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Abstract—In the early days of computer science, the community settled on a simple standard
model of computing and a basic canon of general purpose algorithms and data structures suited
to that model. With isochronous computing, heterogeneous multiprocessors, flash memory,
energy-aware computing, cache and other anisotropic memory, distributed computing,
streaming environments, functional languages, graphics coprocessors, and so forth, the basic
canon of algorithms and data structures is not enough. Software developers know of real-world
constraints and new models of computation and use them to design effective algorithms and
data structures. These constraints motivate the development of elegant algorithms with broad
utility. As examples, we present four algorithms that were motivated by specific hardware
nuances, but are generally useful: reservoir sampling, majority of a stream, B-heap, and
compacting an array in Θ(logn) time.

STANDARD MODEL AND CANON

In the early days of computer science, the
community settled on a simple standard model of
computing [5] and a basic canon [14] of general
purpose algorithms and data structures. The stan-
dard model of computing has (a) one processor
that performs a single instruction at a time, (b)
copious memory that is uniformly accessible with
negligible latency, (c) readily available persistent

storage with significant latency, (d) input and
output that is insensitive to content or context
and orders of magnitude slower, (e) resources and
connections that do not change, and (f) no sig-
nificant concerns about energy use or component
failure, permanent or intermittent.

The canon of data structures and algorithms
includes lists, quicksort, Boyer-Moore string
search, trees, and hash tables. Knuth even began
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what was intended to be a complete encyclopedia
of computing [10]. Although “new and better”
sort routines are regularly sent to the editors of the
Dictionary of Algorithms and Data Structures [1],
none has been both new and widely applicable.
The most recent general-purpose data structure is
the skip list, which was invented in 1989 [15].
Work continues in specialized areas, such as
graphics, distributed systems, user interaction,
cyber-physical systems, and artificial intelligence.
Except perhaps for quantum computing algo-
rithms, general textbooks have the same model
and cover similar topics.

New Models
Programmers will not be prepared for modern

systems with only this background. Few actual
computers match the standard model in all as-
pects. Although hardware, caching, and system
support well approximate the standard model,
developers must be aware of constraints and
idiosyncrasies of the software’s execution envi-
ronment. New constraints of time, space, energy,
and hardware motivate new ways of thinking and
lead programmers to need new approaches to old
problems.

So many advances have been made in hard-
ware and systems that slavishly staying within
that standard model forgoes much performance.
Enticing advantages are available to exploit in
isochronous computing, heterogeneous multipro-
cessors, flash memory, energy-aware computing,
cache and other anisotropic memory, distributed
computing, graphics coprocessors, networks of
many simple devices, and streaming environ-
ments. In some cases, there is enormous waste in
maintaining or staying within the standard com-
puting model. In other cases, additional resources
are squandered if used without regard to their
particular strengths and weaknesses.

For example, flash memories, used in solid
state drives and memory cards for cameras and
smart phones, wear out. Individual bits in flash
memory can be set, but bits can only be cleared
by erasing an entire block of memory. Blocks of
memory can only be erased up to one hundred
thousand times before excessive errors occur [8].
The entire block of memory then becomes un-
usable. To extend their usable life, many flash
memory subsystems use sophisticated algorithms

to spread writes throughout memory and still
maintain the abstraction of persistent memory that
is insensitive to write locations. This is often
accomplished through journaling file systems or
log-structured file systems, whose patterns of
writes match flash memories well [7]. Additional
efficiencies may be available to the software
developer by using data structures specialized to
flash memories, such as [19] or [4]. Taking device
characteristics in consideration can improve solid
state disk responsiveness by 44 % [8].

Similar constraints and opportunities arise be-
cause of multicore machines, in which there is
parallelism on every desktop, distributed comput-
ing, in which one can use hundreds of machines
only for milliseconds, and cloud computing, in
which extra processing is always available for a
price with some delay to request and provision
additional resources. In addition, micropower and
ubiquitous sensors are best used by applications
that treat input as a stream of values to be
processed instead of a static set of data. Power-
and thermal-aware computing is of growing im-
portance in mobile devices and huge server in-
stallations. Today we expect computer systems
distributed across the entire Earth to function as a
single, coherent whole, in spite of speed-of-light
delays, which often requires careful caching [6].

EXAMPLE ALGORITHMS AND DATA
STRUCTURES

In this section, we give four instances of
elegant, generally useful algorithms and data
structures that were developed for particular cir-
cumstances, but are not widely known. They
illustrate the opportunity to create new algorithms
and data structures motivated by new computing
constraints.

Reservoir Sampling
For the first algorithm, consider a stream

environment, that is, items arrive one at a time.
The program does not know how many items will
arrive, or equivalently, an answer may be required
after an unspecified number of items has arrived;
see Figure 1. Since we don’t know how many
items there will be, we limit resources to be a
constant amount of memory, plus a counter that
requires log n bits.

As a real world example, imagine a network
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Figure 1. The problem is to randomly select an item from a stream of items of unknown length using a near-
constant amount of memory. All items must have an equal chance of being selected.

of tiny sensors detecting pollution. Randomly a
sample is requested from every sensor in the
network. The tiny sensors cannot store many
samples, and for statistical purposes all samples
must be equally likely.

The challenge is to choose one of the items
randomly with all items having an equal chance
of being chosen. If the number of items is known
beforehand, one could generate a random number
in the range of the number of items. Alternately,
one can store all the items, possibly in some data
structure that can grow as needed, and choose one
when needed. Neither of these standard solutions
satisfy the constraint of not knowing the number
of items beforehand.

A simple solution is attributed to Alan G.
Waterman [11]. It requires storing the item chosen
so far and a counter, n, that holds the number
of items from the stream so far. To begin, store
the first item and set n to 1. For each new item,
replace the chosen item by the new item with
probability 1/(n+1) and increment n. The proof
of algorithm correctness is simple, too.

Clearly we end up with one of the items. But
does every item have an equal chance of being
chosen? We sketch an induction proof. The first
item is kept as the chosen item after the first
step with a chance of 1/1, which is correct. The
second item is kept with a probability of 1/2,
so either item has a 1/2 chance of being chosen
after the second step.

For the induction step, assume that every one
of n items has an equal chance, 1/n, of being
the chosen item. When the n + 1st item arrives,
it replaces whatever item had been chosen with
probability 1/(n+1). The previously chosen item
is therefore retained with probability n/(n + 1).
Multiplying, we find that each previous item has
a chance of being kept of n/(n + 1) × 1/n =
1/(n + 1); see Figure 2. So every one of the
n+1 items has an equal chance of being chosen.

Outside of a stream processing environment,

why should this subtle algorithm be used? Typi-
cally everything is in memory and a program can
do two passes: the first pass counts the number
of items, then the second pass chooses one at
random. Suppose that selection is computation-
ally intensive, for example, only numbers that are
prime are candidates to be chosen randomly. It
would be inefficient to check for primality in the
first pass to count, choose a random number k,
then repeat the primality checking when counting
through to find the kth item. A program might
cache the primes identified in the first pass, but
then the program is more complicated.

Adapting the reservoir sampling algorithm
allows the following elegant program structure:

f o r e v e r y i t em
i f t h i s i t em i s pr ime t h e n

d e c i d e whe the r t o keep i t

As several authors have pointed out, reservoir
sampling can be easily extended to pick m items
at random from a stream. The insight is to keep
a new item n+ 1 with probability m/(n+ 1). If
we decide to keep a new item, randomly choose
one of m items to replace.

This can be used to efficiently choose a ran-
dom sample from a database. Typically one se-
lects all candidates from a database, then chooses
a random sample. It may be far more efficient to
perform a single pass, randomly choosing items
in the process.

(Following paragraph not in published article.)
Parallel hardware readily speeds up reservoir

sampling. Each parallel thread chooses an item
from its subprocesses weighted by the number
of items in each subprocess’s subtree. The thread
returns the item chosen and the total number of
items.

Majority in a Stream
The next algorithm we consider also takes

place in a stream environment. Suppose items
occur multiple times, and one of the items is
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Figure 2. Suppose any one of n previous items was chosen with equal probability. Item n + 1 is chosen with
probability 1/(n + 1). Previous items have a probability of n/(n + 1) × 1/n = 1/(n + 1) to be chosen, too.

known to occur more than half the time. As a
real world example, consider an ad hoc set of
tiny, low-power sensors, communicating in a ring,
that need to select a majority item; see Figure 3.
Although the sensors can pass their items around
the ring, no sensor can store all items to tally the
majority item—no sensor even knows the total
number of sensors still operating. What algorithm
could a single sensor use to identify the majority
item in the stream?

In an ad hoc network, votes for the lead node
can be circulated and each node can identify
the majority node as the lead node using only
memory for one item and one counter. Votes may
arrive in different orders at each node.

Boyer and Moore gave a straightforward so-
lution [2]. Storage is needed for two things:
a tentative majority item and an “unmatched”
count. Note that the count is either zero or pos-
itive. Begin by setting the count to zero. When
an item arrives, if the count is zero, set the
tentative majority item to be the arriving item
and set the count to one. If the count is positive
and the arriving item matches the majority item,
increment the count. If the count is positive and
the arriving item does not match, decrement the
count. At the end, the tentative majority item is
the majority item, if one exists.

If no item occurs a majority of times, any item
might be the tentative item at the end. There is
no guarantee that the item with a plurality will
be kept.

The correctness of the algorithm can be based

on a pairing argument; see Figure 4. Every item
that is not the majority item can be paired with
a majority item somewhere in the stream. That
is, the count for each pair of majority and non-
majority items will cancel out. Either the non-
majority item is tentative and the majority item
decrements its count, or the majority item is
tentative and the non-majority item decrements
the majority item count. In either case, there is at
least one majority item that will not be paired—
there are more of them than all non-majority
items. This item will get a positive count that is
not canceled.

Virtual Memory Aware Heap
Next we present an implementation for the

classical binary heap that works better with mod-
ern memory systems. Binary heaps are used in
priority queues and the heapsort algorithm. Typ-
ically heaps are implemented with an array. A
node at index i has child nodes at indexes 2i
and 2i+1 and a parent node at index i/2, with
one-based indexing [12]. The problem is that
for large heaps, (almost) every level ends up in
a different virtual memory page, see Figure 5.
Thus traversing from the root to a leaf causes a
page fault for almost every level and occupies a
significant amount of cache.

The B-heap [9] is a modification that allocates
significant subtrees in a single page, see Figure 6.
Typically pages are large enough to hold subtrees
with a dozen levels. Thus the number of page
faults is reduced up to an order of magnitude,
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Figure 3. The problem is to find which item in a stream occurs the majority of times using a near-constant
amount of memory. In this example, more than half of the items are “t.”

Figure 4. Diagram suggesting the correctness of the algorithm. The majority items can be paired with other
items and have some remaining.

Figure 5. Naive binary heap implementations lead to many page faults and cache pollution since almost every
level is in a different virtual page.

using far fewer entries in the cache and page
tables. Other variants, such as cache-oblivious
algorithms, implicit k-way heaps [13], min-max
heaps [16], and van Emde Boas layouts [17],
similarly work far better with actual virtual mem-
ories.

Compacting an Array
Finally we present a parallel algorithm. With

multiple core machines being the norm for per-
sonal computers, phones, and even embedded
devices, the community must be aware of the
opportunities of parallel programming. Cloud and
distributed computing makes the need even more
urgent.

The problem we consider is compacting an
array. That is, copy all non-zero entries from
one array to (the beginning of) another array. A
simple serial algorithm accomplishes this in Θ(n)

time. Can we accomplish this faster using parallel
processing with a minimum of complications?

Vishkin gives a parallel algorithm [18] to
compact an array in Θ(log n) time, assuming
Θ(n) hardware. The input is a shared array A of
size n. The output is a shared array B, assumed
to be big enough. To help explain the algorithm,
we present the XMTC code for it as a reference.

psBaseReg d e s t = 0 ;
spawn ( 0 , n−1) {

i n t e = 1 ;
i f (A[ $ ] != 0) {

ps ( e , d e s t ) ;
B[ e ] = A[ $ ] ;

}
}

psBaseReg declares dest as a prefix-sum
base variable shared among all threads. The key-
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Figure 6. A B-heap allocates subtrees in a single page, which reduces page faults and minimizes cache use.
Subtrees have two “root” nodes to use all space in each page.

word spawn creates one thread for each index
in A. Each thread runs its own copy of the
code in the body of spawn. $ is the thread
number. The interesting part is ps, which is the
prefix sum operation. Here it atomically copies
the value of the shared variable dest to e, then
increments dest. It is equivalent to the following
two assignments occurring simultaneously:

e ’ = d e s t ;
d e s t ’ = d e s t + e ;

where the primed variables represent the new
values. Since each thread gets a value of dest
and increments dest, each thread gets a unique
index for B. The indexes for B are assigned from 0
to (one less than) the number of non-zero entries.

If threads access dest one at a time and ps
merely serializes the accesses, there is no speed
up. In Figure 7, we illustrate how the compiler
parallelizes executions of ps to handle all the
updates in Θ(log n) time.

The spawned threads are represented by in-
verted triangles at the bottom of the thread
tree in Figure 7. Hexagons represent additional
threads created to handle intermediate results.
Each thread passes the initial value of its e (which
is 1) up. Each intermediate thread passes up the
sum of the e value it receives from the left

child thread and the e value from the right child,
eL+eR. At the top, the initial value of dest, 0, is
passed down. Each intermediate thread passes the
dest it receives from above to its left subtree and
dest + eL to the right subtree. All the threads
receive distinct dest values in Θ(log n) time
which they use as their e’ value. Thus every
value from A is put in a unique (and compact)
place in B.

Each dest value is unique since the least
value in a right subtree is just beyond the highest
value in the left subtree.

Although compacting an array is not common,
prefix sum is used in sorting. Vishkin gives sev-
eral other commonly used algorithms which can
be easily parallelized similarly.

CONCLUSION
New constraints and opportunities in com-

puting, such as highly parallel [3], cloud, and
energy-aware computation, can lead to novel,
elegant, broadly applicable algorithms and data
structures. We call for renewed interest in and re-
sources for research of basic algorithms and data
structures. Kamp says [9] programmers should
be taught some cache-aware data structures and
algorithms to understand the benefits of and
need for such improvements. More to the point,
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Figure 7. Diagram of threads to compute the prefix sum operation.

such data structures and algorithms must be as
conveniently available from standard libraries as
“standard model” algorithms currently are. Busy
professionals seldom invest extra time or effort to
obtain the best tool for a job if an adequate tool
is already at hand.
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