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Warnings 
Trade names or manufacturers’ names are used in this report for identification only. This usage 

does not constitute an official endorsement, either expressed or implied, by the National Security 

Agency. 

References to a product in this report do not imply endorsement by the National Security Agency 

of the use of that product in any specific operational environment, to include integration of the 

product under evaluation as a component of a software system. 

References to an evaluation tool, technique, or methodology in this report do not imply 

endorsement by the National Security Agency of the use of that evaluation tool, technique, or 

methodology to evaluate the functional strength or suitability for purpose of arbitrary software 

analysis tools. 

Citations of works in this report do not imply endorsement by the National Security Agency or 

the Center for Assured Software of the content, accuracy or applicability of such works. 

References to information technology standards or guidelines do not imply a claim that the 

product under evaluation is in conformance or nonconformance with such a standard or 

guideline. 

References to test data used in this evaluation do not imply that the test data was free of defects 

other than those discussed.  Use of test data for any purpose other than studying static analysis 

tools is expressly disclaimed. 

This report and the information contained in it may not be used in whole or in part for any 

commercial purpose, including advertising, marketing, or distribution. 

This report is not intended to endorse any vendor or product over another in any way. 

Trademark Information 
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation 

in the United States and/or other countries. 

MITRE is a registered trademark of The MITRE Corporation. 

Apache is a registered trademark of the Apache Software Foundation. 
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Abstract 

 

 

The primary mission of the National Security Agency’s (NSA) Center for Assured Software 

(CAS) is to increase the degree of confidence that software used within the Department of 

Defense (DoD) is free from exploitable vulnerabilities. Over the past several years, commercial 

and open source static analysis tools have become more sophisticated at being able to identify 

flaws that can lead to such vulnerabilities.  As these tools become more reliable and popular with 

developers and clients, the need to fully understand their capabilities and shortcomings is 

becoming more important. 

To this end, the CAS regularly conducts studies using a scientific, methodical approach that 

measures and rates effectiveness of these tools in a standard and repeatable manner.  The CAS 

Static Analysis Tool Study Methodology is based on a set of artificially created known answer 

tests that comprise examples of “intentionally flawed code.” Each flawed example, with the 

exception of specific test cases, has at least one corresponding construct that is free from that 

specific flaw. In applying the methodology, the tester analyzes all tools using this common 

testing corpus.  The methodology then offers a common way to “score” the tools’ results so that 

they are easily compared. With this known answer approach, testers can have full insight into 

what a tool should report as a flaw, what it misses, and what it actually reports. The CAS has 

created and released the test corpus to the community for analysis, testing, and adoption.
1
  

This document provides a step by step description of this methodology in the hope that it can 

become part of the public discourse on the measurement and performance of static analysis 

technology.  In addition, this document shows the various reporting formats used by the CAS 

and provides an overview of how the CAS administers its tool study. It is available for public 

consumption, comment and adoption.  Comments and suggestions on the methodology can be 

sent to CAS@nsa.gov. 

                                                 
1
 This test suite is available as the “Juliet Test Suite” and is publicly available through the National Institute for 

Standards and Technology (NIST) at http://samate.nist.gov/SRD/testsuite.php.  
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Section 1: Introduction 

1.1 Background 

Software systems support and enable mission-essential capabilities in the Department of 

Defense.  Each new release of a defense software system provides more features and performs 

more complex operations.  As the reliance on these capabilities grows, so does the need for 

software that is free from intentional or accidental flaws.  Flaws can be detected by analyzing 

software either manually or with the assistance of automated tools.   

Most static analysis tools are capable of finding multiple types of flaws, but the capabilities of 

tools are not necessarily uniform across the spectrum of flaws they detect.  Even tools that target 

a specific type of flaw are capable of finding some variants of that flaw and not others.  Tools’ 

datasheets or user manuals often do not explain which specific code constructs they can detect, 

or the limitations and strengths of their code checkers.  This level of granularity is needed to 

maximize the effectiveness of automated software evaluations. 

1.2 Center for Assured Software (CAS) 

In order to address the growing lack of Software Assurance in the DoD, the NSA’s CAS was 

created in 2005.  The CAS’s mission is to improve the assurance of software used within the 

DoD by increasing the degree of confidence that software is free from intentional and 

unintentional vulnerabilities.  The CAS accomplishes this mission by assisting organizations in 

deploying processes and tools to address assurance throughout the Software Development Life 

Cycle (SDLC). 

As part of an overall secure software development process, the CAS advocates the use of static 

analysis tools at various stages in the SDLC, but not as a replacement for other software 

assurance efforts, such as manual code reviews.  The CAS also believes that some organizations 

and projects warrant a higher level of assurance that can be gained through the use of more than 

one static analysis tool. 

The CAS is responsible for performing an annual study on the capabilities of automated, flaw-

finding static analysis tools. The results of these studies assist software development teams with 

the selection of a tool for use in their SDLC.  

1.3 Feedback 

The CAS continuously tries to improve its methodology for running these studies. As you read 

this document, if you have any feedback or questions on the information presented, please 

contact the CAS via email at cas@nsa.gov. 
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Section 2: Methodology 

2.1 Overview 

The CAS methodology consists of using artificial code in the form of test cases to perform static 

analysis tool evaluations. Each test case targets a specific flaw. These test cases are grouped with 

similar flaw-types into Weakness Classes.  After each tool scans the test suite, the results are 

then scored, analyzed, and presented in a programming language-specific report. The following 

paragraphs explain each aspect of the methodology in greater detail.  

2.2 Test Cases 

In order to study static analysis tools, evaluators need software for the tools to analyze.  There 

are two types of software to choose from: natural and artificial. Natural software is software that 

was not created to test static analysis tools.  Open source software applications, such as the 

Apache web server (httpd.apache.org) or the OpenSSH suite (www.openssh.com) are examples 

of natural software.  Artificial software contains intentional flaws and is created specifically to 

test static analysis tools.  

The CAS decided that the benefits of using artificial code outweighed the disadvantages and 

therefore created artificial code to study static analysis tools.  The CAS generates the source code 

as a collection of test cases.  Each test case contains exactly one intentional flaw and typically at 

least one non-flawed construct similar to the intentional flaw.  The non-flawed constructs are 

used to determine if the tools could discriminate flaws from non-flaws.  For example, one test 

case illustrates a type of buffer overflow vulnerability.  The flawed code in the test case passes 

the C strcpy function a destination buffer that is smaller than the source string.  The non-flawed 

construct passes a large enough destination buffer to strcpy. 

The test cases created by the CAS and used to study static analysis tools are called the Juliet Test 

Suites. They are publicly available through the National Institute for Standards and Technology 

(NIST) at http://samate.nist.gov/SRD/testsuite.php. 

2.3 Weakness Classes 

To help understand the areas in which a given tool excelled, similar test cases are grouped into a 

Weakness Class. Weakness Classes are defined using the MITRE Common Weakness 

Enumeration (CWE)
2
 entries that contain similar flaw types.   Since each Juliet test case is 

associated with the CWE entry in its name, each test case is contained in a Weakness Class.   

For example, Stack-based Buffer Overflow (CWE-121) and Heap-based Buffer Overflow 

(CWE-122) are both placed in the Buffer Handling Weakness Class. Therefore, all of the test 

cases associated with CWE entries 121 and 122 are mapped to the Buffer Handling Weakness 

                                                 
2
 The MITRE CWE is a community-developed dictionary of software weakness types and can be found at  

http://cwe.mitre.org 

http://samate.nist.gov/SRD/testsuite.php
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Class.  Table 1 provides a list of all the Weakness Classes used in the study, along with an 

example of each. 

Weakness Class Example Weakness (CWE Entry) 

Authentication and Access Control CWE-259: Use of Hard-coded Password 

Buffer Handling (C/C++ only) CWE-121: Stack-based Buffer Overflow 

Code Quality CWE-561: Dead Code 

Control Flow Management CWE-483: Incorrect Block Delimitation 

Encryption and Randomness CWE-328: Reversible One-Way Hash 

Error Handling CWE-252: Unchecked Return Value 

File Handling CWE-23: Relative Path Traversal 

Information Leaks CWE-534: Information Exposure Through Debug Log Files 

Initialization and Shutdown CWE-404: Improper Resource Shutdown or Release 

Injection CWE-134: Uncontrolled Format String  

Malicious Logic CWE-506: Embedded Malicious Code 

Number Handling CWE-369: Divide by Zero 

Pointer and Reference Handling CWE-476: NULL Pointer Dereference 

Table 1 – Weakness Classes 

The Miscellaneous Weakness Class, which was used to hold a collection of individual 

weaknesses that did not fit into the other classes, was re-evaluated in 2012. Based upon their 

implementation and to alleviate any confusion regarding the nature of the test cases in this 

category, the CAS felt these test cases could be re-categorized within the other Weakness 

Classes.  

The following paragraphs provide a brief description of the Weakness Classes defined by the 

CAS. 

2.3.1 Authentication and Access Control 

Attackers can gain access to a system if the proper authentication and access control mechanisms 

are not in place. An example would be a hardcoded password or a violation of the least privilege 

principle. The test cases in this Weakness Class test the tools’ ability to check whether or not the 

source code is preventing unauthorized access to the system. 

2.3.2 Code Quality 

Code quality issues are typically not security related; however, they can lead to maintenance and 

performance issues. An example would be unused code. While this is not an inherent security 

risk, it may lead to maintenance issues in the future. The test cases in this Weakness Class test 

the tools’ ability to find poor code quality issues in the source code. 

The test cases in this Weakness Class cover some constructs that may not be relevant to all 

audiences.  The test cases are all based on weaknesses in CWEs, but even persons interested in 
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code quality may not consider some of the tested constructs to be weaknesses.  For example, this 

Weakness Class includes test cases for flaws such as an omitted break statement in a switch, a 

missing default case in a switch, and dead code.  

2.3.3 Control Flow Management 

Control flow management deals with timing and synchronization issues that can cause 

unexpected results when the code is executed. An example would be a race condition. One 

possible consequences of a race condition is a deadlock which leads to a denial of service. The 

test cases in this Weakness Class test the tools’ ability to find issues in the order of execution 

within the source code. 

2.3.4 Encryption and Randomness 

Encryption is used to provide data confidentiality. However, if a weak or wrong encryption 

algorithm is used, an attacker may be able to convert the ciphertext into its original plain text. An 

example would be the use of a weak Pseudo Random Number Generator (PRNG). Using a weak 

PRNG could allow an attacker to guess the next number that is generated. The test cases in this 

Weakness Class test the tools’ ability to check for proper encryption and randomness in the 

source code. 

2.3.5 Error Handling 

Error handling is used when a program behaves unexpectedly. However, if a program fails to 

handle errors properly it could lead to unexpected consequences. An example would be an 

unchecked return value. If a programmer attempts to allocate memory and fails to check if the 

allocation routine was successful, then a segmentation fault could occur if the memory failed to 

allocate properly. The test cases in this Weakness Class test the tools’ ability to check for proper 

error handling within the source code.   

2.3.6 File Handling 

File handling deals with reading from and writing to files. An example would be reading from a 

user-provided file on the hard disk. Unfortunately, adversaries can sometimes provide relative 

paths that contain periods and slashes. An attacker can use this method to read to or write to a 

file in a different location on the hard disk than the developer expected. The test cases in this 

Weakness Class test the tools’ ability to check for proper file handling within the source code. 

2.3.7 Information Leaks 

Information leaks can cause unintended data to be made available to a user. For example, 

developers often use error messages to inform users that an error has occurred. Unfortunately, if 

sensitive information is provided in the error message an adversary could use it to launch future 

attacks on the system. The test cases in this Weakness Class test the tools’ ability to check for 

information leaks within the source code. 
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2.3.8 Initialization and Shutdown 

Initializing and shutting down resources occurs often in source code. For example, in C/C++ if 

memory is allocated on the heap it must be deallocated after use. If the memory is not 

deallocated, it could cause memory leaks and affect system performance. The test cases in this 

Weakness Class test the tools’ ability to check for proper initialization and shutdown of 

resources in the source code. 

2.3.9 Injection 

Code injection can occur when user input is not validated properly. One of the most common 

types of injection flaws is cross-site scripting (XSS). An attacker can place query strings in an 

input field that could cause unintended data to be displayed. This can often be prevented using 

proper input validation and/or data encoding. The test cases in this Weakness Class test the tools’ 

ability to check for injection weaknesses in the source code. 

2.3.10 Malicious Logic 

Malicious logic is the implementation of a program that performs an unauthorized or harmful 

action. In source code, unauthorized or harmful actions can be indicators of malicious logic. 

Examples of malicious logic include Trojan horses, viruses, backdoors, worms, and logic bombs. 

The test cases in this Weakness Class test the tools’ ability to check for malicious logic in the 

source code.  

2.3.11 Number Handling 

Number handling issues include incorrect calculations as well as number storage and 

conversions. An example is an integer overflow. On a 32-bit system, a signed integer’s 

maximum value is 2,147,483,647. If this value is increased by one, its new value will be a 

negative number rather than the expected 2,147,483,648 due to the limitation of the number of 

bits used to store the number. The test cases in this Weakness Class test the tools’ ability to 

check for proper number handling in the source code. 

2.3.12 Pointer and Reference Handling 

Pointers are often used in source code to refer to a block of memory without having to reference 

the memory block directly. One of the most common pointer errors is a NULL pointer 

dereference. This occurs when the pointer is expected to point to a block of memory, but instead 

it points to the value of NULL. This can cause an exception and lead to a system crash. The test 

cases in this Weakness Class test the tools’ ability to check for proper pointer and reference 

handling. 
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2.4 Assessment 

2.4.1 Tool Execution 

The CAS regularly evaluates commercial and open source static analysis tools with the use of the 

Juliet Test Suites. The tools are installed and configured on separate hosts with a standardized set 

of resources in order to avoid conflicts and allow independent analysis. Every tool is executed 

using its command-line interface (CLI) and the results are exported upon completion. 

2.4.2 Scoring Results 

In order to assess the tool’s performance, tool results are scored using result types. Table 2 

contains the various result types that can be assigned as well as their definitions. 

Result Type Explanation 

True Positive (TP) Tool reports the intentionally-flawed code. 

False Positive (FP) Tool reports the non-flawed code.  

False Negative (FN) Tool fails to report the intentionally-flawed code. 

Table 2 – Summary of Result Types 

For example, consider a test case that targets a buffer overflow flaw. The test case contains 

intentionally-flawed code that attempts to place data from a large buffer into a smaller one. If a 

tool reports a buffer overflow in this code then the result is marked as a True Positive. The test 

case also contains non-flawed code that is similar to the flawed code, but prevents a buffer 

overflow. If a tool reports a buffer overflow in this code then the result is marked as a False 

Positive. If the tool fails to report a buffer overflow in the intentionally-flawed code, then the 

result is marked as a False Negative. If a tool reports any other type of flaw, for example a 

memory leak, in the intentionally-flawed or non-flawed code, then the result type is considered 

an incidental flaw as it is not the target of the test case. Incidental flaws are excluded from 

scoring. 

2.5 Metrics 

Metrics are used to perform analysis of the tool results. After the tool results have been scored, 

specific metrics can be calculated. Several metrics used by the CAS are described in the 

following paragraphs. 

2.5.1 Precision, Recall, and F-Score 

One set of metrics contains the Precision, Recall, and F-Scores of the tools based on the number 

of True Positive (TP), False Positive (FP), and False Negative (FN) findings for that tool.  The 

following paragraphs describe these metrics in greater detail. 
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Precision 

In the context of the methodology, Precision (also known as “positive predictive value") is the 

ratio of weaknesses reported by a tool to the set of actual weaknesses in the code analyzed.  It is 

defined as the number of weaknesses correctly reported (True Positives) divided by the total 

number of weaknesses actually reported (True Positives plus False Positives). 

FPTP

TP
Precision

##

#




 

Precision is synonymous with the True Positive rate and is the complement of the False Positive 

rate.  It is also important to highlight that Precision and Accuracy are not the same.  In this 

methodology, Precision describes how well a tool identifies flaws, whereas accuracy describes 

how well a tool identifies flaws and non-flaws as well. 

Note that if a tool does not report any weaknesses, then Precision is undefined, i.e. 0/0.  If 

defined, Precision is greater than or equal to 0, and less than or equal to 1.  For example, a tool 

that reports 40 issues (False Positives and True Positives), of which only 10 are real flaws (True 

Positives), has a Precision of 10 out of 40, or 0.25.  

Precision helps users understand how much trust can be given to a tool's report of weaknesses.  

Higher values indicate greater trust that issues reported correspond to actual weaknesses.  For 

example, a tool that achieves a Precision of 1 only reports issues that are real flaws in the test 

cases.  That is, it does not report any False Positives.  Conversely, a tool that has a Precision of 0 

always reports issues incorrectly.  That is, it only reports False Positives. 

Recall 

The Recall metric (also known as "sensitivity" or “soundness”) represents the fraction of real 

flaws reported by a tool.  Recall is defined as the number of real flaws reported (True Positives), 

divided by the total number of real flaws – reported or unreported – that exist in the code (True 

Positives plus False Negatives).   

FNTP

TP
Recall

##

#




 

Recall is always a value greater than or equal to 0, and lesser than or equal to 1. For example, a 

tool that reports 10 real flaws in code that contains 20 flaws has a Recall of 10 out of 20, or 0.5. 

A high Recall means that the tool correctly identifies a high number of the target weaknesses 

within the test cases.  For example, a tool that achieves a Recall of 1 reports every flaw in the test 

cases.  That is, it has no False Negatives.  (While a Recall of 1 indicates all of the flaws in the 

test cases were detected, notice that this metric does not account for the number of False 

Positives that may have been produced by the tool.)  In contrast, a tool that has a Recall of 0 

reports none of the real flaws.  That is, it has a high False Negative rate.   
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F-Score 

In addition to the Precision and Recall metrics, an F-Score is calculated by taking the harmonic 

mean of the Precision and Recall values.  Since a harmonic mean is a type of average, the value 

of the F-Score will always be between the Precision and Recall values (unless the Precision and 

Recall values are equal, in which case the F-Score will be that same value).  Note that the 

harmonic mean is always less than the arithmetic mean (again, unless the Precision and Recall 

are equal). 

The F-Score provides weighted guidance in identifying a good static analysis tool by capturing 

how many of the weaknesses are found (True Positives) and how much noise (False Positives) is 

produced.  An F-Score is computed using the following formula: 















RecallPrecision

RecallPrecision
ScoreF 2­

 

A harmonic mean is desirable since it ensures that a tool must perform reasonably well with 

respect to both Precision and Recall metrics.  In other words, a tool will not get a high F-Score 

with a very high score in one metric but a low score in the other metric.  Simply put, a tool that is 

very poor in one area is not considered stronger than a tool that is average in both.  

2.5.2 Discriminations and Discrimination Rate 

Another set of metrics measures the ability of tools to discriminate between flaws and non-flaws.  

This set of metrics is helpful in differentiating unsophisticated tools performing simple pattern 

matching from tools that conduct a more complex analysis.   

For example, consider a test case for a buffer overflow where the flaw uses the strcpy function 

with a destination buffer smaller than the source data.  The non-flaw on this test case may also 

use strcpy, but with a sufficiently large destination buffer.  A tool that simply searches for the 

use of strcpy would correctly report the flaw in this test case, but also produce a False Positive 

when reporting the non-flaw. 

If a tool behaved in this way on all test cases in a certain area, the tool would have a Recall of 1, 

a Precision of .5, and an F-Score of .67 (assuming that each test case had only one “good” or 

non-flawed construct).  These scores don’t accurately reflect the tool’s unsophisticated behavior.  

In particular, the tool is “noisy” (generates many False Positive results), which is not reflected in 

its Precision of .5.   

Discriminations 

To address the issue described above, the CAS defines a metric called “Discriminations.”  A tool 

is given credit for a Discrimination when it correctly reports the flaw (a True Positive) in a test 

case without incorrectly reporting the flaw in non-flawed code (that is, without any False 

Positives).  For every test case, each tool receives 0 or 1 Discriminations. 
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In the example above, an unsophisticated tool that is simply searching for the use of strcpy will 

not get credit for a Discrimination on the test case because while it correctly reports the flaw, it 

also reports a False Positive. 

Discriminations must be determined for each test case individually.  The number of 

Discriminations in a set of test cases cannot be calculated from the total number of True 

Positives and False Positives. 

Over a set of test cases, a tool can report as many Discriminations as there are test cases (an ideal 

tool would report a Discrimination on each test case).  The number of Discriminations will 

always be less than or equal to the number of True Positives over a set of test cases (because a 

True Positive is necessary, but not sufficient, for a Discrimination). 

Discrimination Rate 

Over a set of test cases, the Discrimination Rate is the fraction of test cases in which the tool 

reports a Discrimination.  

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#
  

The Discrimination Rate is always a value greater than or equal to 0, and less than or equal to 1. 

Over a set of test cases, the Discrimination Rate is always less than or equal to the Recall.  This 

is because Recall is the fraction of test cases where the tool reported True Positives, regardless of 

whether it reported False Positives.  Every test case where the tool reports a Discrimination 

“counts” toward a tool’s Recall and Discrimination Rate, but other, non-Discrimination test cases 

may also count toward Recall (but not toward Discrimination Rate). 
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Section 3: Reporting 
Graphs and tables are used to show the tool results for various metrics including Recall, 

Precision, Discrimination Rate, and F-Score.  Examining just a single metric does not give the 

whole picture and obscures details that are important in understanding a tool's overall strengths.  

For example, just looking at Recall tells the analyst how many flaws are found, but these flaws 

can be hidden in a sea of False Positives, making it extremely time-consuming to interpret the 

results.  By examining the values for Recall, Precision, and Discrimination Rate, the analyst can 

get a better picture of the tool's overall strengths. 

3.1 Results by Tool 

3.1.1 Precision, Recall, and F-Score Table 

To summarize each tool’s Precision, Recall, and F-Score on the test cases, a table is produced to 

show how the tool performs regarding each metric.  However, when interpreted in isolation, each 

metric can be deceptive in that it does not reflect how well a tool performs with respect to other 

tools, i.e., it is not known what is a “good” number.  As an example, it is impossible for an 

analyst to know whether a Precision of .45 is a good value or not.  If every other tool has a 

Precision value of .20, then a value of .45 would suggest that the tool outperforms its peers.  On 

the other hand, if every other tool has a Precision of .80, then a value of .45 would suggest that 

the tool underperforms in this metric. 

For Precision, if a tool does not report any findings in a given Weakness Class, it is excluded 

from the calculation of the average for that Weakness Class.  For Recall and F-Score, all results 

are used to calculate the average, even if a tool does not report any findings for that Weakness 

Class. 

A small green triangle pointing up is used to indicate that the tool’s value is .05 or more above 

the average for all the tools in that Weakness Class. A small red triangle pointing down is used to 

indicate that the tool’s value is .05 or more below the average for that Weakness Class.  If the 

tool’s value is within .05 of the average, then no icon is used meaning the tool results are close to 

average. 

  Sample Size Tool Results 

Weakness Class Abbr. # of Flaws Precision F-Score Recall 

Weakness Class A AAA 511 ▼ .25 ▼ .20 ▼ .17 

Weakness Class B BBB 953  -  0  0 

Weakness Class C CCC 433 ▲ .96 ▲ .72 ▲ .58 

Weakness Class D DDD 720 ▼ .56  .57 ▲ .58 

Weakness Class E EEE 460  1  .29  .17 

Legend: ▲ = .05 or more above average  ▼ = .05 or more below average 

Table 3 – Precision-Recall Results for SampleTool by Weakness Class 



 

- 12 - 

In this example, Table 3 shows that SampleTool has a Precision of .96, an F-Score of .72, and a 

Recall of .58, which are all more than .05 above the average with respect to Precision, Recall, 

and F-Score for Weakness Class C.  Its performance is mixed in Weakness Class D, with below-

average Precision of .56 and an above-average Recall of .58.  Within Weakness Class E, 

SampleTool has average results, indicated by the absence of triangles. 

Note that if a tool does not produce any findings for a given Weakness Class, then Precision 

cannot be calculated because of division by zero, which is reflected as a dash (‘-‘) in the table.  

This can be an indication either a tool does not have the capability to test for flaw types in a 

given Weakness Class, or a tool has the ability to detect these flaw types but failed to report any. 

In this methodology, when Precision is undefined, F-Score is defined as zero.  

A Recall value of 0 indicates that the tool did not report any True Positives for that Weakness 

Class. A Recall of .00 signifies a non-zero value (i.e. the tool found at least one True Positive in 

that Weakness Class); however, the value is too small to be displayed in the table to within two 

decimal places.  

Also note that the number of flaws represents the total number of test cases in that Weakness 

Class.  This represents a sample size and gives the analyst an idea of how many opportunities a 

tool had to produce findings.  In general, when there are more opportunities, one can have more 

statistical confidence in the metric. 

The tool results and averages for Precision, Recall, and F-Score displayed in the tables and 

graphs are all weighted according to the data and control flow complexity of the test case. (See 

Section 4.1.9 for more information on weighting.) 
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3.1.2 Precision Graph by Weakness Class 

Figure 1 shows an example of a Precision Graph for a single tool.  Even when all values are 

relatively small, the Y-axis scale remains consistent in order to compare tools equally. The tool’s 

Precision for a given Weakness Class is indicated by the length of a blue bar, whereas the 

average Precision among all tools for a given Weakness Class is indicated by the length of a gray 

bar.  If a tool did not report at least one finding for a given Weakness Class, then Precision is 

undefined and is indicated on the graph by a bar length of zero. 

 

Figure 1 – Example Precision Graph for a single tool 

The example graph in Figure 1 shows that when compared to the other tools, SampleTool is 

relatively strong when focusing on Weakness Class C, and less effective in Weakness Classes A 

and D.  SampleTool performed average in Weakness Class E.  Also, the tool did not produce any 

findings for Weakness Class B. 
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3.1.3 Recall Graph by Weakness Class 

Figure 2 shows an example of a Recall Graph for a single tool.  Even when all values are 

relatively small, the Y-axis scale remains consistent in order to compare tools equally. The tool’s 

Recall for a given Weakness Class is indicated by the length of a purple bar, whereas the average 

Recall among all tools for a given Weakness Class is indicated by the length of a gray bar.  

 

Figure 2 – Example Recall Graph for a single tool 

The example graph in Figure 2 shows that when compared to the other tools, SampleTool is 

stronger in Weakness Classes C and D, but less effective in Weakness Classes A and E. Also, the 

tool did not report any True Positives for Weakness Class B, as evident by the Recall value of 

zero. 
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3.1.4 Precision-Recall Graph by Tool 

Figure 3 displays an example of a Precision-Recall graph illustrating a tool’s performance 

compared to the average for each Weakness Class. Notice that the Precision metric is mapped to 

the vertical axis and the Recall metric is mapped to the horizontal axis.  A tool's relation to both 

metrics is represented by a point on the graph. If a tool did not report at least one True Positive 

for a given Weakness Class, then it is not shown on the graph.  The closer the point is to the top 

right, the stronger the tool is in the given area.  

The circle marker represents the tool’s actual metric values for the specified Weakness Class. A 

green circle indicates that the tool performed better than average in both Precision and Recall as 

compared to the average. A red circle indicates that the tool performed below average in both 

Precision and Recall as compared to the average. A gray circle indicates that the tool did not 

perform better or worse in both Precision and Recall. For example, this could indicate that a tool 

had better than average Precision, but worse than average Recall for a given Weakness Class. 

The black diamond represents the average metric values for all the tools that produced findings 

for the given Weakness Class. The labels contain the abbreviated Weakness Class names. 

A solid line is drawn between the two related points and helps visually state how a given tool 

compared to the average. Note that the longer the line, the greater the difference between the tool 

and the average.  In general, movement of a specific tool away from the average toward the 

upper right demonstrates a relatively greater capability in the given area (as indicated by the 

arrow in the graph’s background). 
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SampleTool 
Precision and Recall Comparison to Weakness Class Average 

 

 
 

                 Tool Value: Precision and Recall 

                 Tool Value: Precision and Recall (Both Above Average) 

                 Tool Value: Precision and Recall (Both Below Average) 

                 Weakness Class Average 

Figure 3 – Example Precision-Recall Graph for single tool  

In the example in Figure 3, the graph shows that the SampleTool is stronger than the average of 

all tools when focusing on Weakness Class C.  Both Precision and Recall for the tool are above 

average as evident by the green data point and by moving from the black diamond upward, 

meaning higher Precision, and to the right, indicating higher Recall. SampleTool is less effective 

compared to the average of all tools relating to Weakness Class A as indicated by the red data 

point.  Both metrics are below average, and the line moves from the black diamond downward, 

meaning less Precision, and to the left, indicating less Recall.  
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For the results associated with Weakness Class E and Weakness Class D, where the line moves 

to the upper left or the lower right, more analysis is often needed.  In these situations, the tool is 

above average for one metric but below average for the other. 

3.1.5 Discriminations and Discrimination Rate Table by Weakness Class 

A table is produced that summarizes each tool’s ability to discriminate between flaws and non-

flaws.  Similar to Precision, Recall, and F-Score, when interpreted in isolation, this metric can be 

deceptive in that it does not reflect how a tool performs with respect to other tools, i.e., it is not 

known what a “good” number is.  

For Discrimination Rates, all tools are included in the calculation of the average for that 

Weakness Class. 

If the tool has a value .05 or more above the average, a small green triangle pointing up was 

used.  For values .05 or more below the average, a small red triangle pointing down is used.  If 

the value is within .05 of the average then no icon is used, meaning the tool results are close to 

average.  A Discrimination Rate of .00 indicates that the tool made at least one Discrimination; 

however, the value, when rounded to two decimal places, displays as 0. 

A tool’s Discriminations and Discrimination Rates on each Weakness Class are shown in a table 

like Table 4. 

  Sample Size Tool Results 

Weakness Class Abbr. # of Flaws Discriminations Disc. Rate 

Weakness Class A AAA 511 50 ▼ .10 

Weakness Class B BBB 953 0  0 

Weakness Class C CCC 433 234 ▲ .54 

Weakness Class D DDD 720 150  .21 

Weakness Class E EEE 460 15  .03 

Legend: ▲ = .05 or more above average  ▼ = .05 or more below average 

Table 4 – Discrimination Results for SampleTool by Weakness Class 

 

In this example, Table 4 shows that SampleTool has a Discrimination Rate of .10 for Weakness 

Class A, which is at least .05 below the average of all tools, and a Discrimination Rate of .54 for 

Weakness Class C, which is at least .05 above the average. For Weakness Classes D and E, with 

Discrimination Rates of .21 and .03, respectively, SampleTool has average results. It also 

indicates that the tools overall performed poorly on Weakness Class E with respect to 

Discriminations since the average Discrimination Rate can be no higher than .08 (Weakness 

Class E’s rate of .03 plus .05) . SampleTool did not report any Discriminations for Weakness 

Class B, indicating poor complex analysis in that area. 
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3.1.6 Discrimination Rate Graph by Weakness Class 

Discrimination Rate Graphs like Figure 4 are used to show the Discrimination Rates for a single 

tool across different Weakness Classes.  Even when all values are relatively small, the Y-axis 

scale on these graphs is not adjusted in order to compare tools to the ideal Discrimination Rate of 

1. 

 

Figure 4 – Example Discrimination Rate Graph for a single tool 

In the example in Figure 4, the graph shows that SampleTool has an above average 

Discrimination Rate in Weakness Classes C and D, and below average Discrimination Rates in 

Weakness Classes A and B. SampleTool has an average rate in Weakness Class E. 
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3.2 Results by Weakness Class 

3.2.1 Precision Graph by Weakness Class 

Figure 5 shows an example of a Precision Graph for a single Weakness Class. Even when all 

values are relatively small, the Y-axis scale on these graphs is not adjusted in order to compare 

tools to the ideal Precision of 1. An individual tool’s Precision for the Weakness Class is 

indicated with a blue bar. The average Precision for all tools across the Weakness Class is 

indicated by a red bar and is always located on the far right side of the graph. The average is 

calculated using only the tools that cover this Weakness Class. In the example below, 

SampleTool2 is not included in the average Precision calculation. 

 

Figure 5 – Example Precision Graph for a single Weakness Class 

In the example in Figure 5, the graph shows that SampleTool1 and SampleTool3 performed 

above average in this Weakness Class. SampleTool4 and SampleTool5 performed below average 

and SampleTool2 did not cover this Weakness Class. 
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3.2.2 Recall Graph by Weakness Class 

Figure 6 shows an example of a Recall Graph for a single Weakness Class. Even when all values 

are relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to 

the ideal Precision of 1. An individual tool’s Recall for the Weakness Class is indicated with a 

purple bar. The average Recall for all tools across the Weakness Class is indicated by a red bar 

and is always located on the far right side of the graph. The average is calculated using all tools, 

which includes those that do not cover this Weakness Class. 

 

Figure 6 – Example Recall Graph for a single Weakness Class 

In the example in Figure 6, the graph shows that SampleTool1 and SampleTool4 performed 

above average in this Weakness Class. SampleTool3 and SampleTool5 performed below average 

and SampleTool2 did not cover this Weakness Class. 

3.2.3 Precision-Recall Graph by Weakness Class 

Figure 7 illustrates an example of a Precision-Recall graph showing each tool’s performance 

compared to the average for a given Weakness Class. Notice that the Precision metric is mapped 

to the vertical axis and the Recall metric is mapped to the horizontal axis.  A tool's relation to 

both metrics is represented by a point on the graph. If a tool did not report at least one True 

Positive for this Weakness Class then it is not shown on the graph.  The closer the point is to the 

top right, the stronger the tool is in the given area.  

The circle marker represents a tool’s actual metric value for the specified Weakness Class. A 

green circle indicates that the tool performed better than average in both Precision and Recall as 
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compared to the average. A red circle indicates that the tool performed below average in both 

Precision and Recall as compared to the average. A gray circle indicates that the tool did not 

perform better or worse in both Precision and Recall. For example, this could indicate that a tool 

had better than average Precision, but worse than average Recall for the Weakness Class. The 

black diamond represents the average values for all the tools that produced findings for the given 

Weakness Class. The labels at each circle contain the tool names and the label at the diamond 

contains the abbreviated Weakness Class name. 

In general, movement of a specific tool away from the average toward the upper right 

demonstrates a relatively greater capability in the given area (as indicated by the arrow in the 

graph’s background). 
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Weakness Class (WC) 
Precision and Recall Comparison to Tool Average 

 

 
 

                 Tool Value: Precision and Recall 

                 Tool Value: Precision and Recall (Both Above Average) 

                 Tool Value: Precision and Recall (Both Below Average) 

                 Weakness Class Average 
 

Figure 7 – Example Precision-Recall Graph for Weakness Class (WC)  

In the example in Figure 7, the graph shows that the SampleTool1 is stronger than the average of 

all tools when focusing on this Weakness Class.  Both Precision and Recall for the tool are above 

average as evident by the green data point and by moving from the black diamond upward, 

meaning higher Precision, and to the right, indicating higher Recall. SampleTool5 is weaker 

compared to the average of all tools relating to this Weakness Class as indicated by the red data 
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point.  Both metrics are below average, and the line moves from the black diamond downward, 

meaning less Precision, and to the left, indicating less Recall.  

For the results associated with SampleTool3 and SampleTool4, where the line moves to the 

upper left or the lower right, more analysis is often needed.  In these situations, the tool is above 

average for one metric but below average for the other. 

3.2.4 Discrimination Rate Graph by Weakness Class 

Figure 8 shows an example of a Discrimination Rate Graph for a single Weakness Class. Even 

when all values are relatively small, the Y-axis scale on these graphs is not adjusted in order to 

compare tools to the ideal Discrimination Rate of 1. An individual tool’s Discrimination Rate for 

the Weakness Class is indicated with a green bar. The average Discrimination Rate for all tools 

across the Weakness Class is indicated by a red bar and is always located on the far right side of 

the graph. The average is calculated using all tools, which includes those that do not cover this 

Weakness Class. 

 

Figure 8 – Example Discrimination Rate Graph for a single Weakness Class 

In the example in Figure 8, the graph reveals SampleTool1 and SampleTool4 performed above 

average in this Weakness Class. SampleTool3 and SampleTool5 performed below average and 

SampleTool2 did not cover this Weakness Class. 
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3.2.5 Precision-Recall and Discrimination Results by Weakness Class 

Table 5 shows an example of a Precision-Recall and Discrimination results chart. This chart can 

be used to view the results of all tools in a Weakness Class. This table supports the graphs shown 

in the previous sections. 

Note that a value of .00, not shown here, is used to indicate a non-zero value for Recall and 

Discrimination Rate that is too small to be presented in the table, and when rounded to two 

decimal places would otherwise display inaccurately as 0. 

Tool Precision F-Score Recall Disc. Rate 

SampleTool1 .54 .61 .69 .45 

SampleTool2 - 0 0 0 

SampleTool3 .68 .28 .18 .13 

SampleTool4 .30 .31 .33 .25 

SampleTool5 .10 .12 .15 .09 

Average .41 .26 .27 .18 

Table 5 – Weakness Class Precision-Recall and Discrimination Results 

 

3.3 Combined Tool Results 

Since there are a variety of commercial and open source static analysis tools available, 

developers can use more than one tool to analyze a code base. The purpose of combining two 

tools is to show how adding a second tool might complement the tool already in use. Since tools 

can have some overlap, the goal would be to use a second tool that is stronger in the areas where 

the current tool is lacking. 

This section describes the tables and graphs used to show the effects of combining two tools. 

3.3.1 Combination of Two Tools 

Table 6 shows the combined Discrimination Rate and Recall results when combining two sample 

tools. The tool’s own results are shown in the light gray boxes. The green boxes indicate the 

highest combined values in the table for both Discrimination Rate and Recall. 
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SampleTool1 .25 .53 .27 .59 .60 .77 .45 .73 .26 .59 

SampleTool2 .27 .59 .06 .11 .47 .70 .35 .52 .07 .25 

SampleTool3 .60 .77 .47 .70 .45 .67 .80 .91 .47 .80 

SampleTool4 .45 .73 .35 .52 .80 .91 .33 .50 .34 .62 

SampleTool5 .26 .59 .07 .25 .47 .80 .34 .62 .02 .22 

Legend: Individual Tool Result Highest Discrimination Rate / Recall in Table 

Table 6 – Combined Discrimination Rate and Recall for Two Tools 

 

In the example in Table 6, the table shows that SampleTool3 performs the best of all individual 

tools studied, but when combined with SampleTool4, yields the best results for both 

Discrimination Rate and Recall. Notice that the data in the table is symmetric, so the results for 

each tool are the same whether you are looking down a column or across a row.  

Figure 9 shows combined Discrimination Rate and Recall graphs. Each bar chart shows the 

overlap between the tool named below the chart (the “base” tool) and each of the other tools (the 

“additional” tools). Each vertical bar shows the overlap between the base tool and one additional 

tool.  The lowest, blue segment shows the results (Discrimination Rate or Recall) for the base 

tool only; the topmost, green segment shows the results for the additional tool only; and the 

middle segment shows the overlap, or the same results reported by both tools. That is, the bottom 

two segments combined indicate the overall results for the base tool, while the top two segments 

combined indicate the overall results for the additional tool.  

Note that in each multiple bar chart, a “water line” appears at the same height for each bar.  This 

shows the base tool’s own results (although its overlap, and hence its results for flaws reported 

only by the base tool, varies). 
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  LEGEND: 
 
 Additional Tool, But 
 Not Base Tool  
 
 Both Tools 
 
 Base Tool, But Not  
 Additional Tool 

Figure 9 – Combined Discrimination Rate and Recall for Two-Tool Combinations 

The Discrimination Rate chart example on the left in Figure 9 shows that combining 

SampleTool1 with SampleTool3 yields the best results. In fact, adding SampleTool3 more than 

doubles the Discrimination Rate as opposed to using SampleTool1 alone. Combining 

SampleTool1 with SampleTool2 or SampleTool5 is ineffective as the Discrimination Rate shows 

a very small increase using these tool combinations. 

The Recall chart example on the right in Figure 9 shows that combining SampleTool1 with 

SampleTool3 yields the best results. However, there is a large amount of overlap when 

combining these two tools. Although the combination of SampleTool1 and SampleTool4 does 

not generate the highest combined Recall, the overlap between the two tools is smaller than the 

overlap between SampleTool1 and SampleTool3 and should be taken into consideration. 

An ideal two-tool combination chart would show a bar whose total value is close to 1 and whose 

overlap, or red shaded area, is barely visible. This would indicate that the two tools combined to 

find nearly all of the flaws (Recall) or discriminate across nearly all of the test cases 

(Discrimination Rate) with very little overlap. A two-tool combination resulting in a large 

amount of overlap serves little value. 

3.3.2 Multiple Tool Coverage 

Table 7 shows the overall coverage for all tools across all of the test cases.  For each number of 

tools, the sum of test cases where exactly that number of tools correctly reported the flaw (True 

Positive) is shown. This table also shows the sum of test cases where exactly that number of 

tools reported the flaw without reporting any False Positives (Discrimination).  

In addition, Table 7 also shows the number of test cases where no tool reported the flaw or a 

made a Discrimination.  Figure 10 shows the percentage of flaws and Figure 11 shows the 

percentage of Discriminations shown in Table 7 as pie charts. 
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Number of Tool(s)  

 

# of Flaws 
Found by 

Tool(s) 

% of All 
Flaws 

Found by 
Tool(s)  

# of 
Discriminations 

Found By Tool(s) 

Discrimination 

Rate % 

No Tools 660 34.6% 990 51.8% 

Exactly One Tool 625 32.7% 550 28.8% 

Exactly Two Tools 350 18.3% 250 13.1% 

Exactly Three Tools 200 10.5% 80 4.2% 

Exactly Four Tools 50 2.6% 40 2.1% 

Exactly Five Tools 25 1.3% 0 0.0% 

Total 1910 100% 1910 100% 

 Table 7 – Multiple Tool Overlap Results 

 

                                         

Figure 10 – True Positive Overlap Graph 

          

Figure 11 – Test Case Discrimination Coverage Graph 
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Table 8 shows how well the tools performed collectively with finding flaws in the test cases for 

each Weakness Class.  In this example, the tools showed the worst coverage, based upon 

averages, in Weakness Class E (15.7%).  The tools had the best coverage and found nearly all of 

the flaws in Weakness Class D (92.2%). 

All together, the tools found more than half of the flaws in 4 out of 5 Weakness Classes. 

Weakness Class (WC) 

# Total 
Test 

Cases 
in WC 

# Test 
Cases 

Not 
Found By 
Any Tool  

% in WC 
Not 

Found By 
Any Tool 

# Test 
Cases 

Found By 
At Least 
One Tool 

% in WC 
Found By 
At Least 
One Tool 

Weakness Class A 511 173 33.9% 338 66.1% 

Weakness Class B 953 284 29.8% 669 70.2% 

Weakness Class C 439 95 21.6% 344 78.4% 

Weakness Class D 720 56   7.8% 664 92.2% 

Weakness Class E 460 388 84.3% 72 15.7% 

Table 8 – Percentage of Flaws Found in Test Cases by Weakness Class 
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Section 4: CAS Tool Study 
The CAS uses the methodology described in Section 2 to perform its annual static analysis tool 

studies. The following paragraphs describe in more detail how tools are analyzed. 

4.1 Tool Run 

The CAS follows a standard procedure for running each tool on the Juliet test cases. The purpose 

is to provide a consistent process that can be used in future studies or, if the need arises, for 

retesting a specific tool. This section provides an overview of the process. Detailed, step-by-step 

records of each tool run are documented during the study. 

4.1.1 Test Environment 

The CAS configures a “base” virtual machine (VM) running the Windows operating system with 

all software needed to compile and run the test cases from the Juliet Test Suite. This base VM is 

then converted into a template. For each tool, the CAS uses this template to deploy a new VM. 

All steps for the tool runs are performed in separate virtual environments using the local 

administrative account in order to prevent conflicts and test each tool in isolation. 

4.1.2 Tool Installation and Configuration 

Each static analysis tool is installed on its own VM in accordance with the vendor’s 

specifications, along with the current version of the Juliet test cases. There are strict guidelines 

established that limit the adjustment of settings to ensure that all tools are treated fairly.  For 

tools in which no vendor input can be obtained, the approach is to turn on all of the rules related 

to the test cases.   

4.1.3 Tool Execution and Conversion of Results 

Each tool is executed from the command line via CAS-created scripts. For tools that cover 

multiple languages, each analysis of the test cases for a specific language family is considered as 

a separate run. If errors are found during or after the analysis, the tool can be run on individual 

test cases without running the entire tool suite again.  

The CAS exports the results of the analysis from each tool from its VM to a separate analysis 

system. In order to perform analysis, all the results must be in a similar format. Because each 

tool exports its results differently, the CAS has developed its own data format to normalize all 

output.  

4.1.4 Scoring of Tool Results 

The final step in the tool run process is to establish which results represent real flaws in the test 

cases (True Positives) and which do not (False Positives).  After True Positives and False 



 

- 30 - 

Positives have been scored, False Negatives are then determined.  For each test case in which a 

tool did not correctly identify the flaw and register a True Positive, a False Negative is added. 

The “scoring” of results only includes result types that are related to the test case in which they 

appear.  Tool results indicating a weakness that is not the focus of the test case (such as an 

unintentional flaw in the test case) are ignored. Results are scored using a CAS created tool 

which automates the scoring process. 

4.1.5 Metrics  

Using the factors described in Section 2.5, the CAS generates metrics by adhering to certain 

rules, detailed in the following sections, as part of its overall analysis strategy.  

4.1.6 Precision 

When calculating the Precision, duplicate True Positive values are ignored.  That is, if a tool 

reports two or more True Positives on the same test case, the Precision is calculated as if the tool 

reports only one True Positive.  However, duplicate False Positive results are included in the 

calculation. 

Some of the Juliet test cases are considered “bad-only,” meaning they only contain a flawed 

construct.  Since the bad-only test cases can impact the results, they are excluded from all 

Precision calculations. 

4.1.7 Recall 

As in the calculation for Precision, duplicate True Positive values are also ignored when 

determining Recall.  If a tool reports two or more True Positives on the same test case, the Recall 

is calculated as if the tool reports only one True Positive.   

4.1.8 F-Score 

In the 2012 tool study, equal weighting was used for both Precision and Recall when calculating 

the F-Score.  However, alternate F-Scores could be calculated by using higher weights for 

Precision (thus establishing a preference that tool results will be correct) or by using higher 

weights for Recall (thus establishing a preference that tools will find more weaknesses). 

As previously explained in 4.1.6, some of the Juliet test cases are considered bad-only, meaning 

they only contain a flawed construct.  Since the bad-only test cases can impact the results, they 

are also excluded from all F-Score calculations. 
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4.1.9 Weighting 

The Juliet test cases are designed to test a tool’s ability to analyze different control and data 

flows. However, for each flaw, a single test case is created that contains no control or data flows 

and is generated to test the most basic, or simplest, form of the flaw. These are referred to as the 

“baseline” test cases.  

The total weight for all test cases covering a given flaw is equal to 1. Because the baseline test 

case should be the easiest to find, it is given a weight of 0.5 and the remaining weight (0.5) is 

distributed equally among the remaining test cases. Therefore, all control and data flow variants 

are weighted equally for a given flaw. Some flaws do not allow for additional control and data 

flow test cases, such as class-based flaws. In these instances, there is a single test case for which 

the weight is equal to 1. 

Table 9 shows sample tool results for a given flaw containing a baseline, two data flow, and 

three control flow test cases. Table 10 shows the Precision, Recall, and F-Score calculation 

differences when adding weights to the test cases.  The sample values for the metrics increase 

when using weighted values; however, this is not always the case when using real data. 

 

 #TPs #FPs #FNs Weight 
Weighted 

TPs 
Weighted 

FPs 
Weighted 

FNs 

Baseline 1 0 0 0.5 0.5 0 0 

Data Flow1 0 1 1 0.1 0 0.1 0.1 

Data Flow2 1 2 0 0.1 0.1 0.2 0 

Control Flow1 1 1 0 0.1 0.1 0.1 0 

Control Flow2 1 2 0 0.1 0.1 0.2 0 

Control Flow3 0 2 1 0.1 0 0.2 0.1 

Totals 4 8 2 1 0.8 0.8 0.2 

Table 9 - Sample Tool Results for a Single Flaw Type 

 

 Unweighted Weighted 

Precision 4 / (4 + 8 ) = 0.33 0.8 / ( 0.8 + 0.8 ) = 0.50 

Recall 4 / ( 4 + 2 ) = 0.67 0.8 / ( 0.8 + 0.2 ) = 0.80 

F-Score 
2 * ( ( 0.33 * 0.67 )  /  ( 0.33 + 0.67 ) ) = 

0.44 
2 * ( ( 0.50 * 0.80 )  /  ( 0.50 + 0.80 ) ) = 

0.62 

Table 10 - Sample Precision, Recall, and F-Score values for a Single Flaw Type  
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Appendix A : Juliet Test Case CWE Entries 

and Weakness Classes 
Table 11 shows the CWE entries included in each Weakness Class as defined by the CAS and ordered 

by Weakness Class. 

Weakness Class CWE ID CWE Name 

Authentication and 
Access Control 

15 External Control of System or Configuration Setting 

222 Truncation of Security-relevant Information * 

223 Omission of Security-relevant Information * 

247 Reliance on DNS Lookups in a Security Decision 

256 Plaintext Storage of a Password 

259 Use of Hard-coded Password 

272 Least Privilege Violation 

284 Improper Access Control 

491 Public cloneable() Method Without Final ('Object Hijack') 

500 Public Static Field Not Marked Final 

549 Missing Password Field Masking 

566 Authorization Bypass Through User-Controlled SQL Primary Key 

582 Array Declared Public, Final, and Static 

605 Multiple Binds to the Same Port * 

607 Public Static Final Field References Mutable Object 

613 Insufficient Session Expiration 

620 Unverified Password Change 

Buffer Handling 

121 Stack-based Buffer Overflow 

122 Heap-based Buffer Overflow 

123 Write-what-where Condition 

124 Buffer Underwrite ('Buffer Underflow') 

126 Buffer Over-read 

127 Buffer Under-read 

176 Improper Handling of Unicode Encoding 

188 Reliance on Data/Memory Layout * 

242 Use of Inherently Dangerous Function 

464 Addition of Data Structure Sentinel * 

680 Integer Overflow to Buffer Overflow 

758 
Reliance on Undefined, Unspecified, or Implementation-Defined   

Behavior * 

785 Use of Path Manipulation Function without Maximum-sized Buffer 
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Weakness Class CWE ID CWE Name 

Code Quality 

398 Indicator of Poor Code Quality 

477 Use of Obsolete Functions 

478 Missing Default Case in Switch Statement 

480 Use of Incorrect Operator * 

481 Assigning instead of Comparing * 

482 Comparing instead of Assigning * 

484 Omitted Break Statement in Switch 

486 Comparison of Classes by Name * 

561 Dead Code 

563 Unused Variable 

570 Expression is Always False 

571 Expression is Always True 

579 J2EE Bad Practices: Non-serializable Object Stored in Session * 

581 Object Model Violation: Just One of Equals and Hashcode Defined * 

585 Empty Synchronized Block 

597 Use of Wrong Operator in String Comparison * 

676 Use of Potentially Dangerous Function 

685 Function Call With Incorrect Number of Arguments * 

688 Function Call With Incorrect Variable or Reference as Argument * 

Control Flow 
Management 

 

364 Signal Handler Race Condition 

366 Race Condition within a Thread 

367 Time-of-check Time-of-use (TOCTOU) Race Condition 

382 J2EE Bad Practices: Use of System.exit() 

383 J2EE Bad Practices: Direct Use of Threads 

479 Signal Handler Use of a Non-reentrant Function 

483 Incorrect Block Delimitation 

572 Call to Thread run() instead of start() 

606 Unchecked Input for Loop Condition 

609 Double-Checked Locking 

666 Operation on Resource in Wrong Phase of Lifetime * 

667 Improper Locking 

674 Uncontrolled Recursion 

698 Execution After Redirect (EAR) 

764 Multiple Locks of a Critical Resource 

765 Multiple Unlocks of a Critical Resource 

832 Unlock of a Resource that is not Locked 

833 Deadlock 

835 Loop with Unreachable Exit Condition ('Infinite Loop') 
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Weakness Class CWE ID CWE Name 

Encryption and 
Randomness 

315 Plaintext Storage in a Cookie 

319 Cleartext Transmission of Sensitive Information 

327 Use of a Broken or Risky Cryptographic Algorithm 

328 Reversible One-Way Hash 

329 Not Using a Random IV with CBC Mode 

336 Same Seed in PRNG 

338 Use of Cryptographically Weak PRNG 

523 Unprotected Transport of Credentials 

759 Use of a One-Way Hash without a Salt 

760 Use of a One-Way Hash with a Predictable Salt 

780 Use of RSA Algorithm without OAEP 

Error Handling 

248 Uncaught Exception 

252 Unchecked Return Value 

253 Incorrect Check of Function Return Value 

273 Improper Check for Dropped Privileges 

390 Detection of Error Condition Without Action 

391 Unchecked Error Condition 

396 Declaration of Catch for Generic Exception 

397 Declaration of Throws for Generic Exception 

440 Expected Behavior Violation 

584 Return Inside Finally Block 

600 Uncaught Exception in Servlet 

617 Reachable Assertion 

File Handling 

23 Relative Path Traversal 

36 Absolute Path Traversal 

377 Insecure Temporary File 

378 Creation of Temporary File With Insecure Permissions 

379 Creation of Temporary File in Directory with Incorrect Permissions 

675 Duplicate Operations on Resource 

Information Leaks 

209 Information Exposure Through an Error Message 

226 Sensitive Information Uncleared Before Release 

244 Improper Clearing of Heap Memory Before Release ('Heap Inspection') 

499 Serializable Class Containing Sensitive Data 

526 Information Exposure Through Environmental Variables 

533 Information Exposure Through Server Log Files 

534 Information Exposure Through Debug Log Files 

535 Information Exposure Through Shell Error Message 

539 Information Exposure Through Persistent Cookies 

591 Sensitive Data Storage in Improperly Locked Memory 
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Weakness Class CWE ID CWE Name 

Information Leaks 
(cont.) 

598 Information Exposure Through Query Strings in GET Request 

614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute 

615 Information Exposure Through Comments 

Initialization and 
Shutdown 

400 Uncontrolled Resource Consumption ('Resource Exhaustion') 

401 
Improper Release of Memory Before Removing Last Reference ('Memory 

Leak') 

404 Improper Resource Shutdown or Release 

415 Double Free 

416 Use After Free 

457 Use of Uninitialized Variable 

459 Incomplete Cleanup 

568 finalize() Method Without super.finalize() 

580 clone() Method Without super.clone() 

586 Explicit Call to Finalize() 

590 Free of Memory not on the Heap 

665 Improper Initialization 

672 Operation on a Resource after Expiration or Release 

761 Free of Pointer not at Start of Buffer 

762 Mismatched Memory Management Routines 

772 Missing Release of Resource after Effective Lifetime 

773 Missing Reference to Active File Descriptor or Handle 

775 Missing Release of File Descriptor or Handle after Effective Lifetime 

789 Uncontrolled Memory Allocation 

Injection 

78 
Improper Neutralization of Special Elements used in an OS Command 

('OS Command Injection') 

80 
Improper Neutralization of Script-Related HTML Tags in a Web Page 

(Basic XSS) 

81 Improper Neutralization of Script in an Error Message Web Page 

83 Improper Neutralization of Script in Attributes in a Web Page 

89 
Improper Neutralization of Special Elements used in an SQL Command 

('SQL Injection') 

90 
Improper Neutralization of Special Elements used in an LDAP Query 

('LDAP Injection') 

113 
Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP 

Response Splitting') 

129 Improper Validation of Array Index 

134 Uncontrolled Format String 

426 Untrusted Search Path 

427 Uncontrolled Search Path Element 

470 
Use of Externally-Controlled Input to Select Classes or Code ('Unsafe 

Reflection') 



 

- A-5 - 

Weakness Class CWE ID CWE Name 

Injection 
(cont.) 

601 URL Redirection to Untrusted Site ('Open Redirect') 

643 
Improper Neutralization of Data within XPath Expressions ('XPath 

Injection') 

Malicious Logic 

111 Direct Use of Unsafe JNI 

114 Process Control 

321 Use of Hard-coded Cryptographic Key 

325 Missing Required Cryptographic Step 

506 Embedded Malicious Code 

510 Trapdoor 

511 Logic/Time Bomb 

546 Suspicious Comment 

Number Handling 

190 Integer Overflow or Wraparound 

191 Integer Underflow (Wrap or Wraparound) 

193 Off-by-one Error 

194 Unexpected Sign Extension 

195 Signed to Unsigned Conversion Error 

196 Unsigned to Signed Conversion Error 

197 Numeric Truncation Error 

369 Divide By Zero 

681 Incorrect Conversion between Numeric Types 

Pointer and Reference 
Handling 

395 Use of NullPointerException Catch to Detect NULL Pointer Dereference 

467 Use of sizeof() on a Pointer Type 

468 Incorrect Pointer Scaling 

469 Use of Pointer Subtraction to Determine Size 

475 Undefined Behavior For Input to API * 

476 NULL Pointer Dereference 

562 Return of Stack Variable Address 

587 Assignment of a Fixed Address to a Pointer 

588 Attempt to Access Child of a Non-structure Pointer 

690 Unchecked Return Value to NULL Pointer Dereference 

843 Access of Resource Using Incompatible Type ('Type Confusion') 

*Previously categorized under the “Miscellaneous Weakness Class” 

 

Table 11 – CWE Entries and Test Cases in each Weakness Class 

 


