
Metrics That Matter:
Quantifying Software Security Risk

Brian Chess
Fortify Software

2300 Geng Road, Suite 102
Palo Alto, CA 94303

1-650-213-5600

brian@fortifysoftware.com

Abstract
Any endeavor worth pursuing is worth measuring, but software
security presents new measurement challenges: there are no
established formulas or procedures for quantifying the security
risk present in a program. This document details the importance
of measuring software security and discusses the less-than-
satisfying approaches that are prevalent today. A new set of
metrics is then proposed for ensuring an accurate and
comprehensive view of software projects ranging from legacy
systems to newly deployed web applications. Many of the new
metrics make use of source code analysis results.

1. Introduction: Why measure?
What would happen if your company cut its security budget in
half? What if the budget was doubled instead? In most
companies today, no one knows the answers to these questions.
Security remains more art than science, and nothing is more
indicative of this fact than the inability of security practitioners
to quantify the effects of their work.

Software security is no exception: nearly every major business-
critical application deployed today contains vulnerabilities—
buffer overflow and cross-site scripting are commonplace, and
so are many other, less well-known, types of vulnerabilities.
These problems can be exploited to cause considerable harm by
external hackers or malicious insiders. Security teams know that
these errors exist, but are, for the most part, ill equipped to
quantify the problem. Any proposed investment in improving
this situation is bound to bring up questions such as:

• Are the applications more secure today than
yesterday—or less secure?

• Does security training really make a difference?
• How will we know when our systems are secure?

This paper examines the current state of practice for measuring
software security. It then suggests two new approaches to the
problem: quantifying the secure development lifecycle, and
focusing on the root cause of many vulnerabilities using metrics
built with source code analysis results.

2. The State of Practice: Three Flawed

Approaches to Measuring Security
1. Build then Break: Penetration Testing as a Metric
The de facto method that most organizations use for measuring
software security today can be summarized as “build then
break.” Developers create applications with only a minimum of
attention paid to security, and the applications are deployed. The
operations team then attempts to compensate for the problematic
software with perimeter security. When the team takes
inventory of all of the ways that data moves through and around
the perimeter defenses, it becomes clear that the perimeter
security is insufficient. At this point, the operations team may
bring in penetration testers to find the problems before hackers
or malicious insiders do. The penetration testers generally have
a fixed schedule for performing their work, and their goal is to
find a small number of serious problems to justify their
consulting fee. Once these problems are resolved, everyone is
happy. But there’s no reason to believe that the penetration test
revealed all of the problems with the application. In fact,
subsequent audits usually prove that it did not. There’s also
very little feedback to the developers, so penetration tests often
find the same types of problems over and over again.

2. Measure Software Security as Part of Software Quality
A naive approach to software security calls for treating security
as just another aspect of software quality. The problem is that
traditional quality assurance is aimed at verifying a set of
features against a specification. Software security, however,
requires much more than well-implemented security features.
The reality is that a typical process for achieving good results
with respect to traditional quality issues does not guarantee good
results with respect to security issues. In other words, you have
to focus specifically on security in order to improve it. Good
security is not a byproduct of good quality.

Further complicating this approach, the majority of Quality
Assurance (QA) departments lack the requisite security
expertise to carry out adequate security tests. Finally, as Figure
1 illustrates, any approach to quality that is based on the
behavior of regular users will leave many untested opportunities
for attackers.

Figure 1: A quality-oriented approach to security leaves many opportunities for attackers.

3. The Feel-Good Metric: If It Hasn’t been Hacked Yet, It’s
Probably Okay

Because security so often goes unquantified, the bottom-line
measure for security is often gut-feel. Human nature and the
nature of security are in conflict on this point: people and
organizations tend to gain comfort with the status quo over time,
but security may actually degrade as time passes. New types of
attacks and new applications for old types of attacks can harm a
program’s security—even as an organization becomes more and
more complacent because security “hasn’t been a problem yet!”

A similar fallacy holds that the security of a program can be
correlated to the breadth of its adoption. Interestingly, this line
of reasoning always seems to work in favor of the status quo.
For applications with a small user base, people assume that
attackers will not take an interest. For applications with a large
user base, people assume that any security issues will be flushed
out of the system shortly after release. In truth, security is no
more related to breadth of adoption than it is to longevity. The
BugTraq mailing list (where news of many new vulnerabilities
debuts) is filled with entries about small and obscure
applications. Furthermore, the long history of buffer overflows
in widely adopted programs as varied as SendMail and Internet
Explorer shows that neither age nor a large install base prevents
attackers from finding new exploits.

3. A Positive Trailing Indicator
There are encouraging signs that the longstanding neglect,
ignorance, or apathy shown to software security is beginning to
change. Microsoft has adopted the Trustworthy Computing
Security Development Lifecycle (SDL) process for the creating
software that needs to withstand malicious attack [4]. The
process adds a series of security-focused activities and
deliverables to each of the phases of Microsoft’s software
development process. These activities and deliverables include
risk analysis during software design, the application of source
code analysis tools during implementation, and code reviews
and security testing during a focused “security push.” Before
software subject to the SDL can be released, it must undergo a
final security review by a team independent from its
development group. When compared to software that has not
been subject to the SDL, software that has undergone the SDL
has experienced a significantly reduced rate of external

discovery of security vulnerabilities. Figure 2 shows the number
of security bulletins for Windows 2000 in its first 12 months
after release versus the number of security bulletins for
Windows Server 2003 in its first 12 months after release. The
number of issues has been reduced by more than 50%, even as
the size and complexity of the operating system has increased.

62

24

0

10

20

30

40

50

60

70

Windows 2000 Windows Server 2003

Figure 2. A measurable improvement in Microsoft OS
security: the number of security bulletins issued in the first
12 months following two major OS releases.

However, Figure 2 is an example of a trailing indicator. It only
demonstrates that security has been improved after the OS has
been released. It provides strong evidence that the SDL has a
beneficial effect on the security of the resulting operating
system, but if Microsoft only releases an operating system every
five or six years, it requires five or six years to know whether
there is a measurable improvement in software security from the
previous release. That is far too slow. Security must be
measured on an ongoing basis throughout the software
development lifecycle, and for that we need leading indicators
for software security.

N
um

be
r o

f S
ec

ur
ity

 B
ul

le
tin

s

Traditional quality
assurance models user
behavior as a random
walk over the feature set.

Attackers will
move to the
corner cases.

4. Software security metrics you can use
now

Having explained the measurement problem and how not to
solve it, we now turn to two practical methods for measuring
software security.

1. Quantify the Secure Development Lifecycle
Software security must be addressed as part of the software
development lifecycle [1,2]. There are practical steps that
development groups can take during each phase of the lifecycle
in order to improve the security of the resulting system. These
steps include:

• Evaluate the current state of software security and
create a plan for dealing with it throughout the
development life cycle.

• Specify the threats, identify both business and
technical risks, and plan countermeasures.

• Review the code for security vulnerabilities
introduced during development.

• Test code for vulnerabilities based on the threats and
risks identified earlier.

• Build a gate to prevent applications with
vulnerabilities from going into production. Require
signoff from key development and security personnel.

• Measure the success of the security plan so that the
process can be continually improved. Yes, your
measurement efforts should be measured!

• Educate stakeholders about security so they can
implement the security plan effectively.

Each of these steps can be measured. For example, if your
security plan includes educating developers, you can measure
what percentage of developers have received software security
training. 1

Of course, not all organizations will adopt all steps to the same
degree. By tracking and measuring the adoption of secure
development practices, you will have the data to draw
correlations within your organization. For example, you will
likely find that the up-front specification of threats and risks
correlates strongly to a faster and easier security signoff prior to
release.

2. Use Source Code Analysis to Measure Security
All software organizations, regardless of programming
language, development methodology, or product category, have
one thing in common: they all have source code. The source
code is a very direct embodiment of the system, and many
vulnerabilities manifest themselves in the source [3]. It follows
that the source code is the one key artifact to measure as part of
assessing software security. Of course, source code review is
useful for more than just metrics. The following sections
discuss some source code analysis fundamentals and then look
at how source code analysis results can provide the raw material
for powerful software security metrics.

1 It seems reasonable to assume that Microsoft also produces metrics
related to their SDL, but they have published very little on the topic.

5. Source Code Analysis
Source code analyzers process code looking for known types of
security defects. In an abstract sense, a source code analyzer
searches the code for patterns that represent potential
vulnerabilities and presents the code that matches these patterns
to a human auditor for review. The three key attributes for good
source code analysis are accuracy, precision, and robustness.

A source code analyzer should accurately identify vulnerabilities
that are of concern to the type of program being analyzed. For
example, web applications are typically at risk for SQL
injection, cross-site scripting, and access control problems,
among others. Further, the analysis results should indicate the
likely importance of each result.

The source code analyzer must also be precise, pointing to a
manageable number of issues without generating a large number
of false positives. Furthermore, if a program is analyzed today,
and subsequently re-analyzed tomorrow, it is likely that only a
small amount of code will have changed. The source code
analyzer must be able to give the same name to the same issue
today and tomorrow, allowing for the ability to track when
issues appear and disappear. This capability is critical for
extracting meaningful metrics from source code analysis results.

Finally, the source code analyzer must be robust: it must be able
to deal with large, complex bodies of code. Of course, not every
issue the source code analyzer identifies will be a true
vulnerability. Therefore, part of being robust is allowing human
auditors to evaluate and prioritize potential issues. A preferred
scenario has a human auditor classify the output from the
analyzer into 1) severe vulnerabilities that must be corrected
immediately, 2) bad practices, and 3) issues that are not relevant
to the organization. An even better application of source code
analysis allows developers to analyze their own code as they
write it, making source code analysis part of the daily process of
program development.

6. Security Metrics Based on Source Code

Analysis
The best metrics that can be derived from source code analysis
results are, to a certain extent, dependent upon the way in which
an organization applies source code analysis. We will consider
the following scenarios:

1. Developers use the source code analyzer on a regular
basis as part of their development work. They are
proactively coding with security in mind.

2. A software security team uses the source code
analyzer as part of a periodic code review process. A
large body of code has been created with little regard
for security. The organization plans to remediate this
code over time.

Of course, the first scenario is preferable, but most organizations
cannot achieve that overnight. For the near future, it is likely
that both scenarios will co-exist in most organizations.

Metrics for Secure Coding
After a development team adopts a source code analysis tool and
tunes it for the security policies that are important for their
project, they can use source code analysis results in aggregate

for trending and project comparison purposes. Figure 3 shows a
comparison between two projects, one red and one blue, where
the source code analysis results have been grouped by severity.
The graph suggests a plan of action: eliminate the critical issues
for the red project, then move on to the high-importance issues
for the blue project.

It can also be useful to look at the types of issues found broken
down by category. Figure 4 shows the results for the same two
projects in this fashion. Here, the differences between the red
and the blue project become pronounced: the blue project has a
significant number of buffer overflow issues. A strategy for
preventing buffer overflow is in order.

Figure 3: Source code analysis results broken down by severity for two projects.

Figure 4: Source code analysis issues organized by vulnerability type.

Source code analysis results can also be used to examine
vulnerability trends. Teams that are focused on security will
decrease the number of source code analysis findings over time
as they increasingly use the automation to mitigate security
problems. A sharp increase in the number of issues found is
likely to indicate a new security concern. Figure 5 shows the
number of issues found during each nightly build. Trend

indicators show how the project is evolving. In this case, the
spike in the number of issues found is a result of the
development group taking over a module from a group that has
not been focused on security. This code represents a risk that
will need mitigation throughout the remaining portion of the
development life cycle.

Figure 5: Source code analysis results over time.

Vulnerability Dwell

60

25

4

2

1 100

Low

Medium

High

Critical

S
e
v
e
ri

ty

Days

Figure 6: Vulnerability dwell as a function of priority.

Metrics for Legacy codebases
For large codebases where security has not historically been a
priority, the security challenge has a different flavor. In most
cases, it is not possible to instantaneously remodel the entire
codebase for security purposes. Instead, an audit team needs to
prioritize the problems and work to remove the worst ones. Of
course, new development will continue even as the triage takes
place.

Metrics for legacy codebases leverage the ability of the source
code analyzer to give the same issue the same name across
different builds. By following the same issue over time and
associating it with the feedback provided by a human auditor,

the source code analyzer can provide insight into the evolution
of the project.

For example, the source code analysis results can reveal the way
a development team responds to security vulnerabilities. After
an auditor identifies a vulnerability, how long on average does it
take for the developers to make a fix? This metric is named
“Vulnerability Dwell.” Figure 6 shows a project where the
developers fix critical vulnerabilities within two days and take
progressively longer to address less severe problems.

Because a legacy codebase often continues to evolve, auditors
will need to return to the same projects again and again over
time. But how often? Every month? Every six months? The

rate of auditing should keep pace with the rate of development,
or rather the rate at which potential security issues are
introduced into the code. By tracking individual issues over
time, the output from a source code analysis tool can show an
audit team how many unaudited issues a project contains.

Figure 7 presents a typical graph. At the point the project is first
audited, audit coverage goes to 100%. Then, as the code
evolves over time, the audit coverage decays until the project is
audited again.

Audit Coverage

0%

50%

100%

1/1/00 1/8/00 1/15/00

Figure 7: Audit coverage over time.

Audit History

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27

total

reviewed

validated

Figure 8: Audit history.

Another view of this same data gives a more comprehensive
view of the project. An audit history shows the total number of
issues, number of issues reviewed, and number of vulnerabilities
identified as a function of time. This view takes into account
not just the work of the auditors, but the effect the developers
have on the project, too. Figure 8 shows an audit (shown in red)
conducted over several product builds. At the same time the
audit is taking place, the number of issues in the codebase
(shown in blue) is growing. As the auditors work, they report
vulnerabilities (shown in yellow). When the blue and red meet,
the auditors have looked at all of the issues. Development work
is not yet complete though, and soon the project once again
contains unaudited issues. As the developers respond to some of
the vulnerabilities identified by the audit team, the number of
issues begins to decrease and some of the identified
vulnerabilities are fixed. At the far right side of the graph, the
uptick in the red indicates that another audit is beginning.

7. Conclusion
While software security has been a universally recognized risk,
there has been an absence of established procedures for
quantifying the security risk present software. Only by
measuring can organizations conquer the software security
problem.

The first step in this journey is the adoption of security-focused
activities and deliverables throughout each phase of the software
development process. These activities and deliverables include
risk analysis during software design, code review during
development, and security-oriented testing that targets the risks
that are specific to the application at hand. By tracking and
measuring the security activities adopted into the development
process, an organization can begin to quantify their software
security risk.

The data produced by source code analysis tools can be
particularly useful for this purpose, giving insight into whether
or not code review is taking place and whether or not the results
of the review are being acted upon.

8. REFERENCES
[1] G. McGraw. Software Security: Building Security In.

Addison-Wesley, to appear in 2006.
[2] G. McGraw et al. Building Security In. IEEE Security and

Privacy Magazine, 2004-2005.
[3] C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S. Choi.

A Taxonomy of Computer Program Security Flaws, with
Examples. ACM Computing Surveys, Vol. 26, No. 3,
September 1994, pp. 211-254.

[4] S. Lipner and M. Howard. The Trustworthy Computing
Security Development Lifecycle. In Proceedings of the
20th Annual Computer Security Applications Conference
(ACSAC'04), 2004, pp. 2-13.

	Metrics That Matter:
	Quantifying Software Security Risk
	Abstract
	Introduction: Why measure?
	The State of Practice: Three Flawed Approaches to Measuring

	Figure 1: A quality-oriented approach to security leaves man
	A Positive Trailing Indicator

	Figure 2. A measurable improvement in Microsoft OS security:
	Software security metrics you can use now
	Source Code Analysis
	Security Metrics Based on Source Code Analysis
	Conclusion

