
A Secure Software Architecture Description Language
Jie Ren, Richard N. Taylor

Department of Informatics
University of California, Irvine

Irvine, CA 92697-3425
1-949-8242776

{jie, taylor }@ics.uci.edu

ABSTRACT
Security is becoming a more and more important concern for
software architecture and software components. Previous
modeling approaches provide insufficient support for an in-
depth treatment of security. This paper argues for a more
comprehensive treatment of an important security aspect, access
control, at the architecture level. Our approach models security
subject, resource, privilege, safeguard, and policy of
architectural constituents. The modeling language, Secure
xADL, is based on our existing modular and extensible
architecture description language. Our modeling is centered
around software connectors that provides a suitable vehicle to
model, capture, and enforce access control. Combined with
security contracts of components, connectors facilitate
describing the security characteristics of software architecture,
generating enabling infrastructure, and monitoring run-time
conformance. This paper presents the design of the language
and initial results of applying this approach. This research
contributes to deeper and more comprehensive modeling of
architectural security, and facilitates detecting architectural
vulnerabilities and assuring correct access control at an early
design stage.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces.

General Terms
Design, Security, Access Control, Languages, Secure xADL

Keywords
Software architecture, secure software connector, security,
architectural access control

1. INTRODUCTION
Consider the example of spam emails. With more and more

proliferation of such emails (arguably now there is more spam
traffic than normal traffic), effectively handling them is
becoming a prominent security problem. Conceptually there are
several measures that can be taken to mitigate the issue. The
most radical route requires changing the email protocols, which

was invented a quarter century ago for a friendly, trustworthy,
and benign environment. Before such new protocols can be
developed and widely deployed, the more realistic solution lies
in “hardening” the existing facilities. If the administrators of the
email servers take the responsibility, they can drop mails from
known spammers, or delay mails from unknown senders, which
will deter spammers that do not resend their spam. Such
administrative changes, however, might have adversary effects
on normal email operations, since they could possibly change
the otherwise normal latency of emails. The users could also
adopt their own countermeasures. If their incoming mail servers
support spam control features, the users can configure the mail
servers and let them either drop the spasm or filter them to
special folders. Depending on how accurate the spam filters can
be, completely dropping the spam might not be the best choice
since the user will not be aware of the existence of possible
misclassifications. If the users’ email clients support spam
filters, which is the case for almost all modern clients, then the
users can adopt a client-only solution, relying on the client
filters to be properly trained for filtering spam emails, and
reviewing such emails for possible misclassifications. If the user
adopts both a server-filtering solution and a client-filtering
solution, then the user should be cautious about how these two
mechanisms interoperate with each other, since the
configuration results of one solution cannot be easily transferred
to another solution. This spam filtering example illustrates how
many components a modern security problem can touch and
how challenging it might be for the different defensive
mechanisms to cooperate and provide the desired functionalities
securely.

With rapidly advancing hardware technologies and
ubiquitous use of computerized applications, modern software is
facing challenges that it has not seen before. More and more
software is built from existing components. These components
may come from different sources. This complicates analysis and
composition, even if a dominant decomposition mechanism is
available. Additionally more and more software is running in a
networked environment. These network connections open
possibilities for malicious attacks that were not possible in the
past. These situations raise new challenges on how we develop
secure software.

Traditional security research has been focusing on how to
provide assurance on confidentiality, integrity, and availability.
However, with the exception of mobile code protection
mechanisms, the focus of past research is not how to develop
secure software that is made of components from different
sources. Previous research provides necessary infrastructures,
but a higher level perspective on how to utilize them to describe
and enforce security, especially for componentized software,
has not received sufficient attention from research communities
so far.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright 2005 ACM 1-11111-111-1/05/05…$5.00.

Take a popular web server, Microsoft Internet Information
Server (IIS), as an example. The web server was first introduced
in 1995. It has gone through several version changes during the
following years, reaching Version 5.1 in 2001. Along this
course, it was the source of several vulnerabilities, some of
which were high profile and have caused serious damages [2]. A
major architectural change was introduced in 2003 for its
Version 6.0. This version is much safer than previous versions,
due to these architectural changes [32]. No major security
technologies were introduced with this version. Only existing
technologies were rearchitected for better security. This
rearchitecting effort suggests that more disciplined approaches
to utilize existing technologies can significantly improve the
security of a complex, componentized, and networked software
system.

Component-based software engineering and software
architecture provide the necessary higher-level perspective.
Security is an emergent property, so it is insufficient for a
component to be secure. For the whole system to be secure, all
relevant components must collaborate to ensure the security of
the system. An architecture model guides the comprehensive
development of security. Such high-level modeling enables
designers to locate potential vulnerabilities and install
appropriate countermeasures. It facilitates checking that security
is not compromised by individual components and enables
secure interactions between components. An architecture model
also allows selecting the most secure alternatives based on
existing components and supports continuous refinement for
further development.

Facing the new challenges of security for networked
componentized software and given the base provided by
existing software architecture research, we propose a software
architecture description language that focuses on access control.
The language enables a comprehensive treatment of security at
the architecture level, striving for assurance on correct access
control among architectural constituents.

Section 2 of this paper surveys related work. Section 3
outlines our approach, introducing the base architecture
description language and the modeling extensions necessary for
security development. Section 4 gives an example of applying
the approach to a coalition application. Section 5 summarizes
initial results of our research and outlines future work.

2. RELATED WORK
Since our work is focused on semantically rich secure

connectors, this section first surveys existing research on
connector-based software architectures. It also surveys security
modeling based on other design notations, such as UML.

2.1. Architectural Connectors
Architecture Description Languages (ADLs) provide the

foundation for architectural description and reasoning [18].
Most existing ADLs support descriptions of structural issues,
such as components, connectors, and configurations. Several
ADLs also support descriptions of behaviors [1, 17]. The
description of behaviors is either centered around components,
extending the standard “providing” and “requiring” interfaces,

or is attached to connectors, if the language supports connectors
as first class citizens [1]. These formalisms enable reasoning
about behaviors, such as avoidance and detection of deadlock.
Some early efforts have been invested on modeling and
checking security-related behaviors, such as access control [21],
encryption, and decryption [3].

Among the numerous ADLs proposed, some do not support
connectors as first class citizens [6, 17]. Interactions between
components are modeled through component specifications in
these modeling formalisms. This choice is in accordance with
component-based software engineering, where every entity is a
component and interactions between components are captured in
component interfaces. A component has a “provided” interface
that lists the functionality this component provides. It also has a
“required” interface that enumerates the functionalities it needs
in providing its functionality. Interactions between components
are modeled by matching a component’s “required” interface to
other components’ “provided” interfaces.

Embedding interaction semantics within components has
its appeal for component-based software engineering, where
components are the central units for assembly and deployment.
However, such a lack of first class connectors does not give the
important communication issue the status it deserves. This lack
blurs and complicates component descriptions, which makes
components less reusable in contexts that require different
interaction paradigms [5]. It also hinders capturing design
rationales and reusing implementations of communication
mechanisms, which is made possible by standalone connectors
[7]. We believe a first class connector that explicitly captures
communication mechanisms provides a necessary design
abstraction.

Several efforts are focused on understanding and
developing connectors in the context of ADLs. A taxonomy of
connectors is proposed in [19], where connectors are classified
by services (communication, coordination, conversion,
facilitation) and types (procedure call, event, data access,
linkage, stream, arbitrator, adaptor, and distributor). Techniques
to transform an existing connector to a new connector [27] and
to compose high-order connectors from existing connectors [16]
are also proposed.

However, these efforts are not completely satisfactory.
They suffer from the fact that they are general techniques. All of
them aim at providing general constructs and techniques to suit
a wide array of software systems, which leave them ignoring
specific needs that arise from different application properties.
For example, both the connector transformation technique [27]
and the connector composition technique [16] have been applied
to design secure applications, but the treatment of security does
not address the more comprehensive security requirements as
understood by security practitioners. Those requirements have
richer semantics. These semantics raise challenges, because the
general techniques must handle them in a semantically
compatible way instead of just decomposing the challenges into
semantically neutral “assembly languages.” These semantics
also provide opportunities, because they supply new contexts
and information that can be leveraged. Such extra constraints
are especially beneficial to the application of formal techniques,
because these additional conditions could reduce the possible
state space and lower the decidability and computational cost.

It is our position that a deeper treatment of security in the
connector technology is needed for a comprehensive solution to
the important software security problem. Such a treatment
should handle and leverage the richer semantics provided by
specific security properties, such as various encryption,
authentication, and authorization schemes, instead of equating
these security features with opaque abstract functions.

2.2. UML-based Security Modeling
UML is a standard design modeling language. There have

been several UML-based approaches for modeling security.
UMLsec [11] and SecureUML [15] are two UML profiles for
developing secure software They use standard UML extension
mechanisms (constraints, tagged values, and stereotypes) to
describe security properties.

Aspect-Oriented Modeling [23] models access control as
an aspect. The modeling technique uses template UML static
and collaboration diagrams to describe the aspect. The template
is instantiated when the security aspect is combined with the
primary functional model. This process is similar to the weaving
process of aspect-oriented programming. The work described in
[12] uses concern diagram as a vehicle to support general
architectural aspects. It collects relevant UML modeling
elements into UML package diagrams.

3. SECURE xADL
This section details the elements of the security modeling

approach we are taking. We first give an overview of our
existing architectural description language, and then we outline
the new modeling capabilities we propose to help assuring
correct architectural access control.

3.1. Overview of xADL
We extend our existing Architecture Description Language

(ADL), xADL 2.0 [4], to support new modeling concepts that
are necessary for architectural access control. xADL is an XML-
based extensible ADL. It has a set of core features, and it
supports modular extensions.

The core features of xADL support modeling both the
design-time and run-time architecture of software systems. The
most basic concepts of architectural modeling are components
and connectors. Components are loci of computation, and
connectors are loci of communication. xADL adopt these two
concepts, and extend them into design-time types and run-time
instances. Namely, in the design time, each component or
connector has a corresponding type, a componentType or a
connectorType. At run-time, each component or connector is
instantiated into one or more instances, componentInstances or
connectorInstances. This run-time instance/design-time
structure/design-time type relationship is very similar to the
corresponding relationship between the run-time objects, the
program objects, and the program class hierarchy.

Each component type or connector type can define its
signatures. The signatures define what components and
connectors provide and require. The signatures become
interfaces for individual components. Note that xADL itself

does not define the semantics of such signatures and interfaces.
It only provides the most basic syntactic support to designate the
locations of such semantics.

xADL also supports sub-architecture. A component type or
a connector type can have an internal sub architecture that
describes how the component type or the connector type can be
refined and implemented, with a set of components and
connectors that exist at a lower abstraction level. xADL allows
specifying the mapping between the signatures of the outer type
and the signatures of the inner types. This enables composing
more complex components or connectors from more basic ones.

xADL has been designed to be extensible. It provides an
infrastructure to introduce new modeling concepts, and has been
extended successfully to model software configuration
management and provide a mapping facility that links
component types and connector types to their implementations.

3.2. Modeling Architectural Security
xADL has provided an extensible foundation for modeling

architectural concerns. We extend it to model software security,
focusing on architectural access control. We adopt the same
modular and extensible approach utilized by the base xADL
language, starting from a set of core security concepts and
enabling future extensions. These extensions will eventually be
subject to the extent that is made possible by both theoretical
expressiveness and practical applicability.

3.2.1. Access Control
Our approach supports multiple security models that are

being widely used in practice. Our first efforts are directed at the
classic access control models [13], which is the dominant
security enforcement mechanism.

In the classic access control model [13], a system contains
a set of subjects that has permissions and a set of objects (also
called resources) on which these permissions can be exercised.
An access matrix specifies what permission a subject has on a
particular object. The rows of the matrix correspond to the
subjects, the columns correspond to the objects, and each cell
lists the allowed permissions that the subject has over the object.
The access matrix can be implemented directly, resulting in an
authorization table. More commonly, it is implemented as an
access control list (ACL), where the matrix is stored by column,
and each object has one column that specifies permissions each
subject possesses over the object. A less common
implementation is a capability system, where the access matrix
is stored by rows, and each subject has a row that specifies the
permissions (capabilities) that the subject has over all objects.

Other models, such as the more recent role-based access
control model [26] and the trust management model [33], can be
viewed as extensions to this basic access control model. The
role-based model introduces the concept of roles as an
indirection to organize the permissions assignments to subjects.
Instead of assigning permissions directly to subjects, the
permissions are assigned to roles. Such roles can be organized
into hierarchies, so a more senior role can possess additional
permissions in addition to the permissions it inherits from a
junior role. Each subject can selectively take multiple roles
when executing software, thus acquiring the related permissions.

The trust management model provides a decentralized approach
to manage subjects and delegate permissions. Since it is difficult
to set up a centrally managed repository of subjects in a
decentralized environment, trust management models use the
attributes of subjects to identify them, and each local subject can
check these attributes based on the information that is present at
the local subject. Because the subjects are independent of each
other, they can delegate permissions between them. Several
efforts have been made to provide a more unified view of these
models [25, 29]. For example, the role-based trust-management
framework [14] views the trust management relationship as the
containment relationship between independently defined roles.
Such a unified view provides the theoretical foundation for our
architectural treatment of access control models.

3.2.2. Subject, Resource, Privilege, Safeguard,
Policy

Inspired by such a unified view, we introduce the following
core concepts that are necessary to model access control at the
architecture level: subject, principal, resource, privilege,
safeguard, and policy. We extend the base xADL language with
these concepts to get a new language, Secure xADL. To the best
of our knowledge, this is the first effort to model these security
concepts directly in an architectural description language.

A subject is the user on whose behalf software executes.
Subject is a key concept in security, but it is missing from
traditional software architectures. Traditional software
architecture generally assumes that a) all of its components and
connectors execute under the same subject, b) this subject can
be determined at design time, c) it will not change during
runtime, either advertently or intentionally, and d) even if there
is a change, it has no impact on the software architecture. As a
result, there is no modeling facility to capture allowed subjects
of architectural components and connectors. Also, the allowed
subjects cannot be checked against actual subjects at execution
time to enforce security conformance. We extend the basic
component and connector constructs with the subject for which
they perform, thus enabling architectural design and analysis
based on different security subjects defined by software
architects.

A subject can take multiple principals. Essentially,
principals encapsulate the credentials a subject possess to
acquire permissions. In the classic access control model, the
principal is synonymous with subject, directly designating the
identity of the subject. In the role-based access control model, a
principal can be a role that the subject takes. And since a subject
can assume multiple roles, it can possess several principals. In
the trust management model, a principal can be the public key
credentials that a subject possesses. Principals provide
indirection and abstraction necessary for more advanced access
control models.

A resource is an entity whose access should be protected.
For example, a read-only file should not be modified, the
password database can only be changed by administrators, and a
privileged port can only be opened by the root user.
Traditionally such resources are passive, and they are accessed
by active software components operating for different subjects.
In a software architecture model, resources can also be active.
That is, the software components and connectors themselves are

resources whose access should be protected. Such an active
view is lacking in traditional architectural modeling. We feel
that explicitly enabling this view can give architects more
analysis and design powers to improve assurance.

Permissions describes a possible operation on an object.
Another important security feature that is missing from
traditional ADLs is privilege, which describe what permissions
a component possess depending on the executing subjects.
Current modeling approaches take a maximum privilege route,
where a component’s interfaces list all privileges that a
component possibly needs. This is a source for privilege
escalation vulnerabilities, where a less privileged component is
given more privileges than what it should be properly granted. A
more disciplined modeling of privileges is thus needed to avoid
such vulnerabilities. We model two types of privileges,
corresponding to the two types of resources. The first type
handles passive resources, such as which subject has read/write
access to which files. This has been extensively studied in
traditional resource access control literatures. The second type
handles active resources. These privileges include
architecturally important privileges, such as instantiation and
destruction of architectural constituents, connection of
components with connectors, execution, and reading and writing
of architecturally critical information. Little attention has been
paid to these privileges, and the limited treatment neglects the
creation and destruction of software components and
connectors [31].

A corresponding notion is safeguard, which are
permissions that are required to access the interfaces of the
protected components and connectors. A safeguard attached to a
component or a connector specifies what privileges other
components and connectors should possess before they can
access the protected component or connector.

A policy ties all above mentioned concepts together. It
specifies what privileges a subject should have to access
resources protected by safeguards. It is the foundation for
making access control decisions. There have been numerous
studies on security policies [8, 20, 30]. Since our focus is on a
more practical and extensible modeling of software security at
the architectural level, our priorities in modeling policy are not
theoretical foundations, expressive power, or computational
complexity. Instead, we focus on the applicability of such policy
modeling.

Towards this goal, we feel the eXtensible Access Control
Markup Language (XACML) [22] can serve as the basis for our
architectural security policy modeling. The language is based on
XML, which makes it a natural fit for our own XML-based
ADL. The language is extensible. Currently it has a core that
specifies the classic access control model, and a profile for role-
based access control. A profile for trust management is also in
development. This modular approach makes the language
evolvable, just like our own xADL modular approach. The
extensibility allows us to adopt it without loss of future
expressiveness. Finally, the language has been equipped with a
formal semantics [9]. While this semantics is an add-on artifact
of the language, it does illustrate the possibility to analyze the
language more formally, and opens possibilities for applying
relevant theoretical results about expressiveness, safety, and
computational complexity to the language.

3.2.3. Contexts of Architectural Access Control
In traditional access control, context has been used to

designate factors involved in decision making that are not part
of the subject-operation-object tuple. The most prominent
example is time, which has been extensively used to express
temporal access control constraints [10].

Likewise, from an architectural modeling viewpoint, when
components and connectors are making security decisions, the
decisions might be based on entities other than the decision
maker and the protected resource. We use context to designate
those relationships involved in architectural access control.
More specifically, the context can include 1) the nearby
components and connectors of the component and the
connector, 2) the explicitly modeled sub-architecture that
contains the component and the connector, 3) the type of the
component and the connector, and 4) the global architecture.
Modeling the security context makes the architectural security
implications more explicit, and any architectural changes that
impact security become more apparent.

Such context should be integrated in the policy modeling.
XACML provides the concept of policy combination, which
combines several policies into an integrated policy set. Different
policy combination algorithms, such as permit-override and
deny-override, are provided as part of the standard, and we
extend them with structure-override and type-override, which
gives the structure and the type final authority on granting
permissions. The XACML framework, combined with our
explicit modeling of architectural context, supplies necessary
flexibility in modeling architecture security.

3.2.4. Components: supply security contract
A security contract specifies permissions an architectural

constituent possesses to access other constituents and the
permissions other constituents should possess to access the
constituent. A contract is expressed through the privileges and
safeguards of an architectural constituent.

For component types, the above modeling constructs are
modeled as extensions to the base xADL types. The extended
security modeling constructs describe the subject the component
type acts for, the principals this component type can take, and
the privileges the component type possesses.

The base xADL component type supplies interface
signatures, which describe the basic functionality of components
of this type. These signatures comprise of the active resources
that should be protected. Thus, each interface signature is
augmented with safeguards that specify the necessary privileges
an accessing component should possess before the interfaces can
be accessed.

3.2.5. Connectors: regulate and enforce contract
Connectors play a key role in our approach. They regulate

and enforce the security contract specified by components.

Connectors can decide what subjects the connected
components are executing for. For example, in a normal SSL
connector, the server authenticates itself to the client, thus the
client knows the executing subject of the server. A stronger SSL
connector can also require client authentication, thus both the

server component and the client component know the executing
subjects of each other.

Connectors also regulate whether components have
sufficient privileges to communicate through the connectors.
For example, a connector can use the privileges information of
connected components to decide whether a component
executing under a certain subject can deliver a request to the
serving component. This regulation is subject to the policy
specification of the connector. A detailed example is given in
Section 4.

Connectors also have potentials to provide secure
interaction between insecure components. Since many
components in component-based software engineering can only
be used “as is” and many of them do not have corresponding
security descriptions, a connector is a suitable place to assure
appropriate security. A connector decides what communications
are secure and thus allowed, what communications are
dangerous and thus rejected, and what communications are
potentially insecure thus require close monitoring.

Using connectors to regulate and enforce a security
contract and leveraging advanced connector capabilities will
facilitate supporting multiple security models [28]. These
advanced connector capabilities include the reflective
architectural derivation of connectors from component
specifications, composing connectors from existing connectors
[24], and replacing one connector with another connector.

3.2.6. Syntax of Secure xADL
Figure 1 depicts the core syntax of Secure xADL. The

xADL ConnectorType is extended to a SecureConnectorType
that has various descriptions for subject, principals, privileges,
and policy. The policy is written in the XACML language.
Similar extensions are made to other xADL constructs such as
component types, structures, and instances.

<complexType name=”SecurityPropertyType">
 <sequence>
 <element name="subject"
 type="Subject"/>
 <element name="principal"
 type="Principals"/>
 <element name="privilege"
 type="Privileges"/>
 <element ref="xacml:PolicySet"/>
 </sequence>
<complexType>
<complexType name="SecureConnectorType">
 <complexContent>
 <extension base="ConnectorType">
 <sequence>
 <element mame="security"
 type="SecurityPropertyType"/>
 <sequence>
 <extension>
 <complexContent>
</complexType>
<!-- similar constructs for component,
structure, and instance -->

Figure 1, Secure xADL schema

4. A CASE STUDY: COALITION
Architectural modeling is instrumental for architects to

design architecture and evaluate different alternatives for
possibly competing goals. With the modeling capability
introduced by Secure xADL and the regulation power enabled
by secure connectors, architects are better equipped for such
design and analysis on security.

In this section, we illustrate the use of the secure software
architecture description language with a coalition application.
We present two architectures, each has its own software and
security characteristics. We also describe how to specify related
architectural policies.

The coalition application allows two parties to share data
with each other. However, these two parties do not necessarily
fully trust each other, thus the data shared should be subjective
to the control of each party. The software architecture is written
in the C2 architecture style. In this style, the components send
and receive requests and notifications at their top and bottom
interfaces, and the connectors forward messages (requests and
notifications) between their top interfaces and bottom interfaces.
The two parties participating in this application are US and
France.

4.1. The Original Architecture

Figure 2, Original Coalition

Figure 2 illustrates the original coalition architecture, using
our Archipelago architecture editor [4]. In this architecture, US
and France each has its own process. US is on the left side, and
France is on the right. The squares are components. The regular
rectangles are connectors. The US Radar Filter Connector sends
all notifications downward. The US to US Filter Component
forwards all such notifications to the US Filter and Command &
Control Connector. However, US does not want France to
receive all the notifications. Thus it employs a US to French
Filter Component to filter out sensitive messages, and send
those safe messages through US Distributed Fred Connector,

which connects to the French Local Fred Connector to deliver
those safe messages. (A Fred connector broadcast messages to
all Fred connectors in the same connectors group.) The France
side essentially has the same architecture, using a French to US
Filter Component to filter out sensitive messages and send out
safe messages.

The advantage of this architecture is that it maintains a
clear trust boundary between US and France. Since only the US
to French Filter and the French to US Filter come across trust
boundaries, they should be the focus of further security
inspection. This architecture does have several shortcomings.
First, it is rather complex, This architecture uses 4 Fred
connectors (US Local, US Distributed, French Local, and
French Distirbuted) and 2 components (US to French Filter,
French to US Filter) to implement secure data routing such that
sensitive data only goes to appropriate receivers. Second, it
lacks conceptual integrity. It essentially uses filter components
to perform data routing, which is a job more suitable for
connectors. Third, it lacks reusability, since each filter
component has its own internal logic, and they must be
implemented separately.

4.2. An Alternative Architecture with a Secure
Connector

Figure 3, Coalition with a Secure Connector

An alternative architecture uses two secure connectors, a
US to France Connector and a France to US Connector. Both
are based on the same connector type. The US to France Secure
Connector connects to both the US Filter and Command &
Control Connector and the French Filter and Command &
Control Connector. When it receives data from the US Radar
Filter Connector, it always route it to the US Filter and
Command & Control Connector. And if it detects that it is also
connected to the French Filter and Command & Control
Connector, and the data is releasable to the French side, then it
also routes messages to the French Filter and Command &
Control Connector. The France to US Secure Connector adopts
the same logic. This architecture simplifies the complexity and

promotes understanding and reuse. Only two secure connectors
are used. These connectors perform a single task of secure
message routing, and they can be used in other cases by
adopting a different policy. A shortcoming of this architecture is
that the secure connectors can see all traffic, thus they are
obvious targets for penetration, and their breach leads to secret
leak. An architect should balance all such tradeoffs.

4.3. The Architectural Policies
Our approach bases the architectural access control

decisions on security policies of architectural constituents.
Different architectural constituents can execute different
policies. For example, an individual constituent can execute its
own local policy, while the architecture might adopt a global
policy. There are also different types of policies about
instantiating, connecting, and messaging to assure proper
architectural access control.

<connector id="UStoFranceConnector">
 <security type="SecurityPropertyType">
 <subject>US</subject>
 <Policy RuleCombiningAlgId=
 "permit-overrides">
 <Rule Effect="Permit">
 <Target>
 <Subject>
 <AttributeValue>
 USToFranceConnector
 <SubjectAttributeDesignator
 AttributeId="subject-id"/>
 <Resource>
 <AttributeValue>RouteMessage
 <ResourceAttributeDesignator
 AttributeId="resource-id"/>
 <Action>
 <AttributeValue>RouteMessage
 <ActionAttributeDesignator
 AttributeId="action-id"/>
 <Condition
 FunctionId="string-equal">
 <AttributeValue>Aircraft Carrier
 <Apply>
 <AttributeSelector
 RequestContextPath =
 "//context:ResourceContent/
 security:routeMessage/
 messages:namedProperty
 [messages:name='type']/
 messages:value/text()"/>
 </Apply>
 <Rule RuleId="DenyEverythingElse"
 Effect="Deny"/>

Figure 4, Message Routing Policy

Figure 4 specifies part of the local message routing policy
of the US to France Secure connector. The policy is written in
Secure xADL, which adopts XACML as its policy sub-
language. (The XML syntax is greatly abbreviated, and
indentation is used to signify the markup structure.) The
connector executes as the US subject, because it is executing in
the US side of the coalition application. The policy has two
rules. The last rule denies every request, and the first rule
permitss one request. With the permit-overrides rule combining

algorithm, this policy essentially allows the explicitly permitted
operation and denies all other operations. Such a secure-by-
default policy follows the best security practice.

The rule applies when a US subject (the subject for which
the connector acts) requests a RouteMessage action on a
RouteMessage resource. The resource is of active resource,
which is the capability of routing messages from one interface
of a connector to another. The condition of the rule uses the
XPath language to specify a content-based routing policy. It
permits routing a message whose “type” value is “Aircraft
carrier”. What is not shown in Figure 4 is the destination of the
message, which only applies to messages directed to France.

5. CONCLUSION
Component-based software operating in a modern

networked environment presents new challenges that have not
been fully addressed by traditional security research. Recent
advancement on software architecture shed light on high-level
structure and communication issues, but has paid insufficient
attention to security.

We argue that architectural access control is necessary to
advance existing knowledge and meet the new challenges. We
extend component specifications with core security concepts:
subject, principal, resource, privilege, safeguard, and policy.
Component compositions are handled by connectors, which
regulate the desired access control property. We propose a
secure architecture description language, based on our xADL
language. This language can describe the security properties of
software architecture, specify intended access control policy,
and facilitate security design and analysis at the architecture
level. We illustrate our approach through an application sharing
data among coalition forces, demonstrating how architectural
access control can be described and enforced.

The contributions of this research lie in that 1) we address
the security problem from an architectural viewpoint. Our use of
an architecture model can guide the design and analysis of
secure software systems and help security assurance from an
early development stage; 2) we provide a secure software
architecture description language for describing architectural
access control, arguably the most important aspect of security;
3) the language enables specifying security contracts of
components and connectors, laying the foundations for secure
composition and operation.

This research is still on-going work. Our future work
includes 1) exploring the formal semantics of the language and
developing an algorithm that can check whether an architecture
meets the access control policies specified in various
architectural constituents; 2) developing a set of tools (visual
editing and implementation generation) to support developing
with the architectural security modeling; 3) implementing the
necessary run-time support for executing and monitoring the
security policies. These development activities will extend our
existing development environment, ArchStudio [4].

6. ACKNOWLEDGEMENTS
This work was supported in part by the National Science

Foundation award 0205724.

7. REFERENCES
[1] Allen, R. and Garlan, D., A Formal Basis for
Architectural Connection. ACM Transactions on Software
Engineering and Methodology., 1997. 6(3): p. 213-249.
[2] Berghel, H., The Code Red Worm. Communications of
the ACM, 2001. 44(12): p. 15-19.
[3] Bidan, C. and Issarny, V. Security Benefits from
Software Architecture. in Proceedings of 2nd International
Conference on Coordination Languages and Models, p.64-80,
1997.
[4] Dashofy, E.M., Andr, Hoek, v.d., and Taylor, R.N., A
Comprehensive Approach for the Development of Modular
Software Architecture Description Languages. ACM
Transactions on Software Engineering and Methodology, 2005.
14(2): p. 199--245.
[5] DeLine, R., Avoiding Packaging Mismatch with
Flexible Packaging. IEEE Transactions on Software
Engineering, 2001. 27(2): p. 124-143.
[6] Deng, Y., Wang, J., Tsai, J.J.P., and Beznosov, K., An
Approach for Modeling and Analysis of Security System
Architectures. IEEE Transactions on Knowledge and Data
Engineering, 2003. 15(5): p. 1099-1119.
[7] Ducasse, S. and Richner, T. Executable Connectors:
Towards Reusable Design Elements. in Proceedings of 6th
European conference held jointly with the 5th ACM SIGSOFT
international symposium on Foundations of software
engineering, p.483-499, 1997.
[8] Halpern, J.Y. and Weissman, V. Using First-Order
Logic to Reason About Policies. in Proceedings of 16th IEEE
Computer Security Foundations Workshop, p.187-201, 2003.
[9] Humenn, P., The Formal Semantics of Xacml. 2003,
Syracuse University.
[10] Joshi, J.B.D., Bertino, E., and Ghafoor, A., An
Analysis of Expressiveness and Design Issues for the
Generalized Temporal Role-Based Access Control Model.
Dependable and Secure Computing, IEEE Transactions on,
2005. 2(2): p. 157-175.
[11] Jürjens, J. Umlsec: Extending Uml for Secure Systems
Development. in Proceedings of UML '02: Proceedings of the
5th International Conference on The Unified Modeling
Language, p.412--425, 2002.
[12] Katara, M. and Katz, S. Architectural Views of
Aspects. in Proceedings of Proceedings of the 2nd international
conference on Aspect-oriented software development, p.1-10,
2003.
[13] Lampson, B.W., A Note on the Confinement Problem.
Communications of the ACM, 1973. 16(10): p. 613-15.
[14] Li, N. and Mitchell, J.C. Rt: A Role-Based Trust-
Managemant Framework. in Proceedings of DARPA
Information Survivability Conference & Exposition III, p.201-
212, 2003.
[15] Lodderstedt, T., Basin, D.A., J, and Doser, r.
Secureuml: A Uml-Based Modeling Language for Model-Driven
Security. in Proceedings of UML '02: Proceedings of the 5th
International Conference on The Unified Modeling Language,
p.426--441, 2002.
[16] Lopes, A., Wermelinger, M., and Fiadeiro, J.L.,
Higher-Order Architectural Connectors. ACM Transactions on
Software Engineering and Methodology, 2003. 12(1): p. 64-104.

[17] Magee, J. and Kramer, J. Dynamic Structure in
Software Architectures. in Proceedings of Proceedings of the 4th
ACM SIGSOFT symposium on Foundations of software
engineering, p.3-14, 1996.
[18] Medvidovic, N. and Taylor, R.N., A Classification
and Comparison Framework for Software Architecture
Description Languages. Software Engineering, IEEE
Transactions on, 2000. 26(1): p. 70-93.
[19] Mehta, N.R., Medvidovic, N., and Phadke, S. Towards
a Taxonomy of Software Connectors. in Proceedings of 22nd
International Conference on Software Engineering, p.178-187,
2000.
[20] Minsky, N.H. and Ungureanu, V. Unified Support for
Heterogeneous Security Policies in Distributed Systems. in
Proceedings of 7th USENIX Security Symposium, p.131-42,
1998.
[21] Moriconi, M., Qian, X., Riemenschneider, R.A., and
Gong, L. Secure Software Architectures. in Proceedings of 1997
IEEE Symposium on Security and Privacy, p.84-93, 1997.
[22] OASIS, Extensible Access Control Markup Language
(Xacml), http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf
[23] Ray, I., France, R., Li, N., and Georg, G., An Aspect-
Based Approach to Modeling Access Control Concerns.
Information and Software Technology, 2004. 46(9): p. 575-587.
[24] Ren, J., Taylor, R., Dourish, P., and Redmiles, D.
Towards an Architectural Treatment of Software Security: A
Connector-Centric Approach. in Proceedings of Workshop on
Software Engineering for Secure Systems, 2005.
[25] Sandhu, R. and Munawer, Q. How to Do
Discretionary Access Control Using Roles. in Proceedings of
3rd ACM Workshop on Role-based Access Control, p.47-54,
1998.
[26] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and
Youman, C.E., Role-Based Access Control Models. Computer,
1996. 29(2): p. 38-47.
[27] Spitznagel, B. and Garlan, D. A Compositional
Approach for Constructing Connectors. in Proceedings of 2nd
Working IEEE/IFIP Conference on Software Architecture,
p.148-157, 2001.
[28] Tisato, F., Savigni, A., Cazzola, W., and Sosio, A.
Architectural Reflection. Realising Software Architectures Via
Reflective Activities. in Proceedings of 2nd International
Workshop on Engineering Distributed Objects, p.102-15, 2000.
[29] Tripunitara, M.V. and Li, N. Comparing the
Expressive Power of Access Control Models. in Proceedings of
Proceedings of the 11th ACM conference on Computer and
communications security, p.62-71, 2004.
[30] Wijesekera, D. and Jajodia, S., A Propositional Policy
Algebra for Access Control. ACM Transactions on Information
and System Security, 2003. 6(2): p. 286-325.
[31] Win, B.D., Engineering Application-Level Security
through Aspect-Oriented Software Development. 2004.
[32] Wing, J.M., A Call to Action: Look Beyond the
Horizon. Security & Privacy Magazine, IEEE, 2003. 1(6): p. 62-
67.
[33] Winslett, M. An Introduction to Trust Negotiation. in
Proceedings of 1st International Conference on Trust
Management, p.275-283, 2003.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

	INTRODUCTION
	RELATED WORK
	Architectural Connectors
	UML-based Security Modeling

	SECURE xADL
	Overview of xADL
	Modeling Architectural Security
	Access Control
	Subject, Resource, Privilege, Safeguard, Policy
	Contexts of Architectural Access Control
	Components: supply security contract
	Connectors: regulate and enforce contract
	Syntax of Secure xADL

	A CASE STUDY: COALITION
	The Original Architecture
	An Alternative Architecture with a Secure Connector
	The Architectural Policies

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

