
Copyright © Praxis High Integrity Systems Limited 2005 Slide 0

Correctness by Construction:
The Case for Constructive Static
Verification

Rod Chapman
Praxis High Integrity Systems Limited

Copyright © Praxis High Integrity Systems Limited 2005 Slide 1

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 2

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 3

So what is Correctness-by-
Construction (CbyC)?

• Three central principles.

• Prevent defect introduction throughout
the lifecycle.

• Detect and remove defects as soon as
possible after their introduction.

• Say things only once.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 4

CbyC Characteristics

• A development approach characterized
by:
– Use of static verification to prevent defects at all

stages.

– Small, verifiable design steps.

– Appropriate use of formality.

– “Right tools and notations for the job” approach.

– Generation of certification/evaluation evidence as
a side-effect of the development process. E.g. for a
security evalution.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 5

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 6

Testing…

• So why not just “test it to death…”?
• Program state space is vast. Testing only ever

touches a tiny fraction of the paths and
inputs.

• Statistics: to claim a reliability of N, how much
testing to you need to do?

• Quiz: commercial aircraft aim for 1 failure in
109 flying hours. 109 hours is…?

• How much testing are you gonna do?!?
• Are you willing to stand up in court and say

this?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 7

Why Static Verification?

• Shows a program will work for all
program paths, for all input data…good!

• Can be applied early - to specifications,
designs, etc. as well as code.

• Generates assurance evidence as a by-
product of the design process, not as
an expensive, retrospective activity.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 8

Catch 1

• Our ability to statically reason about
programs, design, specifications etc.
critically depends on the language in
which these artefacts are written.
– (Yes…languages do matter…)

• Questions such as
– “What does my program mean?”
– “Does my program have property X?”
should ideally have only one answer

Copyright © Praxis High Integrity Systems Limited 2005 Slide 9

Catch 1

• But most languages that we use are
ambiguous – their meaning is not wholly
defined. Oh dear!

• E.g. English
– Time flies like an arrow (but, as everyone

knows, fruit flies like a banana…)

• Ideally, we want notations that are as
unambiguous as possible.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 10

This is not a new idea…

“… one could communicate with these
machines in any language provided it
was an exact language …”

“… the system should resemble normal
mathematical procedure closely, but at
the same time should be as
unambiguous as possible.”

Who said this? When?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 11

Languages - Definitions

• Programming languages have ambiguities (for
good reasons) which are resolved by compiler
writers.
– Very few languages have ever been

designed with verifiability as the primary
design goal.

• A dialect P of a language S depends on
particular choices made by a single compiler
for a single target computer.

• A pure subset P of a language S is a sub-
language of S where all P programs are legal
in S and have the same meaning, regardless
of compiler choice or target computer.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 12

Languages ambiguities…
A sliding scale

• The ambiguous bits of programming
languages differ in their ability to cause
trouble.

• From better to worse…

• Implementation-defined: Compiler is obliged
to document its behaviour and be consistent.
– Examples:

•range of “int” in C
•Fiddly details of floating-point

arithmetic

Copyright © Praxis High Integrity Systems Limited 2005 Slide 13

Languages ambiguities…
A sliding scale

• Implementation-dependent or
“unspecified”: behaviour is one of a
small set, but unpredictable, and no
obligation to document anything.
– Examples:

•Expressions evaluation order in C,
C++, Ada

•Parameter passing mechanism
for composite types in Ada

Copyright © Praxis High Integrity Systems Limited 2005 Slide 14

Languages ambiguities…
A sliding scale

• Undefined or “Erroneous”: All bets are
off! No guarantee of anything at all.
– Worse: “program seems to work

most of the time” is a common
behaviour for undefined features.
Yields a very bad false sense of
security!

– Examples:
•Reading an uninitialized variable.
•Unchecked buffer overflow

Copyright © Praxis High Integrity Systems Limited 2005 Slide 15

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 16

Goals for Constructive SV

• We want analyses which are:
– Sound (absence of false negatives)
– Complete (absence of false

positives, aka “False alarms”)
– Efficient – so it can be done in

preference to compile/test
– Modular – runs on incomplete

programs and results are
composable.

– Deep – tells you something useful!

Copyright © Praxis High Integrity Systems Limited 2005 Slide 17

Goals for Constructive SV

• The five goals are in a subtle balance.
– You can’t have all of them all the

time.
• Effectiveness critically depends on the

language that you’re analysing.

• No standard, unsubsetted language is
suitable! There are just too many
ambiguities and complications.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 18

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 19

The irony of subsets, dialects, and
analysis tools

• Most tools attempt analysis of the
“whole language” to increase market
share. They can be unsound,
incomplete, too shallow, slow etc.
etc...your mileage varies!

• BUT…everyone is using a subset or
dialect!
– Why?!?
– Do you have a coding standard?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 20

The irony of subsets, dialects, and
analysis tools

• In reality, almost all projects end up
unintentionally using a dialect.
– Programmers “stray” into implementation-

dependent areas of the language without
even knowing it.

– You end up “locked in” to your compiler
and dialect

•(compare with the “Software Crisis” of
1975…has anything changed?)

Copyright © Praxis High Integrity Systems Limited 2005 Slide 21

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 22

Retrospective SV problems

• The effectiveness of retrospective
analysis critically depends on how well
the program is designed in the first
place!
– Adding retrospective SV doesn’t

improve this if it’s too late to change
the system.

• Put another way: You can’t polish dirt!

Copyright © Praxis High Integrity Systems Limited 2005 Slide 23

Retrospective SV: Tool issues

• If a tool encounters an ambiguous language construct (e.g.
evaluation order of an expression where the expression might
have a side-effect), what can it do?
– Assume left-to-right order? Unsound if compiler

disagrees!
– Assume right-to-left order? Unsound if compiler

disagrees!
– Analyse all orders? Horribly inefficient and tends to O(2N)

time to analyse.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 24

A failure of retrospective SV

• UK Military have been trying to use
retrospective SV to evaluate and
accept critical software since about the
mid 1980s.

• Almost all the time, these efforts have
been time-consuming, expensive, and
produce dubious results.

• Sometimes, they just fail completely –
here is one example:

Copyright © Praxis High Integrity Systems Limited 2005 Slide 25

Chinook HC2…

#include <tale of woe>;

Picture from www.raf.mod.uk

http://www.raf.mod.uk/

Copyright © Praxis High Integrity Systems Limited 2005 Slide 26

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 27

Getting Constructive SV to work…

• The big idea: Start with (or design) an
unambiguous language or a pure subset.

• Only 1 meaning to any program implies
analysis can be deep, fast, sound and
complete.

• Addition of “design by contract” annotations
yields modular analysis.

• Goal: run the analysis all the time during
development. There is NO separate “bug
finding analysis” stage at all.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 28

Turning the dials up…

• Types of static analysis

• The easy stuff:
– Coding standards and “style” rules.
– Simple subset checking (e.g. “no

templates”)

Copyright © Praxis High Integrity Systems Limited 2005 Slide 29

Turning the dials up…

• Deeper…
– Semantic analysis

•Extended type checking
•Absence of side-effects in

expressions
•Absence of implementation-

defined and –dependent features.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 30

Turning the dials up…

• Deeper still
– Absence of undefined and erroneous

behaviour
•Data-flow analysis
•Aliasing analysis

– Information-flow analysis
•Useful for MILS and other security

properties

Copyright © Praxis High Integrity Systems Limited 2005 Slide 31

Turning the dials up…

• Really deep
– Theorem proving or Abstract interpretation.

•Absence of “run-time errors” such as
buffer overflow, division by zero –Partial
correctness verification

– Safety and/or security property verification

– Software model checking

– Timing and memory-usage analysis

Copyright © Praxis High Integrity Systems Limited 2005 Slide 32

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 33

Some example languages and tools

• A very brief and incomplete tour…

• <Insert your favourite here…>

• Apologies to any that I’ve missed.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 34

Example languages and tools (1)

• MISRA C
– A set of "guidelines" for the use of C developed by the

automotive industry. Varied acceptance.
– 127 rules.
– Rules are informally defined, in "ISO English."
– Rules basically imply: subset checking, static semantic checks,

and data-flow analysis.

– The good news:
• Probably the best (public) guidelines for the use of ISO C

ever produced.
• Adoption by automotive industry has prompted much

activity from the tool vendors to support it.
• Now being revised to give a more formal definition of the

rules.
• Has influenced significant projects, such as JSF.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 35

Example languages and tools (2)

• MISRA C - The bad news:
– Informality of rules and inherent ambiguity of C90

• "Compliance" is almost impossible to claim.

– All tool vendors claim "100%" implementation of
the rules.

• All the tools are different!
• Which is right?!?

– C is very "pointer-centric" - meaning some of the
rules are NP-hard or even undecideable to
implement - oh dear…

– Deep analysis is slow, which limits constructive use.
– Tools suffer from high false-alarm rate.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 36

Example languages and tools (3)

• ESC/Java2 and JML
– The extended static checker for Java.
– University research – no commercial support (yet…)
– Data-flow analysis, theorem-proving etc. for runtime

errors.
– Great user interface – “hides the maths…”
– Uses Java Modelling Language (JML) for design-by-

contract.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 37

Example languages and tools (4)

• Microsoft Static Driver Verifier
– A retrospective analyser for device-driver code.
– Assumes a small dialect of Microsoft C.
– Checks code against the “how to write a device

driver” rules.
– Very advanced analysis – a hybrid of theorem

proving and model checking.
– Can be unsound and incomplete, but has still

proven to be very very useful!
– Productised now (flashy GUI etc.) and shipping on

next MS DDK for users.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 38

Example languages and tools (5)

• SPARK
– Disclaimer: I am one of the designers!
– Annotated (design-by-contract) pure subset of

Ada95.
– Designed from scratch for hard real-time and

embedded, high integrity systems.
– Tools do NOT attempt analysis of “Full Ada”, so the

“whole language” problem does not appear.
– It does deliver analysis which is sound, very nearly

complete, deep, fast, and modular.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 39

Example languages and tools (6)

• SPARK Analyses
– Mandatory: Subset checking, static semantics,

data-flow analysis.
– Optional (stage 1): Information flow analysis
– Optional (stage 2): Theorem proving for absence of

runtime errors, partial correctness, safety and/or
security properties.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 40

Example languages and tools (7)

• SPARK Good news
– Track record: industrial use since 1990. Has met or

exceeded DO-178B level A, UK Def Stan 00-55 SIL4,
ITSEC E6, Common Criteria EAL5+, CENELEC 50128 SIL4
etc. etc.

• Not so good news
– It requires discipline!
– It is unsuitable for retrospective analysis.
– It’s British (“Why can’t we buy an American one?”)
– It’s Ada…

• “Unfashionable but works!”

Copyright © Praxis High Integrity Systems Limited 2005 Slide 41

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 42

Results with Constructive SV

• Personal
– One engineer has taken the SEI

Personal Software Process (PSPSM)
course.

– He used SPARK and constructive SV
to do the PSP programming
exercises.

– Results:

Copyright © Praxis High Integrity Systems Limited 2005 Slide 43

Defects injected per kloc

0

50

100

150

D
ef

ec
ts

pe

r K
LO

C

In
je

ct
ed

0 0.1 1 1.1 2 2.1 2.1 2.1
PSP Level

PSP Average - Figure 11.1 in new PSP book

PSP Average

Copyright © Praxis High Integrity Systems Limited 2005 Slide 44

Defects injected per kloc

0

50

100

150
D

ef
ec

ts
 p

er

K
LO

C
 In

je
ct

ed

0 0.1 1 1.1 2 2.1 2.1 2.1
PSP Level

PSP with SPARK
PSP Average

Copyright © Praxis High Integrity Systems Limited 2005 Slide 45

Process yield for 8 programs

0

20

40

60

80

100

120

0 0.1 1 1.1 2 2.1 2.1 2.1

PSP Level

Y
ie

ld
 -

% PSP Minimum
PSP Average
PSP Maximum

Copyright © Praxis High Integrity Systems Limited 2005 Slide 46

Process yield for 8 programs

0

20

40

60

80

100

120

0 0.1 1 1.1 2 2.1 2.1 2.1

PSP Level

Yi
el

d
- %

PSP Average
PSP Maximum
PSP Minimum
PSP with SPARK

Copyright © Praxis High Integrity Systems Limited 2005 Slide 47

A/FR Ratio for 8 programs

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 0.1 1 1.1 2 2.1 2.1 2.1

PSP Level

A
pp

ra
is

al
/F

ai
lu

re
 R

at
io

 (A
/F

R
)

PSP Minimum
PSP Average
PSP Maximum

Copyright © Praxis High Integrity Systems Limited 2005 Slide 48

A/FR Ratio for 8 programs

0
2
4
6
8

10
12
14
16
18
20

0 0.1 1 1.1 2 2.1 2.1 2.1

PSP Level

A
pp

ra
is

al
/F

ai
lu

re
 R

at
io

 (A
/F

R)
PSP Minimum
PSP Average
PSP Maximum
PSP with SPARK

Copyright © Praxis High Integrity Systems Limited 2005 Slide 49

Results with CbyC – Team and
Projects

• Here are data for 5 projects using
constructive static verification.

• Three are safety-critical.
• Two are security-critical.
• All used Correctness by Construction

process.
• All except CDIS used strong,

constructive static verification.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 50

Results with CbyC – Team and
Projects

• CDIS - Critical ATC System (London Airport)
• SHOLIS - Naval Ship/Helicopter Information

System. First ever Def Stan 00-56 "SIL4"
project.

• MULTOS CA - ITSEC E6 (=CC EAL7) secure
certification authority.

• A - Naval stores management system.
• Tokeneer - Biometric access control system.

CC EAL5 and above demonstrator project
funded by a government agency.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 51

A note on “defects”

• A "Defect" is any error in a design artefact
once placed under change control or
delivered to a client, including documents,
designs, manuals etc. as well as code.
– Expected behaviour is defined by the (formal)

system specification.

• CDIS, SHOLIS and MULTOA CA were delivered
with a Warranty.

• During the warranty period, we fix Defects at
no charge.

• For these projects, the quoted figures are all
for the whole project after delivery.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 52

Results with CbyC – Team and
Projects

0.038.0100002003Tokeneer

0.0511.0390002001A

0.0428.01000001999MULTOS
CA

0.227.0270001997SHOLIS

0.7512.771970001992CDIS

Defects
(per kloc)

Productivity
(loc/day)

Size (loc)YearProject

Copyright © Praxis High Integrity Systems Limited 2005 Slide 53

Contents

• Correctness by Construction
• Testing, Languages, Ambiguity, Analysis…
• Goals for Constructive SV
• The Catch…
• Why retrospective analysis doesn’t work…
• Turning the dials up
• SV Languages and tools
• Results with CbyC and SV
• The future?

Copyright © Praxis High Integrity Systems Limited 2005 Slide 54

Future

• A few things to come:
– We have trained the SEI in SPARK…
– Combined PSP/TSP/SPARK/CbyC

trial project soon.
– Make SPARK subset bigger –

generics, interfaces, more OO
support, Ada2005 etc.

Copyright © Praxis High Integrity Systems Limited 2005 Slide 55

Conclusion

• It’s like dieting!
– Many “quick fixes”, but to make a

big difference a real change in
lifestyle is needed.

– Constructive SV offers an
“alternative lifestyle” which is
effective (but perhaps not for
everyone.)

Copyright © Praxis High Integrity Systems Limited 2005 Slide 56

Resources

• www.praxis-his.com
– Company, papers etc.

• www.sparkada.com
– SPARK Information
– White papers and publications

Copyright © Praxis High Integrity Systems Limited 2005 Slide 57

Praxis High Integrity Systems Limited
20 Manvers Street
Bath BA1 1PX
United Kingdom
Telephone: +44 (0) 1225 466991
Facsimilie: +44 (0) 1225 469006

Website: www.praxis-his.com, www.sparkada.com

Email: sparkinfo@praxis-his.com

	Correctness by Construction:The Case for Constructive Static Verification
	Contents
	Contents
	So what is Correctness-by-Construction (CbyC)?
	CbyC Characteristics
	Contents
	Testing…
	Why Static Verification?
	Catch 1
	Catch 1
	This is not a new idea…
	Languages - Definitions
	Languages ambiguities…A sliding scale
	Languages ambiguities…A sliding scale
	Languages ambiguities…A sliding scale
	Contents
	Goals for Constructive SV
	Goals for Constructive SV
	Contents
	The irony of subsets, dialects, and analysis tools
	The irony of subsets, dialects, and analysis tools
	Contents
	Retrospective SV problems
	Retrospective SV: Tool issues
	A failure of retrospective SV
	Chinook HC2…
	Contents
	Getting Constructive SV to work…
	Turning the dials up…
	Turning the dials up…
	Turning the dials up…
	Turning the dials up…
	Contents
	Some example languages and tools
	Example languages and tools (1)
	Example languages and tools (2)
	Example languages and tools (3)
	Example languages and tools (4)
	Example languages and tools (5)
	Example languages and tools (6)
	Example languages and tools (7)
	Contents
	Results with Constructive SV
	Defects injected per kloc
	Defects injected per kloc
	Process yield for 8 programs
	Process yield for 8 programs
	A/FR Ratio for 8 programs
	A/FR Ratio for 8 programs
	Results with CbyC – Team and Projects
	Results with CbyC – Team and Projects
	A note on “defects”
	Results with CbyC – Team and Projects
	Contents
	Future
	Conclusion
	Resources

