
The Case for Common Flaw Enumeration
Robert A. Martin
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3001

ramartin@mitre.org

Steven M. Christey
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3961

coley@mitre.org

Joe Jarzombek
National Cyber Security Division

Department of Homeland Security
Arlington, VA 22201

1-703-235-5126

joe.jarzombek@dhs.gov

ABSTRACT
Software acquirers want assurance that the software products they
are obtaining are reviewed for known types of security flaws.
The acquisition groups in large government and private
organizations are moving forward to use these types of reviews as
part of future contracts. The tools and services that can be used
for this type of review are fairly new at best. However, there are
no nomenclature, taxonomies, or standards to define the
capabilities and coverage of these tools and services. This makes
it difficult to comparatively decide which tool/service is best
suited for a particular job. A standard taxonomy of software
security vulnerabilities can serve as a unifying language of
discourse and measuring stick for tools and services. Leveraging
the diverse thinking on this topic from academia, the commercial
sector, and government, we can pull together the most valuable
breadth and depth of content and structure to serve as a unified
standard. As a starting point, we plan to leverage the wide
acceptance and use of the Common Vulnerabilities and Exposures
(CVE) list of publicly known software security flaws. In
conjunction with industry and academia, we propose to extend the
coverage of the CVE concept [1] into security-based code
assessment tools and services. Our objective is to help shape and
mature this new code security assessment industry and also
dramatically accelerate the use and utility of these capabilities for
organizations in reviewing the software systems they acquire or
develop.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Software, Security, Testing, Verification, Flaws, Faults.

Keywords
taxonomies, static analysis, security flaws, weaknesses,
idiosyncrasies, WIFF, Common Vulnerabilities and Exposures,
CVE, vulnerabilities, secure software, software security
assurance.

1. INTRODUCTION
More and more organizations want assurance that the software
products they acquire and develop are free of known types of
security flaws. High quality tools and services for finding security
flaws in code are new. The question of which tool/service is
appropriate/better for a particular job is hard to answer given the
lack of structure and definition in the code assessment industry.

There are several efforts currently ongoing to begin to resolve
some of these shortcomings including the Department of
Homeland Security (DHS) National Cyber Security Division
(NCSD) sponsored Software Assurance Metrics and Tool
Evaluation (SAMATE) project [2] being led by the National
Institute of Standards and Technology (NIST), and the
Department of Defense (DOD) sponsored Code Assessment
Methodology Project (CAMP) which is part of the Protection of
Vital Data (POVD) effort [3] being conducted by Concurrent
Technologies Corporation (CTC), among others. While these
efforts are well placed, timely in their objectives and will surely
yield high value in the end, they both would benefit from a
common description of the underlying security vulnerabilities in
software that they are targeted to resolve. Without such a common
taxonometric description, many of these efforts cannot move
forward in a meaningful fashion or be aligned and integrated with
each other to provide strategic value.

Past efforts at developing this kind of taxonomy have been
limited by a very narrow technical domain focus or have largely
focused on high-level theories, taxonomies, or schemes that do
not reach the level of detail or variety of security issues that are
found in today's products. As an alternate approach, under
sponsorship of DHS NCSD, MITRE investigated the possibility
of leveraging the CVE initiative’s experience in analyzing nearly
13,000 real-world vulnerabilities reported and discussed by
industry and academia.

As part of the creation of the CVE List, over the last five years
MITRE's CVE initiative, sponsored by DHS NCSD, has
developed a preliminary classification and categorization of
vulnerabilities, attacks, faults, and other concepts that can be used
to help define this arena. However, the current groupings used in
the development of CVE, while sufficient for that task, are too
rough to be used to identify and categorize the functionality
offered within the offerings of the code security assessment
industry. Additional fidelity and succinctness is needed to support
this type of usage and there needs to be additional details and
description for each of the different nodes and groupings such as
the effects, behaviors, and implementation details, etc.

As part of MITRE's participation in the DHS-sponsored NIST
SAMATE project MITRE took a first cut at revising the internal
CVE category work for usage in the code assessment industry.
The resultant document, called the Preliminary List Of
Vulnerability Examples for Researchers (PLOVER) [4], is a
working document that lists over 1,400 diverse, real-world
examples of vulnerabilities, identified by their CVE name. The
vulnerabilities are organized within a detailed conceptual

framework that currently enumerates 290 individual types of
Weaknesses, Idiosyncrasies, Faults, Flaws (WIFFs), with a large
number of real-world vulnerability examples for each type of
WIFF. PLOVER represents the first cut of a truly bottom-up
effort to take real-world observed faults and flaws that do exist in
code, abstract them and group them into common classes
representing more general potential vulnerabilities that could exist
in code, and then finally to organize them in an appropriate
relative structure so as to make them accessible and useful to a
diverse set of audiences for a diverse set of purposes. The initial
details of this enumeration can be found at the end of this paper.

Working with the community under the NIST SAMATE project,
we are establishing acceptable definitions and descriptions of
these CWEs. When completed, this will serve as a mechanism for
describing code vulnerability assessment capabilities in terms of
their coverage of the different CWEs. If necessary, this will also
be scoped to specific languages, frameworks, platforms and
machine architectures. More work is required to group PLOVER
WIFFs into a taxonomy more useful for SAMATE.

2. OBJECTIVES
As discussed above, we are leveraging PLOVER as a starting
point for the creation of a formal enumeration of the set of
software security Weaknesses, Idiosyncrasies, Faults, Flaws
(WIFFs) to serve as a common language for describing software
security vulnerabilities, to serve as a standard measuring stick for
software security tools targeting these vulnerabilities, and to
provide a common glue for vulnerability identification, mitigation
and prevention efforts. When complete, this Common WIFF
Enumeration (CWE) will not only encompass a large portion of
the CVE List's 12,000 plus CVE names but it will also include
detail and breadth from a diverse set of other industry and
academic sources and examples. Once a comprehensively broad
set of CWEs has been identified and collected, we will again look
to these other sources and examples for approaches to organizing
this enumeration in order to provide more simplicity to various
potential users through taxonometric layering.

Working with the community under the DHS-sponsored NIST
SAMATE project we are proceeding to establish acceptable
definitions and descriptions of these CWEs to support finding
these types of software security flaws in code prior to fielding.
When completed this will be a mechanism for describing each of
the industry's software security flaw code assessment capabilities
in terms of their coverage of the different CWEs. If necessary,
this will also be scoped to specific languages, frameworks,
platforms and machine architectures.

Additionally, we are working with researchers and software
suppliers to determine what sort of metadata and resources (e.g.
code exemplars, patterns, code snippets, etc.) will be needed to
allow tools to be tailored or enhanced to identify CWEs in code.
This work will also align with and leverage the SAMATE
project’s various sub-efforts including its development of a corpus
of data to determine precision and recall statistics for verifying
the effectiveness of these types of code assessment tools with
respect to finding CWEs.

Beyond the creation of the vulnerability taxonomy for the stated
reasons, a further end goal of this effort will be to take the
findings and results of this work and roll them into the CVE

initiative as the foundation of a new type of compatibility that can
be directly used by organizations in their selection and evaluation
of tools and/or services for assessing their acquired software for
known types of flaws.

3. APPROACH
A main theme of this effort is to leverage the existing work on
this topic area [5]-[14] in light of the large number of diverse real-
world vulnerabilities in CVE. We will leverage as many sources
and examples as we can gain access to as well as collaborate with
key industry players who are currently tackling this subject. We
will work in conjunction with researchers at the NIST, The Open
Web Application Security Project (OWASP), Ounce Labs,
Cigital, Fortify Software, Cenzic, Microsoft, Klocwork, and
Secure Software, and other interested parties, to develop specific
and succinct definitions of the CWE list elements that adequately
describe and differentiate the various CWEs while capturing their
specific effects, behaviors, exploit mechanisms, and
implementation details. In addition, we will assign the
appropriate CWE to the CVE names so that each CWE group will
have a list of the CVE names that belong to that CWE category of
software security flaws. In constructing the CWE list, we will
strive for maximum comprehensive coverage across appropriate
conceptual, business and technical domains.

In our efforts to define organizational structure to the CWE list
elements, we will look not only to PLOVER, but also to leading
thoughts in this area including the McGraw/Fortify “Kingdoms”
taxonomy [15], Howard, LeBlanc & Viega’s 19 Deadly Sins [16],
Secure Software’s CLASP [17], among others. In defining the
organizational structure, we will strive for simplicity and
appropriateness of description for leveraging by various audiences
and for various purposes through the use of taxonometric
layering. We currently foresee using a three tiered approach, in
which the lowest level consists of the full CWE list (likely
hundreds of nodes) and that is applicable to tool vendors and
detailed research efforts. The middle tier would consist of
descriptive affinity groupings of CWEs (likely 25-50 nodes) that
are useful to software security and software development
practitioners. The top level would consist of high-level groupings
of the middle tier nodes (likely 5-10 nodes) to define strategic
classes of vulnerability and is useful for high level discourse
among software practitioners, business people, tool vendors,
researchers, etc.

Once an initial CWE list and organizational structure have been
defined, we will collaborate with our colleagues in the industry to
further refine the required attributes of CWE list elements into a
more formal schema defining the metadata structure necessary to
support the various uses of the taxonomy. This schema will also
be driven by a desire to align with and support the other
SAMATE and CAMP efforts such as software metrics, software
security tool metrics, the software security tool survey, the
methodology for validating software security tool claims, and the
reference datasets.

With a schema defined, an initial comprehensive list of CWEs
identified and defined and an organizational structure in place,
this set of content will be submitted to a much broader audience
of industry participants to discuss, review and revise. This cycle
will iterate until a general consensus can be reached on what will
become the first release of the specification (a defacto standard).

4. IMPACT AND TRANSITION
OPPORTUNITIES
The completion of this effort will yield consequences of three
types: direct impact and value, alignment with and support of
other existing efforts, and enabling of new follow-on efforts to
provide value that is not currently being pursued.

Following is a list of the direct impacts this effort will yield. Each
impact could be the topic of much deeper ongoing discussion.

1. Provide a common language of discourse for discussing,
finding and dealing with the causes of software security
vulnerabilities as they are manifested in code.

2. Allow software security tool vendors and service providers
to make clear and consistent claims of the security
vulnerability causes that they cover to their potential user
communities in terms of the CWEs that they look for in a
particular code language. Additionally, a new type of CVE
Compatibility will be developed to allow security tool and
service providers to publicly declare their capability's
coverage of CWEs

3. Allow purchasers to compare, evaluate and select software
security tools and services that are most appropriate to their
needs including having some level of assurance of the level
of CWEs that a given tool would find. Software purchasers
would be able to compare coverage of tool and service
offerings against the list of CWEs and the programming
languages that are used in the software they are acquiring.

4. Enable the verification of coverage claims made by software
security tool vendors and service providers (this is supported
through CWE metadata and alignment with the SAMATE
reference dataset).

5. Enable government and industry to leverage this
standardization in the contractual terms and conditions.

Following is a list of alignment opportunities with existing efforts
that are provided by the results of this effort. Again, each of these
items could be the topic of much deeper ongoing discussion.

1. Mapping of CWEs to CVEs. This mapping will help bridge
the gap between the potential sources of vulnerabilities and
examples of their observed instances providing concrete
information for better understanding the CWEs and
providing some validation of the CWEs themselves.

2. Bidirectional alignment between the vulnerability taxonomy
and the SAMATE metrics effort.

3. The SAMATE software security tool/service capability
framework effort that is tasked with designing a framework
and schema to quantitatively and qualitatively describe the
capabilities of tools and services would be able to leverage
this vulnerability taxonomy as the core layer of the
framework. This framework effort is not an explicitly called
out item in the SAMATE charter but is implied as necessary
to meet the project’s other objectives.

4. The SAMATE software security tool and services survey
effort would be able to leverage this vulnerability taxonomy
as part of the capability framework to effectively and

unambiguously describe various tools and services in a
consistent apples-to-apples fashion.

5. There should be bidirectional alignment between this source
of vulnerability taxonomy and the SAMATE reference
dataset effort such that CWEs could reference supporting
reference dataset entries as code examples of that particular
CWE for explanatory purposes and reference dataset entries
could reference the associated CWEs that they are intended
to demonstrate for validation purposes. Further, by working
with industry, an appropriate method could be developed for
collecting, abstracting, and sharing code samples from the
code of the products that the CVE names are assigned to
with the goal of gathering these code samples from industry
researchers and academia so that they could be shared as part
of the reference dataset and aligned with the vulnerability
taxonomy. These samples would then be available as
tailoring and enhancement aides to the developers of code
assessment security tools. We could actively engage closed
source and open source development organizations that work
with the CVE initiative to assign CVE names to
vulnerabilities to identify an approach that would protect the
source of the samples while still allowing us to share them
with others. By using the CVE-based relationships with
these organizations, we should be able to create a high-
quality collection of samples while also improving the
accuracy of the security code assessment tools that are
available to the software development groups to use in
vetting their own product's code

6. The SAMATE software security tool/service assessment
framework effort that is tasked with designing a test and
validation framework to support the validation of
tool/service vendor claims by either the purchaser directly or
through a 3rd party, would rely heavily on this sources of
vulnerability taxonomy as its basis of analysis. To support
this, we would work with researchers to define the
mechanisms used to exploit the various CWEs for the
purposes of helping to clarify the CWE groupings and as a
possible verification method for validating the effectiveness
of the tools that identify the presence of CWEs in code by
exploring the use of several testing approaches on the
executable version of the reviewed code. The effectiveness
of these test approaches could be explored with the goal of
identifying a method or methods that are effective and
economical to apply to the validation process

7. Bidirectional mapping between CWEs and Coding Rules,
such as those deployed as part of the DHS NCSD “Build
Security In” (BSI) website [18], used by tools and in manual
code inspections to identify vulnerabilities in software.

8. There should be bidirectional alignment between the
vulnerability taxonomy and the CAMP malware repository
effort similar to the alignment with the SAMATE reference
dataset described in #5 above.

Following is a list of new, unpursued follow-on opportunities for
creating added value to the software security industry.

1. Expansion of the Coding Rules Catalog on the DHS BSI
website to include full mapping against the CWEs for all
relevant technical domains.

2. Identification and definition of specific domains (language,
platform, functionality, etc.) and relevant protection profiles
based on coverage of CWEs. These domains and profiles
could provide a valuable tool to security testing strategy and
planning efforts.

With this fairly quick research and refinement effort, this work
should be able to help shape and mature this new code security
assessment industry, and dramatically accelerate the use and
utility of these capabilities for organizations and the software
systems they acquire, develop, and use.

5. Initial Weaknesses, Idiosyncrasies, Faults,
Flaws (WIFFs) Enumeration
The following section introduces the current content we have
derived through studying a large portion of the CVE list. The
listing below, which is comprised of 290 specific types of
weakness, idiosyncrasies, faults and flaws (WIFFs) is not
exhaustive and will certainly evolve.

Our purpose in coining the term “WIFFs” is avoid the use of
the term “vulnerability” for these items. The term “vulnerability”
is frequently used in the community to apply to other concepts
including bugs, attacks, threats, risks, and impact. Also, there are
widely varying opinions regarding what “risk level” must be
associated with a problem in order to call it a vulnerability, e.g. in
terms of denial-of-service attacks and minor information leaks.
Finally, not every instance of the items listed below, or those
collected in this overall effort, will need to be removed or
addressed in the applications they reside in. While they most
certainly need to be examined and evaluated for their potential
impact to the application, there will certainly be a large number of
these items that could be safely left as is, or dealt with by making
some minimal adjustments or compensations to keep them from
manifesting into exploitable vulnerabilities. If we went forward
using the term “vulnerability” for these items, there would be a
built-in bias and predisposition to remove and eliminate each and
every one of them, which would be a massive and unnecessary
waste of time and resources.

The items below have not been categorized except in the most
obvious and expeditious manner. With the incorporation of the
other contributions from academia and industry sources we will
most certainly reorganize these groupings as more examples and
specifics are added. With this caveat we provide the following
summary of the 28 main categories which contain the 290
individual types of WIFFs we have enumerated to-date.

1. Buffer overflows, format strings, etc. [BUFF] (10 types)

 These categories cover the increasingly diverse set of
WIFFs that are generally referred to as “buffer overflows.”
The specific types in this group are: Buffer Boundary
Violations (“buffer overflow”), Unbounded Transfer
(“classic overflow”), Boundary beginning violation (“buffer
underflow”), Out-of-bounds Read, Buffer over-read, Buffer
under-read, Array index overflow, Length Parameter
Inconsistency, Other length calculation error, Format string
vulnerability

2. Structure and Validity Problems [SVM] (10 types)

 These categories cover certain ways in which “well-
formed” data could be malformed. The specific types in this
group are: Missing Value Error, Missing Parameter Error,
Missing Element Error, Extra Value Error, Extra Parameter
Error, Undefined Parameter Error, Undefined Value Error,
Wrong Data Type, Incomplete Element, Inconsistent
Elements

3. Special Elements (Characters or Reserved Words) [SPEC]
(19 types)

 These categories cover the types of special elements
(special characters or reserved words) that become security-
relevant when transferring data between components. The
specific types in this group are: General Special Element
Problems, Parameter Delimiter, Value Delimiter, Record
Delimiter, Line Delimiter, Section Delimiter, Input
Terminator, Input Leader, Quoting Element, Escape, Meta,
or Control Character / Sequence, Comment Element, Macro
Symbol, Substitution Character, Variable Name Delimiter,
Wildcard or Matching Element, Whitespace, Grouping
Element / Paired Delimiter, Delimiter between Expressions
or Commands, Null Character / Null Byte

4. Common Special Element Manipulations [SPECM] (11
types)

 These categories include different ways in which special
elements could be introduced into input to software as it
operates. The specific types in this group are: Special
Element Injection, Equivalent Special Element Injection,
Leading Special Element, Multiple Leading Special
Elements, Trailing Special Element, Multiple Trailing
Special Elements, Internal Special Element, Multiple
Internal Special Element, Missing Special Element, Extra
Special Element, Inconsistent Special Elements

5. Technology-Specific Special Elements [SPECTS] (17
types)

 These categories cover special elements in commonly used
technologies and their associated formats. The specific
types in this group are: Cross-site scripting (XSS), Basic
XSS, XSS in error pages, Script in IMG tags, XSS using
Script in Attributes, XSS using Script Via Encoded URI
Schemes, Doubled character XSS manipulations, e.g.
“<<script”, Null Characters in Tags, Alternate XSS syntax,
OS Command Injection, Argument Injection or
Modification, SQL injection, LDAP injection, XML
injection (aka Blind Xpath injection), Custom Special
Character Injection, CRLF Injection, Improper Null
Character Termination

6. Pathname Traversal and Equivalence Errors [PATH] (47
types)

 These categories cover the use of file and directory names
to either “escape” out of an intended restricted directory, or
access restricted resources by using equivalent names. The
specific types in this group are: Path Traversal, Relative
Path Traversal, “/directory/../filename”, “../filedir”,

“/../filedir”, “directory/../../filename”, “..\filename” (“dot
dot backslash”), “\..\filename” (“leading dot dot
backslash”), “\directory\..\filename”,
“directory\..\..\filename”, “...” (triple dot), “....” (multiple
dot), “....//” (doubled dot dot slash), Absolute Path
Traversal, /absolute/pathname/here, “.../...//”,
\absolute\pathname\here (“backslash absolute path”),
“C:dirname” or C: (Windows volume or “drive letter”),
“\\UNC\share\name\” (Windows UNC share), Path
Equivalence, Trailing Dot - “filedir.”, Internal Dot -
“file.ordir”, Multiple Internal Dot - “file...dir”, Multiple
Trailing Dot - “filedir....”, Trailing Space - “filedir “,
Leading Space - “ filedir”, file[SPACE]name (internal
space), filedir/ (trailing slash, trailing /),
//multiple/leading/slash (“multiple leading slash”),
/multiple//internal/slash (“multiple internal slash”),
/multiple/trailing/slash// (“multiple trailing slash”),
\multiple\\internal\backslash, filedir\ (trailing backslash), /./
(single dot directory), filedir* (asterisk / wildcard),
dirname/fakechild/../realchild/filename, Windows 8.3
Filename, Link Following, UNIX symbolic link (symlink)
following, UNIX hard link, Windows Shortcut Following
(.LNK), Windows hard link, Virtual Files, Windows MS-
DOS device names, Windows ::DATA alternate data
stream, Apple “.DS_Store”, Apple HFS+ alternate data
stream

7. Channel and Path Errors [CP] (13 types)

 These categories cover the ways in which the use of
communication channels or execution paths could be
security-relevant. The specific types in this group are:
Channel Errors, Unprotected Primary Channel, Unprotected
Alternate Channel, Alternate Channel Race Condition,
Proxied Trusted Channel, Unprotected Windows Messaging
Channel (“Shatter”), Alternate Path Errors, Direct Request
aka “Forced Browsing”, Miscellaneous alternate path
errors, Untrusted Search Path, Mutable Search Path,
Uncontrolled Search Path Element, Unquoted Search Path
or Element

8. Cleansing, Canonicalization, and Comparison Errors [CCC]
(16 types)

 These categories cover various ways in which inputs are not
properly cleansed or canonicalized, leading to improper
actions on those inputs. The specific types in this group are:
Encoding Error, Alternate Encoding, Double Encoding,
Mixed Encoding, Unicode Encoding, URL Encoding (Hex
Encoding), Case Sensitivity (lowercase, uppercase, mixed
case), Early Validation Errors, Validate-Before-
Canonicalize, Validate-Before-Filter, Collapse of Data into
Unsafe Value, Permissive Whitelist, Incomplete Blacklist,
Regular Expression Error, Overly Restrictive Regular
Expression, Partial Comparison

9. Information Management Errors [INFO] (19 types)

 These categories involve the inadvertent or intentional
publication or omission of sensitive data, which is not
resultant from other types of WIFFs. The specific types in
this group are: Information Leak (information disclosure),
Discrepancy Information Leaks, Response discrepancy

infoleak, Behavioral Discrepancy Infoleak, Internal
behavioral inconsistency infoleak, External behavioral
inconsistency infoleak, Timing discrepancy infoleak,
Product-Generated Error Message Infoleak, Product-
External Error Message Infoleak, Cross-Boundary
Cleansing Infoleak, Intended information leak, Process
information infoleak to other processes, Infoleak Using
Debug Information, Sensitive Information Uncleared
Before Use, Sensitive memory uncleared by compiler
optimization, Information loss or omission, Truncation of
Security-relevant Information, Omission of Security-
relevant Information, Obscured Security-relevant
Information by Alternate Name

10. Race Conditions [RACE] (6 types)

 These categories cover various types of race conditions.
The specific types in this group are: Race condition
enabling link following, Signal handler race condition,
Time-of-check Time-of-use race condition, Context
Switching Race Condition, Alternate Channel Race
Condition, Other race conditions

11. Permissions, Privileges, and ACLs [PPA] (20 types)

 These categories include the improper use, assignment, or
management of permissions, privileges, and access control
lists. The specific types in this group are: Privilege /
sandbox errors, Incorrect Privilege Assignment, Unsafe
Privilege, Privilege Chaining, Privilege Management Error,
Privilege Context Switching Error, Privilege Dropping /
Lowering Errors, Insufficient privileges, Misc. privilege
issues, Permission errors, Insecure Default Permissions,
Insecure inherited permissions, Insecure preserved inherited
permissions, Insecure execution-assigned permissions, Fails
poorly due to insufficient permissions, Permission
preservation failure, Ownership errors, Unverified
Ownership, Access Control List (ACL) errors, User
management errors

12. Handler Errors [HAND] (4 types)

 These categories, which are not very mature, cover various
ways in which “handlers” are improperly applied to data.
The specific types in this group are: Handler errors,
Missing Handler, Dangerous handler not cleared/disabled
during sensitive, Raw Web Content Delivery, File Upload
of Dangerous Type

13. User Interface Errors [UI] (7 types)

 These categories cover WIFFs in a product's user interface
that lead to insecure conditions. The specific types in this
group are: Product UI does not warn user of unsafe actions,
Insufficient UI warning of dangerous operations, User
interface inconsistency, Unimplemented or unsupported
feature in UI, Obsolete feature in UI, The UI performs the
wrong action, Multiple Interpretations of UI Input, UI
Misrepresentation of Critical Information

14. Interaction Errors [INT] (7 types)

 These categories cover WIFFs that only occur as the result
of interactions or differences between multiple products
that are used in conjunction with each other. The specific

types in this group are: Multiple Interpretation Error (MIE),
Extra Unhandled Features, Behavioral Change, Expected
behavior violation, Unintended proxy/intermediary, HTTP
response splitting, HTTP Request Smuggling

15. Initialization and Cleanup Errors [INIT] (6 types)

 These categories cover incorrect initialization. The specific
types in this group are: Insecure default variable
initialization, External initialization of trusted variables or
values, Non-exit on Failed Initialization, Missing
Initialization, Incorrect initialization, Incomplete Cleanup.

16. Resource Management Errors [RES] (11 types)

 These categories cover ways in which a product does not
properly manage resources such as memory, CPU, network
bandwidth, or product-specific objects. The specific types
in this group are: Memory leak, Resource leaks, UNIX file
descriptor leak, Improper resource shutdown, Asymmetric
resource consumption (amplification), Network
Amplification, Algorithmic Complexity, Data
Amplification, Insufficient Resource Pool, Insufficient
Locking, Missing Lock Check

17. Numeric Errors [NUM] (6 types)

 These categories cover WIFFs that involve erroneous
manipulation of numbers. The specific types in this group
are: Off-by-one Error, Integer Signedness Error (aka
“signed integer” error), Integer overflow (wrap or
wraparound), Integer underflow (wrap or wraparound),
Numeric truncation error, Numeric Byte Ordering Error

18. Authentication Error [AUTHENT] (12 types)

 These categories cover WIFFs that cause authentication
mechanisms to fail. The specific types in this group are:
Authentication Bypass by Alternate Path/Channel,
Authentication bypass by alternate name, Authentication
bypass by spoofing, Authentication bypass by replay, Man-
in-the-middle (MITM), Authentication Bypass via
Assumed-Immutable Data, Authentication Logic Error,
Missing Critical Step in Authentication, Authentication
Bypass by Primary WIFF, No Authentication for Critical
Function, Multiple Failed Authentication Attempts not
Prevented, Miscellaneous Authentication Errors

19. Cryptographic errors [CRYPTO] (13 members)

 These categories cover problems in the design or
implementation of cryptographic algorithms and protocols,
or their misuse within other products. The specific types in
this group are: Plaintext Storage of Sensitive Information,
Plaintext Storage in File or on Disk, Plaintext Storage in
Registry, Plaintext Storage in Cookie, Plaintext Storage in
Memory, Plaintext Storage in GUI, Plaintext Storage in
Executable, Plaintext Transmission of Sensitive
Information, Key Management Errors, Missing Required
Cryptographic Step, Weak Encryption, Reversible One-
Way Hash, Miscellaneous Crypto Problems

20. Randomness and Predictability [RAND] (9 types)

 These categories cover WIFFs in security-relevant
processing that depends on sufficient randomness to be
effective. The specific types in this group are: Insufficient
Entropy, Small Space of Random Values, PRNG Seed
Error, Same Seed in PRNG, Predictable Seed in PRNG,
Small Seed Space in PRNG, Predictable from Observable
State, Predictable Exact Value from Previous Values,
Predictable Value Range from Previous Values

21. Code Evaluation and Injection [CODE] (4 types)

 These categories cover WIFFs in components that process
and evaluate data as if it is code. The specific types in this
group are: Direct Dynamic Code Evaluation, Direct Static
Code Injection, Server-Side Includes (SSI) Injection, PHP
File Inclusion

22. Error Conditions, Return Values, Status Codes [ERS] (4
types)

 These categories cover WIFFs that occur when a product
does not properly handle rare or erroneous operating
conditions. The specific types in this group are: Unchecked
Error Condition, Missing Error Status Code, Wrong Status
Code, Unexpected Status Code or Return Value

23. Insufficient Verification of Data [VER] (7 types)

 These categories cover WIFFs in which the source and
integrity of incoming data are not properly verified. The
specific types in this group are: Improperly Verified
Signature, Use of Less Trusted Source, Untrusted Data
Appended with Trusted Data, Improperly Trusted Reverse
DNS, Insufficient Type Distinction, Cross-Site Request
Forgery (CSRF), Other Insufficient Verification

24. Modification of Assumed-Immutable Data [MAID] (2
types)

 These categories cover WIFFs in which data that is
assumed to be immutable by a product, can be modified by
an attacker. The specific types in this group are: Web
Parameter Tampering, PHP External Variable Modification

25. Product-Embedded Malicious Code [MAL] (7 types)

 These categories cover WIFFs for intentionally malicious
code that has been introduced into a product sometime
during the software development lifecycle. The specific
types in this group are: Back Door, Back Door, Developer-
Introduced Back Door, Outsider-Introduced Back Door,
Hidden User-Triggered Functionality, Logic Bomb, Time
Bomb

26. Common Attack Mitigation Failures [ATTMIT] (3 types)

 These categories cover certain design problems that are
more frequently known by the attacks against them. The
specific types in this group are: Insufficient Replay
Protection, Susceptibility to Brute Force Attack,
Susceptibility to Spoofing

27. Containment errors (container errors) [CONT] (3 types)

 These categories cover WIFFs that involve the storage or
transfer of data outside of its logical boundaries. The
specific types in this group are: Sensitive Entity in
Accessible Container, Sensitive Data Under Web Root,
Sensitive Data Under FTP Root

28. Miscellaneous WIFFs [MISC] (7 types)

 These categories do not fit cleanly within any of the other
main categories. The specific types in this group are:
Double-Free Vulnerability, Incomplete Internal State
Distinction, Other Types of Truncation Errors, Signal
Errors, Improperly Implemented Security Check for
Standard, Misinterpretation Error, Business Rule Violations
or Logic Errors

6. ACKNOWLEDGMENTS
The work contained in this paper was funded by DHS NCSD.

7. REFERENCES
[1] “The Common Vulnerabilities and Exposures (CVE)

Initiative,” MITRE Corporation, (http://cve.mitre.org).
[2] “The Software Assurance Metrics and Tool Evaluation

(SAMATE) project,” National Institute of Science and
Technology (NIST), (http://samate.nist.gov).

[3] Code Assessment Methodology Project (CAMP), part of the
Protection of Vital Data (POVD) effort, Concurrent
Technologies Corporation, (http://www.ctc.com).

[4] “The Preliminary List Of Vulnerability Examples for
Researchers (PLOVER),” MITRE Corporation,
(http://cve.mitre.org/docs/plover/).

[5] Householder, A. D., Seacord, R. C., “A Structured Approach
to Classifying Security Vulnerabilities,” CMU/SEI-2005-
TN-003, January 2005.

[6] Leek, T., Lippmann, R., Zitser, M., “Testing Static Analysis
Tools Using Exploitable Buffer Overflows From Open
Source Code,” Foundations of Software Engineering
December, 2005 Newport Beach, CA.

[7] Waters, J. K., “Don’t Let Your Applications Get You
Down,” Application Development Trends, July 2005.

[8] Wang, C., Wang, H., “Taxonomy of Security Considerations
and Software Quality,” Communications of the ACM, June
2003, Vol. 46. No. 6.

[9] Plante, A., “Beefed up OWASP 2.0 introduced at BlackHat,”
SearchSecurity.com, 28 July, 2005.

[10] Viega, J., “Security, Problem Solved?,” QUEUE, June 2005.
[11] Ball, T., Das, M., DeLine, R., Fahndrich, M., Larus, J. R.,

Pincus, J., Rajamani, S. K., Venkatapathy, R., “Righting
Software,” IEEE Software, May/June 2004.

[12] Ranum, M. J., “SECURITY, The root of the problem,”
QUEUE, June 2004.

[13] Messier, M., Viega, J., “It’s not just about the buffer
overflow,” QUEUE, June 2004.

[14] Weber, S., Karger, P. A., Paradkar, A., “A Software Flaw
Taxonomy: Aiming Tools at Security,” ACM Software
Engineering for Secure Systems – Building Trustworthy
Applications (SESS’05) St. Louis, Missouri, USA., June
2004.

[15] McGraw, G., Chess, B., Tsipenyuk, K., “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors”.
“NIST Workshop on Software Security Assurance Tools,
Techniques, and Metrics,” November, 2005 Long Beach,
CA.

[16] Howard, M., LeBlanc, D., and Viega, J., “19 Deadly Sins of
Software Security”. McGraw-Hill Osborne Media, July
2005.

[17] Viega, J., The CLASP Application Security Process, Secure
Software, Inc., http://www.securesoftware.com, 2005.

[18] Department of Homeland Security National Cyber Security
Division’s “Build Security In” (BSI) web site,
(http://buildsecurityin.us-cert.gov).

	INTRODUCTION
	OBJECTIVES
	APPROACH
	IMPACT AND TRANSITION OPPORTUNITIES
	Initial Weaknesses, Idiosyncrasies, Faults, Flaws (WIFFs) En
	ACKNOWLEDGMENTS
	REFERENCES

