
Eliminating Buffer Overflows,
Using the Compiler or a Standalone Tool

Thomas Plum
Plum Hall, Inc.

3 Waihona Box 44610
Kamuela, HI 96743 USA

+1-808-882-1255

tplum@plumhall.com

David M. Keaton

1630 30th Street #311
Boulder, CO 80301 USA

+1-303-782-1009

dmk@dmk.com

ABSTRACT

We present a set of methods (“SSCC”, for “safe, secure C/C++”)
to eliminate buffer overflows (including wild-pointer stores) in C
and C++, using a mixture of compile-time, link-time, and run-
time tests, plus some design-time restrictions. A prototype
implementation indicates that run-time overhead is much smaller
than previous methods. The SSCC methods do not require
changes to existing data layouts or object-code representation.

The SSCC methods are applicable to applications written for the
ISO/IEC 9899:1999 (“C99”) standard [5] and the 14882:2003
(C++) standard [6] (herein, the “Standards”), as well as most
commercially-popular extensions to those standards, and the
earlier ISO/IEC 9899:1990 (“C90”) standard (now essentially out-
of-print).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
assertion checkers, class invariants, reliability;
D.3.4 [Programming Languages]: Processors – code generation,
compilers, optimization;

General Terms
Design, Economics, Reliability, Security, Standardization,
Languages, Verification.

Keywords
Static analysis, dynamic analysis, buffer overflow, reliability,
code generation, compilers, optimization.

1. INTRODUCTION
Buffer overflows (in C and in C++) are the underlying cause of
many vulnerabilities, accounting for up to 50% of vulnerabilities
reported by CERT/CC[1]. Completely preventing these
weaknesses without sacrificing efficiency would contribute
positively to every software security assurance (SSA) approach
for C and C++. According to Robert Seacord [11], “vulnerability

reports continue to grow at an alarming rate ... To address the
growing number of both vulnerabilities and incidents, it is
increasingly apparent that the problem must be attacked at the
source by working to prevent the introduction of software
vulnerabilities during software development and ongoing
maintenance.”
Ruwase and Lam summarized the situation: “A considerable
amount of work has been performed on mitigating the buffer
overflow problem using either static analysis or dynamic
analysis.”[10] However, in SSCC we attack the buffer-overflow
problem using static analysis for issues that can be resolved at
compile-time (and link-time), plus some amount of dynamic
analysis using highly-optimized code sequences, for issues that
can only be resolved at run-time. Furthermore, certain design-
time restrictions can help eliminate buffer overflows, as described
later in this paper.
Modern compilers for C and C++ already perform significant
static analysis to understand program semantics for optimizations,
especially on vector and super-scalar hardware. Furthermore, in
well-written programs the array-bounds information is already
maintained in variables defined by the programmer. SSCC
provides a method for the compiler to track that bounds
information and verify (at compile-time, link-time, or run-time)
that fetch-and-store operations are proper.
Whenever possible, we have adopted terminology and concepts
that would be reasonably familiar to programmers and compiler
implementers. C and C++ are rife with concepts which are
intuitive to the programmer but complicated to represent in
abstract mathematical logic — and vice-versa. The programmer
who understands the concepts behind SSCC will be better
prepared to achieve the full safety/security goals of SSCC while
minimizing run-time overhead. (We do use the mathematical
notation for half-open interval [Lo,Toofar) in contrast to the
closed interval [Lo,Hi].)
The SSCC methods generate fatal diagnostic messages in any
case where buffer overflow cannot be definitively prevented.
However, the SSCC methods do not impose “style rules” or
portability considerations upon the compilation. Any particular
tool can enhance the basic SSCC methods.
SSCC also applies to the production of software for embedded
systems, but there are slightly different design criteria in that
arena. This paper primarily addresses the application of the
SSCC methods to hosted systems, such as applications written for
Linux, or Windows, or the Mac OS.

2. BACKGROUND
We use these definitions for some fundamental terms:

Bound of an array – the number of elements in the array.
Lo of an array – the address of the first element of the array.
Hi of an array – the address of the last element of the array.
Toofar of an array – the address of the “one-too-far” element of
the array, the element just past the Hi element.
Target-size (or Tsize) of an array – same as sizeof(array)
Once a pointer is associated with an object, the same terms are
defined for that pointer. For an array object, the Tsize of a
pointer into that object is the total number of bytes in the array
that is accessed by the pointer; i.e. the bound of the array times
the number of bytes in (or “sizeof”) each element. Furthermore,
the same definitions are applied to pointers to non-array objects,
consistent with the equivalence between a non-array and an array
whose Bound is 1. The terms Lo, Hi, and Toofar can also be
applied to integer subscript values when the context allows.
We use “variable” to designate named objects including sub-
objects declared with member names. We use “state of an object”
exclusively to refer to run-time state, and “attribute of a variable”
to designate the compile-time understanding of that state. One
simple example is the Nul attribute. On the two flow-control arcs
from “if (p!=0)”, p has the Nul attribute on the “false” outcome
arc and the not-Nul (Nnul) attribute on the “true” outcome arc.
Other attributes used in SSCC are as follows: Indir (Indirectable),
Ni (Not-indirectable), Qi (Maybe-indirectable, either Nul or
Indirectable), Lo (at Lo limit value), Hi (at Hi limit value), Toofar
(at Toofar limit value), Ntl (Not-too-low, greater-than-or-equal-to
Lo), Nth (Not-too-high, less-than-Toofar), Nullt (Null-
terminated), and Unk (Unknown). These attributes are not
mutually-exclusive. Besides the attributes of one variable, SSCC
makes frequent use of relationships between variables, as follows.

Table 1. Relationships between variables

int n IS_BOUND_OF(p) n provides the Bound of p

int n IS_LENGTH_OF(p) n provides Length of p (number of
elements before null-terminator)

int n IS_TSIZE_OF((p,q)) n provides Tsize of p and of q

char *p IS_HI_OF (a) p provides the Hi of a

char *p IS_LO_OF(a) p provides the Lo of a

char *p
IS_TOOFAR_OF(a)

p provides the Toofar of a

The notation above permits representation in the opposite order,
with the obvious meaning:

Table 2. Relationships between variables, opposite order

char *p BOUND_IS(n) n provides the Bound of p.

char *p LENGTH_IS(n) n provides the Length of p

char *p TSIZE_IS(n) n provides the Tsize of p

char a[] LO_IS(p) p provides the Lo of a

char a[] HI_IS(p) p provides the Hi of a

char a[] LO_IS(p)
TOOFAR_IS(q)

p provides the Lo of a, and
q provides the Toofar of a

Several of these attributes can be defined using other attributes;
e.g. the Bound of an array is equal to the Toofar minus the Lo.
(For pointers, C/C++ arithmetic divides difference by sizeof.)
A function’s returned value is an unnamed object whose attributes
and relationships are often important:

Table 3. Attributes and relationships involving returned value

int n IS_BOUND_OF(return) n provides the Bound of the
function’s returned pointer

int n IS_LENGTH_OF(return) n provides the Length of the
function’s returned pointer

int n IS_TSIZE_OF(return) n provides the Tsize of the
function’s returned pointer

char *p IS_HI_OF(return) p provides the Hi of the
function’s returned pointer

char * QI(return) f() { function f returns a Maybe-
Indirectable return value

These tables suggest a representation suitable for notation in
source code, but any equivalent representation will do.
Many details of the attributes and relationships used in the SSCC
methods will be obvious from the Standards; here we will focus
upon some details that might not be obvious. The attributes and
relationships are used to express pre-conditions and post-
conditions of operators and functions. Whereas some systems of
static analysis require manual annotation of pre- and post-
conditions, the SSCC methods are targeted at millions of lines of
existing code and therefore rely only on pre- and post-conditions
inferred automatically by the compiler. To emphasize the
distinction, we designate these pre-conditions as “Requirements”
and these post-conditions as “Guarantees”.
We illustrate the basic definitions with this code snippet:
 char a[] = "xyz";
 char *p = a;

The Lo of p is the address &a[0] (or equivalently, the index 0),
the Hi of p is &a[3] (or the index 3), and the Tsize of p is 4.
The compiler keeps track of a relationship between the pointer p
and the array to which it points. The relationship continues
through any pointer arithmetic (including increment or
decrement) operations on p, but is discontinued when an address
of a new object is stored into p.

3. COMPILE-TIME VERIFICATION
For a simple example of compile-time verification, consider the
following.
 struct spec_fd_t {int m;/*…*/} spec_fd[3];
 for (i = 0; i < 3; i++) {
 int limit = spec_fd[i].m; /*…*/
 }

The Bound of spec_fd is 3, the Hi is 2, and the Toofar is 3.
The number of iterations is less than or equal to the Bound; since
the subscript variable i starts at the Lo value, the subscript
remains suitable for spec_fd throughout the loop. The SSCC
methods rely upon recognition by the compiler of certain common
loop constucts such as this one.
If a loop manipulates a pointer passed as a parameter, the bound is
not provided by the declaration. The compiler can infer the

bounds Requirement of a pointer parameter from a loop involving
subscript or pointer arithmetic. If the loop performs fetch-or-store
up to and including the n-th element then n is the Hi; if the loop
stops just before fetch-or-store on the n-th element then n is the
Toofar; and similarly for a limiting address (pointer) value. Here
is a simple example:
 void f(char *q, int n) {
 p = q;
 for (int i=0; i<n; i++) {
 *p = ‘\n’;
 } /* … */

As written, the compiler infers from this loop that &q[n] (or just
n) is the Toofar of p (and q), because the n-th element is not
accessed. But if we add another line
 *p = ‘\0’;

after the loop-end, the compiler infers that n is the Hi. (To be
more precise, the Requirement is that n is “suitable” for the Hi,
i.e., that the “real” Hi of the actual object is greater than or equal
to the argument passed to this function. In order to create a
simple notation in keeping with the intuition of programmers and
implementers, we use the same terms, like “Hi”, to define a
“greater-than-or-equal-to” semantics for Requirements, and an
“exactly-equal” semantics for the Guarantee provided by a
defining declaration.)
A similar rule infers the Nullt (null-terminated) attribute from a
loop that searches for a null character; here is a simple example:
 while (*p++ != ‘\0’)
 ;

Note that in these examples, the specified attribute is both a
Requirement (pre-condition) and a Guarantee (post-condition).
This is usually adequately clear from the context, but a notation
for “Pre” and “Post” can be employed when needed. Also note
that the attributes and relationships stated for a returned value are
always Guarantees and not Requirements (obviously).
SSCC does not require whole-program analysis. Along with each
source file (and/or each object file, including object files in
libraries) there is a tabulation known as the bounds-data file,
specifying Requirements and Guarantees for each function. For
example, the bounds data file for memset specifies something
like this:
 memset(p, v, n IS_TSIZE_OF(p))

Having seen this Requirement on the arguments to memset, the
compiler can verify that the following invocation clearly meets
the Requirement, because the sizeof operator produces the
required Tsize:
 memset(&spec_fd[i], 0, sizeof(spec_fd[i]))

Let’s change the example, to pass an integer unknown to the
compiler:
 memset(&spec_fd[i], 0, some_fn())

The SSCC methods are unable to verify this at compile-time. In a
later section we describe the methods for run-time verification.
Here we define the Requirements for the basic pointer and array
operations in SSCC. The notation “p[0]” will designate an array
or pointer-into-array or pointer-to-non-array being accessed by
any equivalent form of indirection, including “*p” and “p-
>member” and “(*p).member”. The notation “p[i]” will

designate an array or pointer-into-array being accessed by any
form of indexed indirection, including “*(p+i)” and “*p++” and
“*++p” and the corresponding forms using minus instead of plus.
The notation “p+i” will designate any form of pointer arithmetic,
including “p++” and “++p” and the corresponding forms using
minus instead of plus.

• Fetch or store indirect via p[0]
Requires: p Indir (p is Indirectable)

• Fetch or store indirect via p[i]
Requires: p+i lies within [Lo,Hi],
i.e., lies within [Lo,Toofar)

• Calculate p+i
Requires: p+i lies within [Lo,Toofar]

The asymmetry between the Requirements for p[i] and p+i is
required by the Standards (see 6.5.6 Additive operators,
paragraphs 8 and 9, in [5]); the Toofar value is a valid result for
pointer arithmetic, but it cannot be used for fetch or store.

4. LINK-TIME VERIFICATION
After compilation of all source files in the application, the SSCC
linker verifies the compatibility of called functions with the
calling context, and of uses of external objects with their defining
instances, checking all Requirements against all Guarantees. In
C and C++, the defining instance of each array will provide
definite bounds for the array; moreover, the bounds are constants.
Therefore, any Requirements on bounds of external array objects
can be verified at link-time.
The discussion of the Requirements for the memset function
illustrates the possibility that a bounds-data file may provide
Requirements at the time the calling context is compiled.
However, two C or C++ source files can each provide calls to a
function in the other file, so no scheme of ordering of compilation
can guarantee a simple ordering. By requiring a complete
traversal of the bounds-data files at link-time, we eliminate
ordering-dependencies and verify that the bounds-data files reflect
the latest compilation of the corresponding source files.
SSCC specifies “type-compatible linkage for C programs”. This
is slightly different from an already-standardized feature of C++
known as “type-safe linkage”, which provides checking between
calling functions and called functions to verify that arguments and
parameters have (exactly) the same types.
“Type-compatible linkage” is a less restrictive linkage rule which
imposes only the C rules of “compatible types” having the “same
alignment and representation”. The difference is largely a matter
of portability. If int and long have the same alignment and
representation on a particular platform, and function f takes one
int parameter, and one object file invokes f with a long argument,
then type-safe linkage will report a mismatch of types, but type-
compatible linkage will accept the linkage on this particular
platform. But on a different platform on which int and long have
different alignment or representation, then both forms of linkage
will complain.
There are several reasons why type-compatible linkage is required
for the SSCC methods. First, standard C still permits the “old-
style” function definition and declaration, in which no type
information is available for compile-time checking; type-
compatible linkage ensures that values are passed correctly for

this platform. Second, function prototypes might differ between
the called and calling contexts, whether by “versioning” changes
over time, or by programmer carelessness. Third, C provides the
“varargs” calling convention, which is discussed later.
The use of type-compatible linkage is one of several options on an
SSCC platform for C. Another option is to require the exact
match, as required by the type-safe linkage of C++ (creating a
restrictive subset of C). Either linkage is adequate for the
requirements of SSCC for C.
Note that in C++ the type-safe linkage rules are also employed to
provide function overloading, which is not a feature of C (under
either linkage rule).
The type-compatible (or the type-safe) linkage might (or might
not) be implemented using name-mangling, a scheme by which a
sequence of types is converted by the compiler into a short
character string. (For a detailed example of name-mangling, see
[13].)
For purposes of traceability and verification, the bounds-data file
incorporates checksums for the associated source and object files,
to provide a definitive connection between the linked application
and the various constituent components.

5. RUN-TIME VERIFICATION
We do not claim that the SSCC compile-time and link-time
verification will find all buffer overflows. There will be cases
where the compiler has identified the relevant bounds data but
cannot verify the values at compile time, requiring run-time
verification.
It is well known that run-time verification can be much more
efficient than slavishly performing a test at every reference.
Loop-limit values need to be tested only once, before starting the
loop. Optimizations of the code-hoisting variety can perform
verification earlier. Further optimizations are known; for
example, see Gupta [4].
Although the general subscript or pointer test implies two bounds,
lower and upper, in almost every case the attributes of the pointer
or subscript indicate monotonic progress in one direction.
Therefore in almost every case the pattern of assembler code
introduced into the run-time code sequence is one comparison
instruction followed by a conditional branch. Furthermore, the
conditional branch is almost never taken. Most modern platforms
provide methods either in the hardware itself or in the compiler
software whereby the optimization choices will avoid slowdowns
for the almost-never-taken branch.
SSCC provides “Keep On Running” modes for embedded (or
unattended) systems (including semantics known as “saturation”,
“modwrap”, and “zerobound”). For the purposes of the present
Workshop, however, we propose that run-time bounds-check
failures must produce either a breakpoint that causes interruption
of the running program and an opportunity to debug interactively,
or an immediate invocation of the standard abort() function.
(This choice between two behaviors is called an “abort constraint
handler”, described in more detail below.)
We created a prototype of the SSCC methods in order to estimate
the execution penalty for the run-time tests. Our tools were able
to compile, link, and execute seven of the SPEC benchmarks [12]:
164.gzip, 176.gcc, 181.mcf, 197.parser, 256.bzip2, and 300.twolf.
Simple static analysis identified declarations and loops that

provided bounds, as well as fetch-or-store expressions that
required bounds. We instrumented the SPEC benchmark
programs to count each execution of a fetch-or-store expression
that was not categorized as “compile-time”. We hand-estimated
the percentage of the counted expressions that should have been
recognized as compile-time by a full SSCC implementation, and
the percentage of tests which could be eliminated by the various
optimization methods described above. The detailed raw data and
calculated results from all the tests are provided on the SSCC
website [9]. The average estimated run-time overhead was less
than 2%, which is significantly better performance than results
from other comparable technologies. (For one comparison
example, Ruwase and Lam [10] report that by confining their
method only to strings, a run-time overhead less than 26% was
achieved in most of their samples.)
The SSCC method provides special semantics for “varargs”
functions, i.e. functions that accept a varying number of
arguments. The C and C++ standards define certain functions
which accept a varying number of arguments of heterogeneous
types, such as printf. The printf format string specifies
which argument types are expected. If at run-time the actual
arguments do not agree with the expected types, undefined
behavior results. This is a real vulnerability which has been
exploited by hackers, just as buffer overflows have been.
Furthermore, this vulnerability can be used to create subsequent
buffer overflows. In an SSCC implementation we require two
alternative forms of varargs library functions: one which provides
no run-time checking of argument types, and one which does
provide checking. If the compiler can see that the format-string
argument is a constant character string, then at compile-time the
compiler can determine whether the actual arguments match the
expected types. If successful, the compiler invokes the (faster)
alternative without run-time checking. If the compile-time match
fails, the compiler can issue a fatal diagnostic so the programmer
can fix the problem.
But in some cases it cannot be determined at compile-time
whether a varargs function’s actual arguments match the expected
types. In this situation, the SSCC compiler will add an extra
character string argument after the named arguments. The string
contains the type-compatible name-mangled list of the types of
the actual arguments passed in this function call. Then the called
function must also be compiled by the SSCC compiler, which
performs a little extra work in the called function as each
argument is extracted by the va_arg macro from the header
<stdarg.h>. If the type argument is a scalar type which
produces a one-byte encoding in the mangled name string (e.g.
double, which produces the single character ‘d’ in a typical
name-mangling), then an invocation such as
 p = va_arg(ap, double);

produces a translated invocation such as
 p = _va_arg1(ap, double, ‘d’);

The enhanced _va_arg1 macro tests that the next byte in the
argument mangled-name string is the character ‘d’,
incrementing the pointer after the test. (This is typically a
reasonably fast operation on most hardware: a test and a post-
increment.) If the argument has a type which produces a
multiple-byte encoding in the mangled name string (e.g. pointer-
to-int, which produces the string “Pi” in a typical name-
mangling), then an invocation such as

 p = va_arg(ap, int*);

produces a translated invocation such as
 p = _va_arg2(ap, double, ‘P’, ‘i’);

The _va_arg2 macro tests that the next two bytes in the
argument mangled-name string are the characters “Pi”,
incrementing the pointer after the test. (Further macros handle
more types with longer mangled names. In addition, C has some
special rules about varargs type-compatibility.)
The rules for creating the expected-type character, or string of
characters, for variable-argument functions permit more matches
than the strict type-safe rules of C++. The intent, as described for
type-compatible linkage, is to accept C and C++ programs which
work reliably in today’s environment, even if some portability
problem might be lurking (to be diagnosed if and when the
program is compiled on another platform or compiled with further
portability-checking options).
If the varargs argument mangled-name characters fail these type-
matching rules, an abort constraint handler is invoked (interactive
debugger breakpoint, or abort).

6. NEW LIBRARY FOR C
The C standards committee is currently working on one piece of
the security puzzle: WDTR 24731, a Technical Report for a new
C library [7]. Among other features, the new library provides
new APIs which permit, or encourage, the programmer to provide
bounds information for all array arguments. Furthermore, arrays-
of-characters created by these APIs are always null-terminated.
These functions validate their arguments and the bounds
requirements for the arrays they produce; these requirements are
known as the “runtime-constraints”. If a requirement is violated,
the function invokes a “constraint handler”. The behavior we
described above as the “abort constraint handler” is the default
behavior in Microsoft’s Visual Studio 2005 which provides a
complete implementation of the WDTR 24731 library [8].
The new library provides a new typedef for specifying the sizes of
arrays, called rsize_t, and an associated maximum value
named RSIZE_MAX. It is recommended that, for
implementations targeting machines with large address spaces,
RSIZE_MAX be defined as the smaller of the size of the largest
object supported or (SIZE_MAX >> 1), even if this limit is
smaller than the size of some legitimate, but very large, objects.
This way, if a negative number is (incorrectly) given as the size of
an array, after the (wraparound) conversion to an unsigned
number, it will be recognized as a violation of a runtime-
constraint. Before the introduction of RSIZE_MAX, this sort of
bug could cause the over-writing of large areas of memory.
The old APIs returned success-or-fail information in an
inconsistent variety of conventions that mingled successful
returned information with indications of failure. The new APIs
consistently return an indicator of “success-or-what-kind-of-
failure” using an integer type named errno_t.

Consider the strcpy_s function, which accepts the address
where the copied characters will be stored, plus an integer
specifying the size of that array.
 errno_t strcpy_s(char * restrict s1,
 rsize_t s1max,
 const char * restrict s2);

By the explicit provision of bounds information for the target
string, this API provides the opportunity to diagnose errors that
could have caused buffer overflows with the old strcpy API.

7. EXTENDING TO ALL PROGRAMS
To this point, we have described methods by which SSCC ensures
proper fetch-and-store accesses using only the variables defined
by the programmer. These methods will in some cases require a
fatal diagnostic for situations in which the compiler and linker
cannot determine whether a fetch or store introduces undefined
behavior. Examples include unusually complex instances of
aliased pointers, buffers created by malloc, and interprocedural
dependencies. The recent article by Ruwase and Lam [10] has
shown another method which can be applied to these most-
difficult cases. In this alternative, unverifiable fetch-or-store
operations can be checked by requiring that all potential fetched-
or-stored objects be entered into run-time tables (i.e. “dynamic
tables”).
By this method, hastily-written programs (“one-off jobs”) can be
compiled and executed with certainty that, whatever flaws they
might contain, they will not execute buffer overflows. In addition,
some large legacy applications (“dusty decks”), or portions
thereof, might not be worth top-to-bottom remediation to prevent
buffer overflows. Adding dynamic tables to the SSCC methods
permits a choice based upon cost-benefit considerations.

8. COMMERCIAL IMPLEMENTATION
In order for methods like SSCC to make a significant difference
in the reliability of the software infrastructure, we must get the
methods into the tools that working programmers are using to
build their applications. We suggest that there are two different
avenues to adoption; we refer to them as “remediation tools” and
“compiler tools”.
Remediation tools are intended to provide assistance when a
group has made the decision to spend resources on improving
some body of source code (typically hundreds of thousands, or
millions, of lines of code). Such decisions are typically prompted
by corporate IT management, software QA, corporate standards,
etc. There are several commercial software-quality tools which
serve this marketplace, including offerings from PolySpace,
Coverity, Fortify Software, Secure Software, Klocwork, and
others. All of these products provide some assistance with
preventing buffer overflows, but to our knowledge none of them
provide certification that all buffer overflows are detected and
prevented (which is the essential feature of the SSCC methods).
However, these products do much more than check for buffer
overflows; they detect bugs, catch other security problems, and
enforce corporate coding standards, etc. One or more of the
quality-tools producers could add the SSCC methods to their
remediation tools to provide assistance to projects attempting to
revise their source code to definitively eliminate buffer overflows.
Remediation tools can also perform a one-time conversion from
the old C library to the new library [7]. For each (“non-
deprecated”) function defined in the new library (such as
strcpy_s), there is a corresponding function that lacks some
indication of the bounds data of the target (such as strcpy); call
that the “corresponding deprecated function”. The set of all the
corresponding deprecated functions constitutes the “deprecated
functions”. For each invocation of a deprecated function in the

program being compiled, the bounds-data Requirements are well-
known from the Standards. If the remediation tool employing the
SSCC method is unable to determine a corresponding bounds-data
Guarantee, then a fatal diagnostic is issued and an expert needs to
study the problem. Otherwise, the source code invocation is re-
written by the remediation tool to an invocation of the
corresponding non-deprecated function, in which the bounds-data
Guarantee is explicitly passed as an argument. If the source-code
context tests the returned value from the deprecated function, then
the remediation tool rewrites the success-or-fail test into a test
against the “errno_t” returned value from the corresponding
non-deprecated function.

These various forms of large-scale remediation should be of
interest to the large consultancies that provide skilled talent to
clients worldwide, such as Accenture, Bearing Point, IBM
Business Consulting, McCabe, Watchfire, and EDS.

Compiler producers constitute a segment of the software
production supply chain, one that is quite different from the
quality-tools producers. Each hardware company typically
maintains some number of compiler groups, as do several of the
large software producers. There are several specialized compiler
producers. In addition, there is a significant community of
individuals and companies that support the open-source Gnu
Compiler Collection (gcc). Adding these various groups together,
we estimate that there are well over 100 compiler vendors. In
order to encourage adoption of the SSCC methods into working
compilers, we propose a general-purpose “SScfront” tool, to take
the output from the C/C++ preprocessor, perform the SSCC
methods (including reading from and writing to the SSCC
bounds-data files), and produce a transformed C source code to be
compiled by the platform-dependent compiler. Along with the
SScfront component, an SSCC “pre-linker” would also be
required, to read and process the full collection of bounds-data
files from all components of the application being compiled and
linked. If or when the SSCC methods become popular in the
marketplace, compiler producers can doubtless produce more
efficient and better integrated “all-in-one” solutions, just as the
initial “cfront” implementation of C++ was replaced by integrated
compiler solutions over a period of years.
A third market segment contains the component producers, which
provide specialized components to the compiler producers and
quality tools producers; see Figure 1 below.

Figure 1. Software Production Supply Chain

In general, component producers don’t want to make products that
would compete with their customers. A successful adoption
strategy for eliminating buffer overflows will need to take account
of the unique position of each market segment.
At some point, the compiler or quality tool implementing the
SSCC methods will be prepared to certify that the application is
free from buffer overflows. Because of the significant costs that
buffer overflows have imposed upon the market, certified absence
of buffer overflows should provide significant economic value in
several market segments.

After demonstrating utility in the marketplace, the SSCC methods
should be standardized, with permissions adequate for
incorporation into open-source as well as proprietary products.
We suggest, however, that too many technologies have been
introduced with an emphasis upon market share and insufficient
attention paid to requirements of security. We maintain sufficient
IPR protection for the SSCC methods to permit taking effective
action against “spoofers” that would weaken the expectations of
producers, users, and the public.

9. CONCLUSIONS

We itemize the novel features of the SSCC methods:

• Combine static-analysis methods with dynamic-analysis
methods, to create a hybrid solution;

• Define an extensive (non-orthogonal) set of attributes and
relationships that match the concepts intuitively used by
programmers in constructing professional programs, and
define their role in preventing buffer overflows;

• Automatically infer the Requirements on the interface of
each callable function;

• Supplement the compilation and linking mechanism by
producing and using bounds-data files which record
Requirements and Guarantees for the defined and undefined
symbols in one or more corresponding object files, as well as
checksum information;

• Verify C linkage using type-compatible linkage;

• Verify type-compatible behavior of varargs functions, using
a name-mangled string at run-time;

• Provide automated remediation of each input source file into
a source file which invokes non-deprecated functions in the
new C library.

The details involved in SSCC are extensive, but all work together
to achieve properties which can be stated simply: Bounds
information is kept in parallel with the source and object code,
and in particular kept in parallel with each callable function’s
interface. When a fetch or a store is performed, available bounds
information is used at compile time, link time, or run time, to
determine the validity of the fetch-or-store operation.

10. ACKNOWLEDGMENTS
Our thanks to the anonymous reviewers, and to Brian Brode,
Bruce Galler, David McNamara, Larry O’Brien, Roland Racko,
Robert Seacord, Itaru Shimoyama, Youichi Sugiyama, and Steph
Walli for their comments on various drafts of this material.

11. REFERENCES
[1] CERT/CC. See http://www.cert.org/stats/cert_stats.html for

current statistics.
[2] CERT/CC. US-CERT's Technical Cyber Security Alerts.

http://www.us-cert.gov/cas/techalerts/index.html
[3] Dor, N., Rodeh, M., and Sagiv, M. Cssv: Towards a realistic

tool for statically detecting all buffer overflows in c. In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, pages
155–167, June 2003.
http://portal.acm.org/citation.cfm?doid=781131.781149

[4] Gupta, R. Optimizing array bounds checks using flow
analysis. ACM Letters on Programming Languages and
Systems, 2(1-4):135–150, March–December 1993.

[5] INCITS/ISO/IEC 9899-1999. Programming Languages — C,
Second Edition, 1999.

[6] INCITS/ISO/IEC 14882-2003. Programming Languages —
C++, Second Edition, 2003.

[7] ISO/IEC WDTR 24731. Specification for Secure C Library
Functions, 2004. (Options for ordering [5,6,7] are kept
updated at http://www.plumhall.com/990216ansi.html.)

[8] Lovell, M. Safe! Repel Attacks on Your Code with the Visual
Studio 2005 Safe C and C++ Libraries, MSDN Magazine,
May 2005,
http://msdn.microsoft.com/msdnmag/issues/05/05/SafeCand
C/default.aspx

[9] Plum Hall, Inc. The SSCC website.
http://www.plumhall.com/sscc.html (free, requires
registration).

[10] Ruwase, O., and Lam, M. A Practical Dynamic Buffer
Overflow Detector, In Proceedings of the Network and
Distributed System Security (NDSS) Symposium, pages 159–
169, February 2004.

[11] Seacord, R. Secure Coding in C and C++. Addison-Wesley,
2005. See http://www.cert.org/books/secure-coding for news
and errata.http://suif.stanford.edu/papers/tunji04.pdf

[12] System Performance Evaluation Corporation (SPEC).
SPEC CPU2000: Component CPU Integer (CINT2000),
2000. http://www.spec.org

[13] Williams, M. et al., “Itanium C++ ABI”.
http://www.codesourcery.com/cxx-abi/abi.html

	copyright: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIST workshop on Software Assurance Tools, Techniques, and Metrics at ASE ’05, November 7-8, 2005, Long Beach, CA, USA.
Copyright 2005, ACM

