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ABSTRACT 

We present a set of methods (“SSCC”, for “safe, secure C/C++”) 
to eliminate buffer overflows (including wild-pointer stores) in C 
and C++, using a mixture of compile-time, link-time, and run-
time tests, plus some design-time restrictions.  A prototype 
implementation indicates that run-time overhead is much smaller 
than previous methods. The SSCC methods do not require 
changes to existing data layouts or object-code representation. 

The SSCC methods are applicable to applications written for the 
ISO/IEC 9899:1999 (“C99”) standard [5] and the 14882:2003 
(C++) standard [6] (herein, the “Standards”), as well as most 
commercially-popular extensions to those standards, and the 
earlier ISO/IEC 9899:1990 (“C90”) standard (now essentially out-
of-print). 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
assertion checkers, class invariants, reliability;                      
D.3.4 [Programming Languages]: Processors – code generation, 
compilers, optimization;  

General Terms 
Design, Economics, Reliability, Security, Standardization, 
Languages, Verification. 

Keywords 
Static analysis, dynamic analysis, buffer overflow, reliability, 
code generation, compilers, optimization. 

1. INTRODUCTION 
Buffer overflows (in C and in C++) are the underlying cause of 
many vulnerabilities, accounting for up to 50% of vulnerabilities 
reported by CERT/CC[1]. Completely preventing these 
weaknesses without sacrificing efficiency would contribute 
positively to every software security assurance (SSA) approach 
for C and C++.  According to Robert Seacord [11], “vulnerability 

reports continue to grow at an alarming rate ... To address the 
growing number of both vulnerabilities and incidents, it is 
increasingly apparent that the problem must be attacked at the 
source by working to prevent the introduction of software 
vulnerabilities during software development and ongoing 
maintenance.” 
Ruwase and Lam summarized the situation: “A considerable 
amount of work has been performed on mitigating the buffer 
overflow problem using either static analysis or dynamic 
analysis.”[10]  However, in SSCC we attack the buffer-overflow 
problem using static analysis for issues that can be resolved at 
compile-time (and link-time), plus some amount of dynamic 
analysis using highly-optimized code sequences, for issues that 
can only be resolved at run-time.  Furthermore, certain design-
time restrictions can help eliminate buffer overflows, as described 
later in this paper. 
Modern compilers for C and C++ already perform significant  
static analysis to understand program semantics for optimizations, 
especially on vector and super-scalar hardware.  Furthermore, in 
well-written programs the array-bounds information is already 
maintained in variables defined by the programmer.   SSCC 
provides a method for the compiler to track that bounds 
information and verify (at compile-time, link-time, or run-time) 
that fetch-and-store operations are proper. 
Whenever possible, we have adopted terminology and concepts 
that would be reasonably familiar to programmers and compiler 
implementers.  C and C++ are rife with concepts which are 
intuitive to the programmer but complicated to represent in 
abstract mathematical logic — and vice-versa.  The programmer 
who understands the concepts behind SSCC will be better 
prepared to achieve the full safety/security goals of SSCC while 
minimizing run-time overhead.  (We do use the mathematical 
notation for half-open interval [Lo,Toofar) in contrast to the 
closed interval [Lo,Hi].) 
The SSCC methods generate fatal diagnostic messages in any 
case where buffer overflow cannot be definitively prevented.  
However, the SSCC methods do not impose “style rules” or 
portability considerations upon the compilation.  Any particular 
tool can enhance the basic SSCC methods. 
SSCC also applies to the production of software for embedded 
systems, but there are slightly different design criteria in that 
arena.  This paper primarily addresses the application of the 
SSCC methods to hosted systems, such as applications written for 
Linux, or Windows, or the Mac OS. 

 

 



2. BACKGROUND 
We use these definitions for some fundamental terms: 

Bound of an array – the number of elements in the array. 
Lo of an array – the address of the first element of the array. 
Hi of an array – the address of the last element of the array. 
Toofar of an array – the address of the “one-too-far” element of 
the array, the element just past the Hi element. 
Target-size (or Tsize) of an array – same as sizeof(array) 
Once a pointer is associated with an object, the same terms are 
defined for that pointer.  For an array object, the Tsize of a 
pointer into that object is the total number of bytes in the array 
that is accessed by the pointer; i.e. the bound of the array times 
the number of bytes in (or “sizeof”) each element. Furthermore, 
the same definitions are applied to pointers to non-array objects, 
consistent with the equivalence between a non-array and an array 
whose Bound is 1.  The terms Lo, Hi, and Toofar can also be 
applied to integer subscript values when the context allows. 
We use “variable” to designate named objects including sub-
objects declared with member names. We use “state of an object” 
exclusively to refer to run-time state, and “attribute of a variable” 
to designate the compile-time understanding of that state.  One 
simple example is the Nul attribute.  On the two flow-control arcs 
from “if (p!=0)”, p has the Nul attribute on the “false” outcome 
arc and the not-Nul (Nnul) attribute on the “true” outcome arc.  
Other attributes used in SSCC are as follows:  Indir (Indirectable), 
Ni (Not-indirectable), Qi (Maybe-indirectable, either Nul or 
Indirectable), Lo (at Lo limit value), Hi (at Hi limit value), Toofar 
(at Toofar limit value), Ntl (Not-too-low, greater-than-or-equal-to 
Lo), Nth (Not-too-high, less-than-Toofar), Nullt (Null-
terminated), and Unk (Unknown).  These attributes are not 
mutually-exclusive.  Besides the attributes of one variable, SSCC 
makes frequent use of relationships between variables, as follows.  

Table 1. Relationships between variables 

int n IS_BOUND_OF(p) n provides the Bound of p 

int n IS_LENGTH_OF(p) n provides Length of p (number of 
elements before  null-terminator)  

int n IS_TSIZE_OF((p,q)) n provides Tsize of p and of q 

char *p IS_HI_OF (a) p provides the Hi of a 

char *p IS_LO_OF(a) p provides the Lo of a 

char *p 
IS_TOOFAR_OF(a) 

p provides the Toofar of a 

The notation above permits representation in the opposite order, 
with the obvious meaning:  

Table 2. Relationships between variables, opposite order 

char *p BOUND_IS(n) n provides the Bound of p. 

char *p LENGTH_IS(n) n provides the Length of p 

char *p TSIZE_IS(n) n provides the Tsize of p 

char a[] LO_IS(p) p provides the Lo of a 

char a[] HI_IS(p) p provides the Hi of a 

char a[] LO_IS(p) 
TOOFAR_IS(q) 

p provides the Lo of a,  and               
q provides the Toofar of a 

Several of these attributes can be defined using other attributes; 
e.g. the Bound of an array is equal to the Toofar minus the Lo.  
(For pointers, C/C++ arithmetic divides difference by sizeof.) 
A function’s returned value is an unnamed object whose attributes 
and relationships are often important: 

Table 3. Attributes and relationships involving returned value 

int n IS_BOUND_OF(return) n provides the Bound of the 
function’s returned pointer 

int n IS_LENGTH_OF(return) n provides the Length of the 
function’s returned pointer 

int n IS_TSIZE_OF(return) n provides the Tsize of the 
function’s returned pointer 

char *p IS_HI_OF(return) p provides the Hi of the 
function’s returned pointer 

char * QI(return) f() { function f returns a Maybe-
Indirectable return value 

These tables suggest a representation suitable for notation in 
source code, but any equivalent representation will do.   
Many details of the attributes and relationships used in the SSCC 
methods will be obvious from the Standards; here we will focus 
upon some details that might not be obvious.  The attributes and 
relationships are used to express pre-conditions and post-
conditions of operators and functions.  Whereas some systems of 
static analysis require manual annotation of pre- and post-
conditions, the SSCC methods are targeted at millions of lines of 
existing code and therefore rely only on pre- and post-conditions 
inferred automatically by the compiler. To emphasize the 
distinction, we designate these pre-conditions as “Requirements” 
and these post-conditions as “Guarantees”.   
We illustrate the basic definitions with this code snippet: 
  char a[] = "xyz"; 
  char *p = a; 

The Lo of p is the address &a[0] (or equivalently, the index 0), 
the Hi of p is &a[3] (or the index 3), and the Tsize of p is 4.  
The compiler keeps track of a relationship between the pointer p 
and the array to which it points.  The relationship continues 
through any pointer arithmetic (including increment or 
decrement) operations on p, but is discontinued when an address 
of a new object is stored into p. 

3. COMPILE-TIME VERIFICATION 
For a simple example of compile-time verification, consider the 
following. 
  struct spec_fd_t {int m;/*…*/} spec_fd[3]; 
  for (i = 0; i < 3; i++) {  
    int limit = spec_fd[i].m; /*…*/ 
  } 

The Bound of spec_fd is 3, the Hi is 2, and the Toofar is 3.  
The number of iterations is less than or equal to the Bound;  since 
the subscript variable i starts at the Lo value, the subscript 
remains suitable for spec_fd throughout the loop.  The SSCC 
methods rely upon recognition by the compiler of certain common 
loop constucts such as this one. 
If a loop manipulates a pointer passed as a parameter, the bound is 
not provided by the declaration. The compiler can infer the 



bounds Requirement of a pointer parameter from a loop involving 
subscript or pointer arithmetic.  If the loop performs fetch-or-store 
up to and including the n-th element then n is the Hi; if the loop 
stops just before fetch-or-store on the n-th element then n is the 
Toofar; and similarly for a limiting address (pointer) value.  Here 
is a simple example: 
  void f(char *q, int n) { 
    p = q;  
    for (int i=0; i<n; i++) { 
      *p = ‘\n’;  
    } /* … */ 

As written, the compiler infers from this loop that &q[n] (or just 
n) is the Toofar of p (and q), because the n-th element is not 
accessed.  But if we add another line  
  *p = ‘\0’; 

after the loop-end, the compiler infers that n is the Hi.  (To be 
more precise, the Requirement is that n is “suitable” for the Hi, 
i.e., that the “real” Hi of the actual object is greater than or equal 
to the argument passed to this function.  In order to create a 
simple notation in keeping with the intuition of programmers and 
implementers, we use the same terms, like “Hi”, to define a 
“greater-than-or-equal-to” semantics for Requirements, and an 
“exactly-equal” semantics for the Guarantee provided by a 
defining declaration.) 
A similar rule infers the Nullt (null-terminated) attribute from a 
loop that searches for a null character; here is a simple example: 
  while (*p++ != ‘\0’)  
    ; 

Note that in these examples, the specified attribute is both a 
Requirement (pre-condition) and a Guarantee (post-condition).  
This is usually adequately clear from the context, but a notation 
for “Pre” and “Post” can be employed when needed.  Also note 
that the attributes and relationships stated for a returned value are 
always Guarantees and not Requirements (obviously). 
SSCC does not require whole-program analysis.  Along with each 
source file (and/or each object file, including object files in 
libraries) there is a tabulation known as the bounds-data file, 
specifying Requirements and Guarantees for each function.  For 
example, the bounds data file for memset specifies something 
like this: 
  memset(p, v, n IS_TSIZE_OF(p) ) 

Having seen this Requirement on the arguments to memset,  the 
compiler can verify that the following invocation clearly meets 
the Requirement, because the sizeof operator produces the 
required Tsize: 
  memset(&spec_fd[i], 0, sizeof(spec_fd[i])) 

Let’s change the example, to pass an integer unknown to the 
compiler: 
  memset(&spec_fd[i], 0, some_fn() ) 

The SSCC methods are unable to verify this at compile-time.  In a 
later section we describe the methods for run-time verification. 
Here we define the Requirements for the basic pointer and array 
operations in SSCC.  The notation “p[0]” will designate an array 
or pointer-into-array or pointer-to-non-array being accessed by 
any equivalent form of indirection, including “*p” and “p-
>member” and “(*p).member”.  The notation “p[i]” will 

designate an array or pointer-into-array being accessed by any 
form of indexed indirection, including “*(p+i)” and “*p++” and 
“*++p” and the corresponding forms using minus instead of plus.  
The notation “p+i” will designate any form of pointer arithmetic, 
including “p++” and “++p” and the corresponding forms using 
minus instead of plus.   

• Fetch or store indirect via p[0]   
Requires: p Indir (p is Indirectable) 

• Fetch or store indirect via p[i]   
Requires: p+i lies within [Lo,Hi],  
i.e., lies within [Lo,Toofar) 

• Calculate p+i  
Requires: p+i lies within [Lo,Toofar] 

The asymmetry between the Requirements for p[i] and p+i is 
required by the Standards (see 6.5.6 Additive operators, 
paragraphs 8 and 9, in [5]); the Toofar value is a valid result for 
pointer arithmetic, but it cannot be used for fetch or store. 

4. LINK-TIME VERIFICATION 
After compilation of all source files in the application, the SSCC 
linker verifies the compatibility of called functions with the 
calling context, and of uses of external objects with their defining 
instances, checking all Requirements against all Guarantees.   In 
C and C++, the defining instance of each array will provide 
definite bounds for the array; moreover, the bounds are constants.  
Therefore, any Requirements on bounds of external array objects 
can be verified at link-time. 
The discussion of the Requirements for the memset function 
illustrates the possibility that a bounds-data file may provide 
Requirements at the time the calling context is compiled.  
However, two C or C++ source files can each provide calls to a  
function in the other file, so no scheme of ordering of compilation 
can guarantee a simple ordering.  By requiring a complete 
traversal of the bounds-data files at link-time, we eliminate 
ordering-dependencies and verify that the bounds-data files reflect 
the latest compilation of the corresponding source files. 
SSCC specifies “type-compatible linkage for C programs”.  This 
is slightly different from an already-standardized feature of C++ 
known as “type-safe linkage”, which provides checking between 
calling functions and called functions to verify that arguments and 
parameters have (exactly) the same types. 
“Type-compatible linkage” is a less restrictive linkage rule which 
imposes only the C rules of “compatible types” having the “same 
alignment and representation”.  The difference is largely a matter 
of portability.  If int and long have the same alignment and 
representation on a particular platform, and function f takes one 
int parameter, and one object file invokes f with a long argument, 
then type-safe linkage will report a mismatch of types, but type-
compatible linkage will accept the linkage on this particular 
platform.  But on a different platform on which int and long have 
different alignment or representation, then both forms of linkage 
will complain.   
There are several reasons why type-compatible linkage is required 
for the SSCC methods.  First, standard C still permits the “old-
style” function definition and declaration, in which no type 
information is available for compile-time checking; type-
compatible linkage ensures that values are passed correctly for 



this platform.  Second, function prototypes might differ between 
the called and calling contexts, whether by “versioning” changes 
over time, or by programmer carelessness.  Third, C provides the 
“varargs” calling convention, which is discussed later. 
The use of type-compatible linkage is one of several options on an 
SSCC platform for C.  Another option is to require the exact 
match, as required by the type-safe linkage of C++ (creating a 
restrictive subset of C).  Either linkage is adequate for the 
requirements of SSCC for C. 
Note that in C++ the type-safe linkage rules are also employed to 
provide function overloading, which is not a feature of C (under 
either linkage rule). 
The type-compatible (or the type-safe) linkage might (or might 
not) be implemented using name-mangling, a scheme by which a 
sequence of types is converted by the compiler into a short 
character string.  (For a detailed example of name-mangling, see 
[13].) 
For purposes of traceability and verification, the bounds-data file 
incorporates checksums for the associated source and object files, 
to provide a definitive connection between the linked application 
and the various constituent components. 

5. RUN-TIME VERIFICATION 
We do not claim that the SSCC compile-time and link-time 
verification will find all buffer overflows.  There will be cases 
where the compiler has identified the relevant bounds data but 
cannot verify the values at compile time, requiring run-time 
verification. 
It is well known that run-time verification can be much more 
efficient than slavishly performing a test at every reference.  
Loop-limit values need to be tested only once, before starting the 
loop.  Optimizations of the code-hoisting variety can perform 
verification earlier.  Further optimizations are known; for 
example, see Gupta [4]. 
Although the general subscript or pointer test implies two bounds, 
lower and upper, in almost every case the attributes of the pointer 
or subscript indicate monotonic progress in one direction.  
Therefore in almost every case the pattern of assembler code 
introduced into the run-time code sequence is one comparison 
instruction followed by a conditional branch.  Furthermore, the 
conditional branch is almost never taken.  Most modern platforms 
provide methods either in the hardware itself or in the compiler 
software whereby the optimization choices will avoid slowdowns 
for the almost-never-taken branch. 
SSCC provides “Keep On Running” modes for embedded (or 
unattended) systems (including semantics known as “saturation”, 
“modwrap”, and “zerobound”).  For the purposes of the present 
Workshop, however, we propose that run-time bounds-check 
failures must produce either a breakpoint that causes interruption 
of the running program and an opportunity to debug interactively, 
or an immediate invocation of the standard abort() function.  
(This choice between two behaviors is called an “abort constraint 
handler”, described in more detail below.) 
We created a prototype of the SSCC methods in order to estimate 
the execution penalty for the run-time tests.  Our tools were able 
to compile, link, and execute seven of the SPEC benchmarks [12]: 
164.gzip, 176.gcc, 181.mcf, 197.parser, 256.bzip2, and 300.twolf.  
Simple static analysis identified declarations and loops that 

provided bounds, as well as fetch-or-store expressions that 
required bounds.  We instrumented the SPEC benchmark 
programs to count each execution of a fetch-or-store expression 
that was not categorized as “compile-time”. We hand-estimated 
the percentage of the counted expressions that should have been 
recognized as compile-time by a full SSCC implementation, and 
the percentage of tests which could be eliminated by the various 
optimization methods described above. The detailed raw data and 
calculated results from all the tests are provided on the SSCC 
website [9].   The average estimated run-time overhead was less 
than 2%, which is significantly better performance than results 
from other comparable technologies.  (For one comparison 
example, Ruwase and Lam [10] report that by confining their 
method only to strings, a run-time overhead less than 26% was 
achieved in most of their samples.) 
The SSCC method provides special semantics for “varargs” 
functions, i.e. functions that accept a varying number of 
arguments.  The C and C++ standards define certain functions 
which accept a varying number of arguments of heterogeneous 
types, such as printf.  The printf format string specifies 
which argument types are expected.  If at run-time the actual 
arguments do not agree with the expected types, undefined 
behavior results.  This is a real vulnerability which has been 
exploited by hackers, just as buffer overflows have been. 
Furthermore, this vulnerability can be used to create subsequent 
buffer overflows.  In an SSCC implementation we require two 
alternative forms of varargs library functions: one which provides 
no run-time checking of argument types, and one which does 
provide checking.  If the compiler can see that the format-string 
argument is a constant character string, then at compile-time the 
compiler can determine whether the actual arguments match the 
expected types.  If successful, the compiler invokes the (faster) 
alternative without run-time checking.  If the compile-time match 
fails, the compiler can issue a fatal diagnostic so the programmer 
can fix the problem. 
But in some cases it cannot be determined at compile-time 
whether a varargs function’s actual arguments match the expected 
types.  In this situation, the SSCC compiler will add an extra 
character string argument after the named arguments.  The string 
contains the type-compatible name-mangled list of the types of 
the actual arguments passed in this function call.  Then the called 
function must also be compiled by the SSCC compiler, which 
performs a little extra work in the called function as each 
argument is extracted by the va_arg macro from the header 
<stdarg.h>.  If the type argument is a scalar type which 
produces a one-byte encoding in the mangled name string (e.g. 
double, which produces the single character ‘d’ in a typical 
name-mangling), then an invocation such as  
  p = va_arg(ap, double); 

produces a translated invocation such as 
  p = _va_arg1(ap, double, ‘d’); 

The enhanced _va_arg1 macro tests that the next byte in the 
argument mangled-name string is the character ‘d’, 
incrementing the pointer after the test.  (This is typically a 
reasonably fast operation on most hardware: a test and a post-
increment.)  If the argument has a type which produces a 
multiple-byte encoding in the mangled name string (e.g. pointer-
to-int, which produces the string “Pi” in a typical name-
mangling), then an invocation such as  



  p = va_arg(ap, int*); 

produces a translated invocation such as 
  p = _va_arg2(ap, double, ‘P’, ‘i’); 

The _va_arg2 macro tests that the next two bytes in the 
argument mangled-name string are the characters “Pi”, 
incrementing the pointer after the test.  (Further macros handle 
more types with longer mangled names.  In addition, C has some 
special rules about varargs type-compatibility.) 
The rules for creating the expected-type character, or string of 
characters, for variable-argument functions permit more matches 
than the strict type-safe rules of C++.  The intent, as described for 
type-compatible linkage, is to accept C and C++ programs which 
work reliably in today’s environment, even if some portability 
problem might be lurking (to be diagnosed if and when the 
program is compiled on another platform or compiled with further 
portability-checking options). 
If the varargs argument mangled-name characters fail these type-
matching rules, an abort constraint handler is invoked (interactive 
debugger breakpoint, or abort).   

6. NEW LIBRARY FOR C 
The C standards committee is currently working on one piece of 
the security puzzle: WDTR 24731, a Technical Report for a new 
C library [7].  Among other features, the new library provides 
new APIs which permit, or encourage, the programmer to provide 
bounds information for all array arguments.  Furthermore, arrays-
of-characters created by these APIs are always null-terminated. 
These functions validate their arguments and the bounds 
requirements for the arrays they produce; these requirements are 
known as the “runtime-constraints”.  If a requirement is violated, 
the function invokes a “constraint handler”.  The behavior we 
described above as the “abort constraint handler” is the default 
behavior in Microsoft’s Visual Studio 2005 which provides a 
complete implementation of the WDTR 24731 library [8]. 
The new library provides a new typedef for specifying the sizes of 
arrays, called rsize_t, and an associated maximum value 
named RSIZE_MAX.  It is recommended that, for 
implementations targeting machines with large address spaces, 
RSIZE_MAX be defined as the smaller of the size of the largest 
object supported or (SIZE_MAX >> 1), even if this limit is 
smaller than the size of some legitimate, but very large, objects.  
This way, if a negative number is (incorrectly) given as the size of 
an array, after the (wraparound) conversion to an unsigned 
number, it will be recognized as a violation of a runtime-
constraint.  Before the introduction of RSIZE_MAX, this sort of 
bug could cause the over-writing of large areas of memory. 
The old APIs returned success-or-fail information in an 
inconsistent variety of conventions that mingled successful 
returned information with indications of failure.  The new APIs 
consistently return an indicator of “success-or-what-kind-of-
failure” using an integer type named errno_t.  

Consider the strcpy_s function, which accepts the address 
where the copied characters will be stored, plus an integer 
specifying the size of that array. 
  errno_t strcpy_s(char * restrict s1,  
    rsize_t s1max,  
    const char * restrict s2); 

By the explicit provision of bounds information for the target 
string, this API provides the opportunity to diagnose errors that 
could have caused buffer overflows with the old strcpy API. 

7. EXTENDING TO ALL PROGRAMS 
To this point, we have described methods by which SSCC ensures 
proper fetch-and-store accesses using only the variables defined 
by the programmer.  These methods will in some cases require a 
fatal diagnostic for situations in which the compiler and linker 
cannot determine whether a fetch or store introduces undefined 
behavior.  Examples include unusually complex instances of 
aliased pointers, buffers created by malloc, and interprocedural 
dependencies.  The recent article by Ruwase and Lam [10] has 
shown another method which can be applied to these most-
difficult cases.  In this alternative, unverifiable fetch-or-store 
operations can be checked by requiring that all potential fetched-
or-stored objects be entered into run-time tables (i.e. “dynamic 
tables”). 
By this method, hastily-written programs (“one-off jobs”) can be 
compiled and executed with certainty that, whatever flaws they 
might contain, they will not execute buffer overflows. In addition, 
some large legacy applications (“dusty decks”), or portions 
thereof, might not be worth top-to-bottom remediation to prevent 
buffer overflows.  Adding dynamic tables to the SSCC methods 
permits a choice based upon cost-benefit considerations. 

8. COMMERCIAL IMPLEMENTATION 
In order for methods like SSCC to make a significant difference 
in the reliability of the software infrastructure, we must get the 
methods into the tools that working programmers are using to 
build their applications.  We suggest that there are two different 
avenues to adoption; we refer to them as “remediation tools” and 
“compiler tools”. 
Remediation tools are intended to provide assistance when a 
group has made the decision to spend resources on improving 
some body of source code (typically hundreds of thousands, or 
millions, of lines of code).  Such decisions are typically prompted 
by corporate IT management, software QA, corporate standards, 
etc.  There are several commercial software-quality tools which 
serve this marketplace, including offerings from PolySpace, 
Coverity, Fortify Software, Secure Software, Klocwork, and 
others.  All of these products provide some assistance with 
preventing buffer overflows, but to our knowledge none of them 
provide certification that all buffer overflows are detected and 
prevented (which is the essential feature of the SSCC methods).  
However, these products do much more than check for buffer 
overflows; they detect bugs, catch other security problems, and 
enforce corporate coding standards, etc.  One or more of the 
quality-tools producers could add the SSCC methods to their 
remediation tools to provide assistance to projects attempting to 
revise their source code to definitively eliminate buffer overflows. 
Remediation tools can also perform a one-time conversion from 
the old C library to the new library [7].  For each (“non-
deprecated”) function defined in the new library (such as 
strcpy_s), there is a corresponding function that lacks some 
indication of the bounds data of the target (such as strcpy); call 
that the “corresponding deprecated function”.  The set of all the 
corresponding deprecated functions constitutes the “deprecated 
functions”.  For each invocation of a deprecated function in the 



program being compiled, the bounds-data Requirements are well-
known from the Standards.  If the remediation tool employing the 
SSCC method is unable to determine a corresponding bounds-data 
Guarantee, then a fatal diagnostic is issued and an expert needs to 
study the problem.  Otherwise, the source code invocation is re-
written by the remediation tool to an invocation of the 
corresponding non-deprecated function, in which the bounds-data 
Guarantee is explicitly passed as an argument.  If the source-code 
context tests the returned value from the deprecated function, then 
the remediation tool rewrites the success-or-fail test into a test 
against the “errno_t” returned value from the corresponding 
non-deprecated function. 

These various forms of large-scale remediation should be of 
interest to the large consultancies that provide skilled talent to 
clients worldwide, such as Accenture, Bearing Point, IBM 
Business Consulting, McCabe, Watchfire, and EDS. 

Compiler producers constitute a segment of the software 
production supply chain, one that is quite different from the 
quality-tools producers.  Each hardware company typically 
maintains some number of compiler groups, as do several of the 
large software producers.   There are several specialized compiler 
producers.  In addition, there is a significant community of 
individuals and companies that support the open-source Gnu 
Compiler Collection (gcc).  Adding these various groups together, 
we estimate that there are well over 100 compiler vendors.  In 
order to encourage adoption of the SSCC methods into working 
compilers, we propose a general-purpose “SScfront” tool, to take 
the output from the C/C++ preprocessor, perform the SSCC 
methods (including reading from and writing to the SSCC 
bounds-data files), and produce a transformed C source code to be 
compiled by the platform-dependent compiler.  Along with the 
SScfront component, an SSCC “pre-linker” would also be 
required, to read and process the full collection of bounds-data 
files from all components of the application being compiled and 
linked.  If or when the SSCC methods become popular in the 
marketplace, compiler producers can doubtless produce more 
efficient and better integrated “all-in-one” solutions, just as the 
initial “cfront” implementation of C++ was replaced by integrated 
compiler solutions over a period of years. 
A third market segment contains the component producers, which 
provide specialized components to the compiler producers and 
quality tools producers; see Figure 1 below. 

 
Figure 1. Software Production Supply Chain 

In general, component producers don’t want to make products that 
would compete with their customers.  A successful adoption 
strategy for eliminating buffer overflows will need to take account 
of the unique position of each market segment. 
At some point, the compiler or quality tool implementing the 
SSCC methods will be prepared to certify that the application is 
free from buffer overflows.  Because of the significant costs that 
buffer overflows have imposed upon the market, certified absence 
of buffer overflows should provide significant economic value in 
several market segments. 

After demonstrating utility in the marketplace, the SSCC methods 
should be standardized, with permissions adequate for 
incorporation into open-source as well as proprietary products.  
We suggest, however, that too many technologies have been 
introduced with an emphasis upon market share and insufficient 
attention paid to requirements of security.  We maintain sufficient 
IPR protection for the SSCC methods to permit taking effective 
action against “spoofers” that would weaken the expectations of 
producers, users, and the public. 
 
 
 

9. CONCLUSIONS 
 
We itemize the novel features of the SSCC methods: 

• Combine static-analysis methods with dynamic-analysis 
methods, to create a hybrid solution; 

• Define an extensive (non-orthogonal) set of attributes and 
relationships that match the concepts intuitively used by 
programmers in constructing professional programs, and 
define their role in preventing buffer overflows; 

• Automatically infer the Requirements on the interface of 
each callable function; 

• Supplement the compilation and linking mechanism by 
producing and using bounds-data files which record 
Requirements and Guarantees for the defined and undefined 
symbols in one or more corresponding object files, as well as 
checksum information; 

• Verify C linkage using type-compatible linkage; 

• Verify type-compatible behavior of varargs functions, using 
a name-mangled string at run-time; 

• Provide automated remediation of each input source file into 
a source file which invokes non-deprecated functions in the 
new C library. 

The details involved in SSCC are extensive, but all work together 
to achieve properties which can be stated simply:  Bounds 
information is kept in parallel with the source and object code, 
and in particular kept in parallel with each callable function’s 
interface.  When a fetch or a store is performed, available bounds 
information is used at compile time, link time, or run time, to 
determine the validity of the fetch-or-store operation. 
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