementation is a capability system, where the access matrix 
is stored by rows, and each subject has a row that specifies the 
permissions (capabilities) that the subject has over all objects.    

Other models, such as the more recent role-based access 
control model [26] and the trust management model [33], can be 
viewed as extensions to this basic access control model. The 
role-based model introduces the concept of roles as an 
indirection to organize the permissions assignments to subjects. 
Instead of assigning permissions directly to subjects, the 
permissions are assigned to roles. Such roles can be organized 
into hierarchies, so a more senior role can possess additional 
permissions in addition to the permissions it inherits from a 
junior role. Each subject can selectively take multiple roles 
when executing software, thus acquiring the related permissions. 



The trust management model provides a decentralized approach 
to manage subjects and delegate permissions. Since it is difficult 
to set up a centrally managed repository of subjects in a 
decentralized environment, trust management models use the 
attributes of subjects to identify them, and each local subject can 
check these attributes based on the information that is present at 
the local subject. Because the subjects are independent of each 
other, they can delegate permissions between them. Several 
efforts have been made to provide a more unified view of these 
models [25, 29]. For example, the role-based trust-management 
framework [14] views the trust management relationship as the 
containment relationship between independently defined roles. 
Such a unified view provides the theoretical foundation for our 
architectural treatment of access control models. 

3.2.2. Subject, Resource, Privilege, Safeguard, 
Policy  

Inspired by such a unified view, we introduce the following 
core concepts that are necessary to model access control at the 
architecture level: subject, principal, resource, privilege, 
safeguard, and policy. We extend the base xADL language with 
these concepts to get a new language, Secure xADL. To the best 
of our knowledge, this is the first effort to model these security 
concepts directly in an architectural description language. 

A subject is the user on whose behalf software executes. 
Subject is a key concept in security, but it is missing from 
traditional software architectures. Traditional software 
architecture generally assumes that a) all of its components and 
connectors execute under the same subject, b) this subject can 
be determined at design time, c) it will not change during 
runtime, either advertently or intentionally, and d) even if there 
is a change, it has no impact on the software architecture. As a 
result, there is no modeling facility to capture allowed subjects 
of architectural components and connectors. Also, the allowed 
subjects cannot be checked against actual subjects at execution 
time to enforce security conformance. We extend the basic 
component and connector constructs with the subject for which 
they perform, thus enabling architectural design and analysis 
based on different security subjects defined by software 
architects. 

A subject can take multiple principals. Essentially, 
principals encapsulate the credentials a subject possess to 
acquire permissions. In the classic access control model, the 
principal is synonymous with subject, directly designating the 
identity of the subject. In the role-based access control model, a 
principal can be a role that the subject takes. And since a subject 
can assume multiple roles, it can possess several principals. In 
the trust management model, a principal can be the public key 
credentials that a subject possesses. Principals provide 
indirection and abstraction necessary for more advanced access 
control models. 

A resource is an entity whose access should be protected. 
For example, a read-only file should not be modified, the 
password database can only be changed by administrators, and a 
privileged port can only be opened by the root user. 
Traditionally such resources are passive, and they are accessed 
by active software components operating for different subjects. 
In a software architecture model, resources can also be active. 
That is, the software components and connectors themselves are 

resources whose access should be protected. Such an active 
view is lacking in traditional architectural modeling. We feel 
that explicitly enabling this view can give architects more 
analysis and design powers to improve assurance.  

Permissions describes a possible operation on an object. 
Another important security feature that is missing from 
traditional ADLs is privilege, which describe what permissions 
a component possess depending on the executing subjects. 
Current modeling approaches take a maximum privilege route, 
where a component’s interfaces list all privileges that a 
component possibly needs. This is a source for privilege 
escalation vulnerabilities, where a less privileged component is 
given more privileges than what it should be properly granted. A 
more disciplined modeling of privileges is thus needed to avoid 
such vulnerabilities. We model two types of privileges, 
corresponding to the two types of resources. The first type 
handles passive resources, such as which subject has read/write 
access to which files. This has been extensively studied in 
traditional resource access control literatures. The second type 
handles active resources. These privileges include 
architecturally important privileges, such as instantiation and 
destruction of architectural constituents, connection of 
components with connectors, execution, and reading and writing 
of architecturally critical information. Little attention has been 
paid to these privileges, and the limited treatment neglects the 
creation and destruction of  software components and 
connectors [31].  

A corresponding notion is safeguard, which are 
permissions that are required to access the interfaces of the 
protected components and connectors. A safeguard attached to a 
component or a connector specifies what privileges other 
components and connectors should possess before they can 
access the protected component or connector.  

A policy ties all above mentioned concepts together. It 
specifies what privileges a subject should have to access 
resources protected by safeguards. It is the foundation for 
making access control decisions. There have been numerous 
studies on security policies [8, 20, 30]. Since our focus is on a 
more practical and extensible modeling of software security at 
the architectural level, our priorities in modeling policy are not 
theoretical foundations, expressive power, or computational 
complexity. Instead, we focus on the applicability of such policy 
modeling.  

Towards this goal, we feel the eXtensible Access Control 
Markup Language (XACML) [22] can serve as the basis for our 
architectural security policy modeling. The language is based on 
XML, which makes it a natural fit for our own XML-based 
ADL. The language is extensible. Currently it has a core that 
specifies the classic access control model, and a profile for role-
based access control. A profile for trust management is also in 
development. This modular approach makes the language 
evolvable, just like our own xADL modular approach. The 
extensibility allows us to adopt it without loss of future 
expressiveness. Finally, the language has been equipped with a 
formal semantics [9]. While this semantics is an add-on artifact 
of the language, it does illustrate the possibility to analyze the 
language more formally, and opens possibilities for applying 
relevant theoretical results about expressiveness, safety, and 
computational complexity to the language. 



3.2.3. Contexts of Architectural Access Control 
In traditional access control, context has been used to 

designate factors involved in decision making that are not part 
of the subject-operation-object tuple. The most prominent 
example is time, which has been extensively used to express 
temporal access control constraints [10].  

Likewise, from an architectural modeling viewpoint, when 
components and connectors are making security decisions, the 
decisions might be based on entities other than the decision 
maker and the protected resource. We use context to designate 
those relationships involved in architectural access control. 
More specifically, the context can include 1) the nearby 
components and connectors of the component and the 
connector, 2) the explicitly modeled sub-architecture that 
contains the component and the connector, 3) the type of the 
component and the connector, and 4) the global architecture. 
Modeling the security context makes the architectural security 
implications more explicit, and any architectural changes that 
impact security become more apparent.  

Such context should be integrated in the policy modeling. 
XACML provides the concept of policy combination, which 
combines several policies into an integrated policy set. Different 
policy combination algorithms, such as permit-override and 
deny-override, are provided as part of the standard, and we 
extend them with structure-override and type-override, which 
gives the structure and the type final authority on granting 
permissions. The XACML framework, combined with our 
explicit modeling of architectural context, supplies necessary 
flexibility in modeling architecture security.  

3.2.4. Components: supply security contract 
A security contract specifies permissions an architectural 

constituent possesses to access other constituents and the 
permissions other constituents should possess to access the 
constituent. A contract is expressed through the privileges and 
safeguards of an architectural constituent.  

For component types, the above modeling constructs are 
modeled as extensions to the base xADL types. The extended 
security modeling constructs describe the subject the component 
type acts for, the principals this component type can take, and 
the privileges the component type possesses.  

The base xADL component type supplies interface 
signatures, which describe the basic functionality of components 
of this type. These signatures comprise of the active resources 
that should be protected. Thus, each interface signature is 
augmented with safeguards that specify the necessary privileges 
an accessing component should possess before the interfaces can 
be accessed. 

3.2.5. Connectors: regulate and enforce contract 
Connectors play a key role in our approach. They regulate 

and enforce the security contract specified by components.  

Connectors can decide what subjects the connected 
components are executing for. For example, in a normal SSL 
connector, the server authenticates itself to the client, thus the 
client knows the executing subject of the server. A stronger SSL 
connector can also require client authentication, thus both the 

server component and the client component know the executing 
subjects of each other.  

Connectors also regulate whether components have 
sufficient privileges to communicate through the connectors. 
For example, a connector can use the privileges information of 
connected components to decide whether a component 
executing under a certain subject can deliver a request to the 
serving component. This regulation is subject to the policy 
specification of the connector. A detailed example is given in 
Section 4. 

Connectors also have potentials to provide secure 
interaction between insecure components. Since many 
components in component-based software engineering can only 
be used “as is” and many of them do not have corresponding 
security descriptions, a connector is a suitable place to assure 
appropriate security. A connector decides what communications 
are secure and thus allowed, what communications are 
dangerous and thus rejected, and what communications are 
potentially insecure thus require close monitoring.  

Using connectors to regulate and enforce a security 
contract and leveraging advanced connector capabilities will 
facilitate supporting multiple security models [28]. These 
advanced connector capabilities include the reflective 
architectural derivation of connectors from component 
specifications, composing connectors from existing connectors 
[24], and replacing one connector with another connector.  

3.2.6. Syntax of Secure xADL 
Figure 1 depicts the core syntax of Secure xADL. The 

xADL ConnectorType is extended to a SecureConnectorType 
that has various descriptions for subject, principals, privileges, 
and policy. The policy is written in the XACML language. 
Similar extensions are made to other xADL constructs such as 
component types, structures, and instances.  

<complexType name=”SecurityPropertyType">
  <sequence> 
    <element name="subject" 
           type="Subject"/> 
    <element name="principal" 
           type="Principals"/> 
    <element name="privilege" 
           type="Privileges"/> 
    <element ref="xacml:PolicySet"/> 
  </sequence> 
<complexType> 
<complexType name="SecureConnectorType"> 
  <complexContent> 
    <extension base="ConnectorType"> 
      <sequence> 
        <element mame="security" 
           type="SecurityPropertyType"/> 
      <sequence> 
    <extension> 
  <complexContent> 
</complexType> 
<!-- similar constructs for component, 
structure, and instance --> 

Figure 1, Secure xADL schema 



4. A CASE STUDY: COALITION 
Architectural modeling is instrumental for architects to 

design architecture and evaluate different alternatives for 
possibly competing goals. With the modeling capability 
introduced by Secure xADL and the regulation power enabled 
by secure connectors, architects are better equipped for such 
design and analysis on security.  

In this section, we illustrate the use of the secure software 
architecture description language with a coalition application. 
We present two architectures, each has its own software and 
security characteristics. We also describe how to specify related 
architectural policies.  

The coalition application allows two parties to share data 
with each other. However, these two parties do not necessarily 
fully trust each other, thus the data shared should be subjective 
to the control of each party. The software architecture is written 
in the C2 architecture style. In this style, the components send 
and receive requests and notifications at their top and bottom 
interfaces, and the connectors forward messages (requests and 
notifications) between their top interfaces and bottom interfaces. 
The two parties participating in this application are US and 
France.  

4.1. The Original Architecture 

 

Figure 2, Original Coalition 

Figure 2 illustrates the original coalition architecture, using 
our Archipelago architecture editor [4]. In this architecture, US 
and France each has its own process. US is on the left side, and 
France is on the right.  The squares are components. The regular 
rectangles are connectors. The US Radar Filter Connector sends 
all notifications downward. The US to US Filter Component 
forwards all such notifications to the US Filter and Command & 
Control Connector. However, US does not want France to 
receive all the notifications. Thus it employs a US to French 
Filter Component to filter out sensitive messages, and send 
those safe messages through US Distributed Fred Connector, 

which connects to the French Local Fred Connector to deliver 
those safe messages. (A Fred connector broadcast messages to 
all Fred connectors in the same connectors group.) The France 
side essentially has the same architecture, using a French to US 
Filter Component to filter out sensitive messages and send out 
safe messages.  

The advantage of this architecture is that it maintains a 
clear trust boundary between US and France. Since only the US 
to French Filter and the French to US Filter come across trust 
boundaries, they should be the focus of further security 
inspection. This architecture does have several shortcomings. 
First, it is rather complex, This architecture uses 4 Fred 
connectors (US Local, US Distributed, French Local, and 
French Distirbuted) and 2 components (US to French Filter, 
French to US Filter) to implement secure data routing such that 
sensitive data only goes to appropriate receivers. Second, it 
lacks conceptual integrity. It essentially uses filter components 
to perform data routing, which is a job more suitable for 
connectors. Third, it lacks reusability, since each filter 
component has its own internal logic, and they must be 
implemented separately.  

4.2. An Alternative Architecture with a Secure 
Connector 

 

Figure 3, Coalition with a Secure Connector 

An alternative architecture uses two secure connectors, a 
US to France Connector and a France to US Connector. Both 
are based on the same connector type. The US to France Secure 
Connector connects to both the US Filter and Command & 
Control Connector and the French Filter and Command & 
Control Connector. When it receives data from the US Radar 
Filter Connector, it always route it to the US Filter and 
Command & Control Connector. And if it detects that it is also 
connected to the French Filter and Command & Control 
Connector, and the data is releasable to the French side, then it 
also routes messages to the French Filter and Command & 
Control Connector. The France to US Secure Connector adopts 
the same logic. This architecture simplifies the complexity and 



promotes understanding and reuse. Only two secure connectors 
are used. These connectors perform a single task of secure 
message routing, and they can be used in other cases by 
adopting a different policy. A shortcoming of this architecture is 
that the secure connectors can see all traffic, thus they are 
obvious targets for penetration, and their breach leads to secret 
leak. An architect should balance all such tradeoffs.  

4.3. The Architectural Policies 
Our approach bases the architectural access control 

decisions on security policies of architectural constituents. 
Different architectural constituents can execute different 
policies. For example, an individual constituent can execute its 
own local policy, while the architecture might adopt a global 
policy. There are also different types of policies about 
instantiating, connecting, and messaging to assure proper 
architectural access control.  

<connector id="UStoFranceConnector"> 
 <security type="SecurityPropertyType"> 
  <subject>US</subject> 
   <Policy RuleCombiningAlgId= 
             "permit-overrides"> 
    <Rule Effect="Permit"> 
     <Target> 
      <Subject> 
       <AttributeValue> 
        USToFranceConnector 
        <SubjectAttributeDesignator  
         AttributeId="subject-id"/> 
      <Resource> 
        <AttributeValue>RouteMessage 
        <ResourceAttributeDesignator 
         AttributeId="resource-id"/> 
      <Action> 
        <AttributeValue>RouteMessage 
        <ActionAttributeDesignator  
         AttributeId="action-id"/> 
     <Condition  
       FunctionId="string-equal"> 
      <AttributeValue>Aircraft Carrier 
      <Apply> 
       <AttributeSelector 
        RequestContextPath =  
         "//context:ResourceContent/ 
         security:routeMessage/ 
         messages:namedProperty 
         [messages:name='type']/ 
         messages:value/text()"/> 
      </Apply> 
     <Rule RuleId="DenyEverythingElse"  
       Effect="Deny"/> 

Figure 4, Message Routing Policy 

Figure 4 specifies part of the local message routing policy 
of the US to France Secure connector. The policy is written in 
Secure xADL, which adopts XACML as its policy sub-
language. (The XML syntax is greatly abbreviated, and 
indentation is used to signify the markup structure.) The 
connector executes as the US subject, because it is executing in 
the US side of the coalition application. The policy has two 
rules. The last rule denies every request, and the first rule 
permitss one request. With the permit-overrides rule combining 

algorithm, this policy essentially allows the explicitly permitted 
operation and denies all other operations. Such a secure-by-
default policy follows the best security practice.  

The rule applies when a US subject (the subject for which 
the connector acts) requests a RouteMessage action on a 
RouteMessage resource. The resource is of active resource, 
which is the capability of routing messages from one interface 
of a connector to another. The condition of the rule uses the 
XPath language to specify a content-based routing policy. It 
permits routing a message whose “type” value is “Aircraft 
carrier”. What is not shown in Figure 4 is the destination of the 
message, which only applies to messages directed to France.  

5. CONCLUSION 
Component-based software operating in a modern 

networked environment presents new challenges that have not 
been fully addressed by traditional security research. Recent 
advancement on software architecture shed light on high-level 
structure and communication issues, but has paid insufficient 
attention to security.  

We argue that architectural access control is necessary to 
advance existing knowledge and meet the new challenges. We 
extend component specifications with core security concepts: 
subject, principal, resource, privilege, safeguard, and policy. 
Component compositions are handled by connectors, which 
regulate the desired access control property. We propose a 
secure architecture description language, based on our xADL 
language. This language can describe the security properties of 
software architecture, specify intended access control policy, 
and facilitate security design and analysis at the architecture 
level. We illustrate our approach through an application sharing 
data among coalition forces, demonstrating how architectural 
access control can be described and enforced.  

The contributions of this research lie in that 1) we address 
the security problem from an architectural viewpoint. Our use of 
an architecture model can guide the design and analysis of 
secure software systems and help security assurance from an 
early development stage; 2) we provide a secure software 
architecture description language for describing architectural 
access control, arguably the most important aspect of security; 
3) the language enables specifying security contracts of 
components and connectors, laying the foundations for secure 
composition and operation. 

This research is still on-going work. Our future work 
includes 1) exploring the formal semantics of the language and 
developing an algorithm that can check whether an architecture 
meets the access control policies specified in various 
architectural constituents; 2) developing a set of tools (visual 
editing and implementation generation) to support developing 
with the architectural security modeling; 3) implementing the 
necessary run-time support for executing and monitoring the 
security policies. These development activities will extend our 
existing development environment, ArchStudio [4].   
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