
ABM: A Prototype for Benchmarking
Source Code Analyzers

Tim Newsham
∗

Waipahu, Hawaii USA

newsham@lava.net

Brian Chess
Fortify Software

Palo Alto, California USA
brian@fortifysoftware.com

ABSTRACT
We describe a prototype benchmark for source code ana-
lyzers. The prototype uses a combination of micro- and
macro-benchmarking to measure the vulnerabilities a tool
is capable of detecting and the degree to which it is able
to distinguish between safe code and vulnerable code. We
describe the design and implementation of our prototype,
then discuss the effect that the our experience with the pro-
totype has had on our future goals. Our prototype, along
with sample output from a number of source code analysis
tools, is available for download from
http://vulncat.fortifysoftware.com.

1. INTRODUCTION
Static source code analysis provides a mechanism for re-

ducing the amount of tedious work involved in inspecting a
program for security vulnerabilities. As source code analysis
grows in popularity, more potiential users of the technology
are faced with the need to evalute the pros and cons of an
increasing number of tools. A formal benchmark for com-
paring source code analyzers would provide several benefits:
A benchmark would help consumers choose the best tool for
their needs. It would pinpoint weaknesses in existing ana-
lyzers. It would quantify the strengths and weaknesses of
competing analysis techniques and allow engineers to make
measured tradeoffs. Benchmarking could also play a pivotal
role in directing future research and development efforts.

We recognized the need for good benchmarking data for
source code analyzers and resolved to create a benchmark.
We chose to begin by constructing a prototype to test out
and refine our ideas. Starting with a prototype allows us to
understand what problems we know how to solve and gives
us a platform to explore design decisions. An obvious goal
of this work is to provide a foundation for the construction
of a future benchmark.

∗Under contract with Fortify Software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SSATTM ’05 Long Beach, California USA
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

We call our prototype the Analyzer BenchMark or ABM
for short. The ABM benchmark is comprised of 91 micro-
benchmark test cases and a single macro-benchmark test
case. The purpose of each micro test case is to evaluate a
tool against a very specific scenerio in a controlled way. The
purpose of macro test cases is to capture properties of “real-
world” programs, like size and complexity, that are absent
from the micro test cases.

Our goal is to develop a framework that can be applied to
any programming language or platform, but for the purposes
of creating a prototype, all of the test cases target C-code
source code analyzers running under Unix and Win32. We
have applied the prototype to six different analyzers run-
ning in Redhat9 Linux and Windows XP. Our benchmark
focuses on measuring the analysis strength of source code
analyzers and does not concern itself with issues such as
memory or time efficiency. Applying the ABM benchmark
to source code analyzers results in quantifiable answers to
the questions “What kind of vulnerabilities does this an-
alyzer search for?” and “How effective is this analyzer at
finding these vulnerabilities?”.

Related work
We are not the first to attempt to measure the performance
of source code analyzers. In his thesis [6] and accompany-
ing article [7], Misha Zitser evaluates the performance of
several source code analyzers for detecting buffer overflows.
Zitser uses a test suite based on known vulnerabilities in
real-world code. Zitser’s test cases are derived from widely
used applications but not comprised of the actual applica-
tion code because many of the analyzers he measured were
not capable of ingesting the large amount of code contained
therein. Zitser’s test suite is now available from the MIT
Lincoln Laboratory in their publically available corpora [2].

Zitser describes the construction of “approximately 50
pairs” of small test cases. Each pair is made up of a small
program with a single instance of a buffer overflow and a sec-
ond matched program that is similar but does not contain
the defect. To construct his test cases, Zitser first created
a fairly detailed taxonomy of test case characteristics. He
then hand-constructed the test pairs and classified them us-
ing his taxonomy. Although he describes the construction
of his micro-benchmark test suite in detail, Zitser did not
publish any results obtained from using the suite.

Zitser’s micro-benchmark work was continued and extended
by Kendra Kratkiewicz. In her thesis [1] Kratkiewicz ex-
tends the taxonomy created by Zitser and uses her taxonomy
to guide the automatic generation of a micro-benchmark

suite of 591 quadruplets. Each quadruplet consists of four
programs: one with no buffer overflow and three with succes-
sively larger buffer overflows. Kratkiewicz’s use of quadru-
plets allows the effect of the magnitude of a buffer overflow
to be analyzed. Her thesis describes the results of using this
benchmark to compare the performance of several analyzers
in detecting buffer overflows.

The SAMATE project at NIST [3] was created with the
objective of “identification, enhancement and development
of software assurance tools.” [3] Part of the project’s man-
date is to support tool evaluation and, towards this end, they
plan to create a system for benchmarking software analysis
tools. This work is still in the planning stages and we are
not aware of any results at this time.

Contributions
We believe our work makes several important contributions
to source code analyzer benchmarking. First, we are con-
structing a standard benchmark. Prior efforts focused on
constructing a benchmark for the author’s use in measur-
ing particular tools. We intend our benchmark to be used
by others including end-users and research and development
teams from academia and industry.

Second, we wish to benchmark a large number of ana-
lyzers. This goal forces us to pay attention to engineering
issues such as ease of retargetting. Our benchmark is care-
fully automated with a build environment that has small,
isolated analyzer-specific components. We use a normaliza-
tion mechanism to reduce the amount of analyzer-specific
code in our benchmarking process.

Third, we are interested in benchmarking all vulnerability
types and do not limit our focus to a single class of vulner-
abilities. This choice has resulted in a classification system
that is more flexible than those used previously.

Fourth, we are interested in benchmarking across a wide
set of platforms and languages.

Fifth, we see weakness in the grading mechanisms used
by Zitser and Krakiewicz, which expect that each test case
can have at most one reported vulnerability. Our bench-
mark uses a more sophisticated grading process that does
not make such an assumption.

Finally, we see value in both micro-benchmarking and
macro-benchmarking and use both to measure the perfor-
mance of source code analyzers.

With the remainder of this paper we discuss the com-
position of the ABM prototype benchmark, why we made
certain choices, and our plans for expanding from a proto-
type to a full benchmark proposal. Examples of benchmark
results are provided to clarify discussion, but, due to space
constraints, complete results are not given. We direct curi-
ous readers to http://vulncat.fortifysoftware.com for more
results.

2. DESIGN GOALS
If a benchmark is going to gain wide adoption, it must

meet a number of requirements:
First, the benchmark must be fair, objective and trans-

parent. A benchmark that is not fair and objective will
be rejected by the source code analysis community. Our
benchmark should generate transparent results that can be
independently reproduced, scrutinized and verified so that
matters of fairness can be publicly decided.

Second, the benchmark must be able to accomodate change.

The relevance of different vulnerabilities, platforms and lan-
guages will evolve over time. The widespread adoption of
source code analysis tools is in its very infancy, virtually
ensuring future change. In order to be successful our bench-
mark must be flexible and extensible. The framework should
allow for the introduction of new languages, platforms and
metrics.

The benchmark must also be applicable to a wide range
of analysis techniques. Without good coverage of important
platforms or languages, people will look elsewhere in order
to find a becnhmark that is relevant to their needs and in-
trests. This means that, at a minimum, the benchmark must
support the most popular languages and operating environ-
ments.

The benchmark must generate an easy-to-understand score.
The majority of consumers of benchmark results will not be
experts in source code analysis, and they will look to the
benchmark for a simple way to compare competing tools.
Some will use the scores to make important purchasing de-
cisions. It is important that these scores be interpreted cor-
rectly and not be prone to marketing spin. In order to be
relevant, the scores must also be based on measurements
that are important in real-world programs.

Finally, the benchmark should generate a wealth of data
about each tool measured. The need for this information
is two-fold. First, the data will provide transparency by al-
lowing the results of the benchmark to be scrutinized and
independently verified. Second, the data will allow for de-
tailed analysis of the strengths and weaknesses of each tool.
Consumers will be able to use the data to focus on details
that are most relevant to them. This data will also be useful
in focusing future source code analysis research and devel-
opment efforts.

Beyond these requirements we have some pragmatic goals
for our benchmark. We would like the benchmark to be easy
to use. We wish to create a benchmark that is easy to re-
target for new source code analysis tools. To the greatest
extent possible we want to automate the application of the
benchmark, making it easy to carry out the benchmarking
process. We believe that automation has the additional ad-
vantage of increasing the objectivity of a benchmark. We
also want the benchmarking results to be easy to view, in-
terpret and consume.

3. THE BENCHMARK
We chose to begin our project by creating a prototype.

Our goal in starting with a prototype is to allow us to fig-
ure out what aspects of the design we actually understood
and provide a platform to experiment with the aspects that
we did not. For this purpose we chose to restrict the scope
of our project significantly, focussing on static analyzers for
Java and C code running under Linux and Windows XP. We
decided that we should build a modestly sized suite of micro-
benchmark test cases, with the understanding that the cov-
erage of the suite would suffer for it. We also chose to begin
with a single macro-benchmark test case. For maximum
flexibility, all of our micro test cases would be constructed
manually, and our macro test case would come from a widely
adopted open source program.

The decision to use both micro- and macro-benchmarking
was not an easy one. A macro-benchmark is made up of
larger test cases drawn from source code in use in “real-
world” applications. These test cases are large, compli-

Attribute Parent Keywords

Platform General Port Unix Win32

Program size General Size0...Size9
Program complexity General Complex0...Complex9
Vulnerability class General BufferOverflow Api Taint Race

Overflow location BufferOverflow Stack Heap

Overflow API BufferOverflow AdHoc AdHocDecode AdHocCopy Read Gets Strcpy Sprintf Memcpy

Overflow cause BufferOverflow Unbounded NoNul IntOverflow BadBound

API type Api MemMgmt Chroot

MemMgmt type MemMgmt DoubleFree Leak

Taint type Taint Unsafe InfoLeak FormatString

Race type Race Filename

Table 1: Measured attributes, their dependencies and the set of keywords used to describe them.

Keyword Description

Port Portable across all platforms.
Unix Contains UNIX-specific code.
Win32 Contains Win32-specific code.
Size0...Size9 Description of the program size from small to large.
Complex0...Complex9 Description of the program complexity from simple to complex.
BufferOverflow Contains a buffer overflow vulnerability.
Api Contains a vulnerability caused by misusing an API.
Taint Contains a vulnerability caused by misuse of tainted data.
Race Contains a vulnerability cause by a race condition.
Stack The overflow occurs in a buffer located on the stack.
Heap The overflow occurs in a buffer located on the heap.
AdHoc The overflow is caused by an ad hoc buffer manipulation.
AdHocDecode The overflow is caused by an ad hoc buffer decode operation.
AdHocCopy The overflow is caused by an ad hoc copy operation.
Read The overflow is caused by use of the read() function.
Gets The overflow is caused by use of the gets() function or a similar related function.
Strcpy The overflow is caused by use of the strcpy() function or a similar related function.
Sprintf The overflow is caused by use of the sprintf() function or a similar related function.
Memcpy The overflow is caused by use of the memcpy() function or a similar related function.
Unbounded The overflow was caused because no bounds check was made.
NoNull The overflow was caused because a NUL character was expected but not found.
IntOverflow The overflow was caused because of an integer overflow or underflow when computing bounds.
BadBound The overflow was caused because an incorrect bounds check was performed.
MemMgmt A memory management API was misued.
Chroot The chroot() function was misued.
DoubleFree Allocated memory was freed multiple times.
Leak Allocated memory was never freed.
Unsafe Tainted data was passed to an unsafe function.
InfoLeak Sensitive data was revealed.
FormatString Tainted data was used as a format string to a function in the printf family of functions.
Filename A race was caused by accessing a file multiple times by its filename.

Table 2: Descriptions for each keyword.

cated, and provide several challenges to benchmark anal-
ysis. Macro-benchmark cases contain an entanglement of
many factors that are not easily seperated for independent
measure. A micro-benchmark is comprised of a set of small
synthetic test cases in which each test case can be carefully
designed to isolate characteristics. Tests can include control
subjects to increase the realiability of any measurements
made.

The precision of the micro-benchmark test cases comes at
a cost: it is “real-world” applications that interest program-
mers, not synthetic test cases. A micro-benchmark may fail

to capture some salient feature of important applications,
such as size or complex interactions between features. Even
when micro-benchmarks do provide useful results, their ac-
curacy may be called into question unless they can be val-
idated against data from important applications. For these
reasons we chose to create a blend of micro-benchmarks and
macro-benchmarks.

3.1 Test Case Attributes
To guide the creation of synthetic test cases we looked

at a wide range of computer security vulnerabilities arising

BAD case OK case Keywords

ahscpy1-bad.c ahscpy1-ok.c Port Size0 Complex0 BufferOverflow Stack AdHocCopy Unbounded

chroot1-bad.c chroot1-ok.c Unix Size0 Complex0 Api Chroot

fmt1-bad.c fmt1-ok.c Port Size0 Complex0 Taint FormatString

fmt2-bad.c fmt2-ok.c Unix Size0 Complex0 Taint FormatString

fmt3-bad.c fmt3-ok.c Unix Size0 Complex1 Taint FormatString

fmt4-ok.c Port Size0 Complex0 Taint FormatString

fmt5-ok.c Port Size0 Complex0 Taint FormatString

into1-bad.c Port Size0 Complex0 BufferOverflow Heap AdHoc IntOverflow

into2-bad.c into2-ok.c Port Size0 Complex0 BufferOverflow Heap AdHoc IntOverflow

mem1-bad.c mem1-ok.c Port Size0 Complex0 Api MemMgmt Leak

mem2-bad.c mem2-ok.c Port Size0 Complex1 Api MemMgmt Leak

race1-bad.c race1-ok.c Unix Size0 Complex0 Race Filename

race2-bad.c race2-ok.c Unix Size0 Complex0 Race Filename

snp1-bad.c snp1-ok.c Port Size0 Complex0 BufferOverflow Stack Sprintf BadBound

snp2-bad.c snp2-ok.c Port Size0 Complex0 BufferOverflow Stack Sprintf BadBound

tain1-bad.c tain1-ok.c Port Size0 Complex0 Taint Unsafe

tain2-bad.c tain2-ok.c Unix Size0 Complex0 Taint Unsafe

Table 3: A sampling of test cases and their attribute keywords.

from programming mistakes in C source code. We created
a formal taxonomy of vulnerability attributes. While our
taxonomy is not complete we believe it captures many of
the kinds of program attributes that are important to source
code analyzers. This taxonomy defines a problem space for
our test cases that we were able to use for both choosing
which test cases to create and to measure the coverage of
the resulting test suite. The taxonomy also proved useful in
automating the analysis of the results.

While creating our taxonomy, we observed that some pro-
gram attributes are only relevant to some types of vulner-
abilities. We support attributes in this irregular taxonomy
by using a heirarchical system of keywords. For each at-
tribute we enumerate a set of keywords that describe that
attribute. Each attribute also has a parent keyword upon
which it is dependent. When an attribute’s parent keyword
is present, exactly one of the keywords for that attribute
must be specified. At the top of this dependency heirarchy
is the keyword “General” which is always implicitly present.
The attributes we measure are shown in Table 1 and the
keywords used described in Table 2.

Each test case is described by a string of keywords for each
relevant attribute. For example, the string “Port Size0

Complex1 BufferOverflow Heap Gets Unbounded” describes
a small portable test case containing a buffer overflow on the
heap using the gets() function, which does not perform any
bounds checking.

This system of keywords is very flexible. Attributes that
are specific to features of a particular language or operat-
ing system can be introduced without interfering with other
unrelated attributes. Keywords and attributes can even be
used to describe non-technical details about a test case such
as the source of contributed material. Finally the system
of keywords is well-defined (although some of the keywords
currently in use are not). This simplifies the verification of
well-formed test case descriptions.

3.2 Test Suite
We used our taxonomy to guide our creation of ABM

micro-benchmark test cases. The intent is to have broad
coverage of combinations of attributes in our taxonomy. We

consciously chose to limit the number of test cases in our
prototype benchmark allowing the benchmark coverage to
suffer a little in order to focus on other details such as grad-
ing and analysis. We sketched out aproximately what types
of test cases we wanted to include and constructed the test
cases manually. Constructing a small number of test cases
allowed us to explore some alternate test case designs during
prototyping and allowed us to focus more quickly on other
areas of the benchmark design such as grading and analysis.

The benchmark test suite is composed of 91 C test cases
with a somewhat even coverage of attributes in our taxon-
omy. We are currently in the process of adding test cases
for Java. Table 3 lists a sampling of 31 of the 91 test cases
and their attributes. Whenever possible, test cases were con-
structed in matched pairs of OK and BAD test cases. Each BAD

test case has code with a vulnerability in it. Corresponding
OK cases are similar to BAD cases but do not share the vul-
nerability. OK cases are generally constructed by patching
BAD cases to remove the vunlerability while retaining func-
tionality. These OK cases share the same attribute keywords
even though they do not contain a vulnerability.

Kratkiewicz [1] used test case quadruplets rather than
pairs to measure the effects of buffer overflow magnitude.
We did not take this approach because the magnitude at-
tribute is specific to buffer overflow vulnerabilities. The ef-
fect of magnitude can still be measured by providing addi-
tional test case pairs that cover buffer overflows of varying
mangitude.

Each test case contains annotations specifying where a
bug may be present. Test cases with vulnerabilities are
tagged with a comment “/* BAD */” at any line that may
be considered to contribute to the vulnerability described by
the test case’s keywords. Those cases without vulnerabili-
ties are tagged with a comment “/* OK */” at any line that
could have contributed to the vulnerability if it had been
present.

Each test case is also annotated with information about
valid and invalid inputs. These annotations allow for au-
tomated testing of the resulting binaries. Some of the test
cases we constructed were dependent on implementation de-
tails, such as compiler layout and padding, and were not

1 /*

2 Description: Printf is called with a user supplied

format string.

3 Keywords: Port Size0 Complex0 Taint FormatString

4 ValidArg: "’NormalString\n’"

5 InvalidArg: "%s"*100

6 */

7

8 #include <stdio.h>

9

10 void

11 test(char *str)

12 {

13 printf(str); /* BAD */

14 }

15

16 int

17 main(int argc, char **argv)

18 {

19 char *userstr;

20

21 if(argc > 1) {

22 userstr = argv[1];

23 test(userstr);

24 }

25 return 0;

26 }

Figure 1: The test case fmt1-bad.c.

vulnerable when using our compiler of choice. We felt these
test cases were still important and did not want to sim-
ply discard them. As a result, some of our test cases fail
automatic validation. It is also important to note that an
incorrect test case may still pass validation if the validation
inputs are not picked properly. Thus, we were able to use
automated testing as an aid in validating our test suite but
could not rely on it completely.

An example of a test case in the suite is shown in Figure 1.
Annotations in the comments at the head of the file give a
formal and informal description of the test case. They also
provide test strings for automated verification of the test
case. An annotation at line thirteen denotes the occurance
of a vulnerability.

For our macro-benchmark test case we chose the Apache
web server [4]. Our choice was influenced by several fac-
tors. Apache is well known, accepted, and mature. It is
freely available in source form and runs on a wide range
of platforms. Typical deployments of Apache require that
it be exposed to security threats from the entire internet.
Apache provides us with a relatively large and complex pro-
gram that is representative of the types of programs that
people would want to analyze with a source code analyzer.

3.3 Grading
To benchmark a tool with the ABM suite, we run the tool

being benchmarked against each test case in the suite and
gather the results for grading. The entire process is auto-
mated with a system of makefiles. The tool is invoked once
for each test case. The result of each analysis is normalized
into a standard format, and a grading program compares
the normalized tool output against the annotations in the

N: fmt1-bad

L: fmt1-bad.c 13 FormatString format printf If

format strings can be influenced by an

attacker, they can be exploited. Use a

constant for the format specification.

Figure 3: The normalized results of Flawfinder’s

analysis of fmt1-bad.c.

test case. Finally, the graded results are combined into a
benchmark result. This process is illustrated in Figure 2.

In order to benchmark a tool, the benchmark framework
must be able to invoke the analyzer, and there must be a
method for converting the results of the analysis into a stan-
dardized format. Most of the benchmark process is dictated
by makefile rules shared by all tools. Tool-specific rules are
contained in a separate makefile for each analyzer. Because
some test cases are platform specific, each analyzer-specific
makefile must specify which set of test cases to analyze.
They must also specify how to invoke the analyzer and what
file extension to use when saving the results. These tool-
specific makefiles are typically less than 40 lines long.

We use a normalized output format to avoid putting analyzer-
specific code in the grading process. The normalizer emits
a line for each vulnerability reported by the analyzer. Each
vulnerability is first mapped to the most specific matching
keyword in our taxonomy. In some cases a vulnerability
may be mapped to several keywords. The normalizer emits
a single line for each combination of keyword, file name,
and line number. To make it easier to verify that our nor-
malizer is behaving as expected, we include the analyzer’s
original description of each vulnerability in the normalized
output. The amount of code necessary to normalize an an-
alyzer’s output is highly dependent on the output format
of an analyzer. So far we have constructed normalizers for
six analyzers ranging in size from 59 to 137 lines of python
code.

Figure 3 shows an exerpt of the normalized results from
the Flawfinder [5] analyzer. The line starting with “N:” de-
scribes the test case source (fmt1-bad). The line starting
with “L:” describes an instance of a FormatString vulnera-
bility at line 13. The text following the FormatString key-
word on this line is not used and is provided to aid manual
review of the results. The remainder of the file contains
results for other test cases.

We use an automated system to grade the normalized
analysis results. Grading results manually would be tedious
and error-prone and would place an artificially low bound
on the practical size of our test suite. Manual grading would
likely be less objective or at least less transparent than an
automated process. Fortunately grading a test case’s anal-
ysis results is a straightforward process of matching up the
normalized results with the source code if the source code is
properly annotated.

To grade the normalized results, each reported vulnerabil-
ity is matched against the corresponding line in the anno-
tated test case. Any reported vulnerability which does not
appear as an attribute keyword for the test case is noted
and ignored. Likewise, vulnerabilities matching attribute
keywords but at lines that are not annotated as BAD or OK

are noted and ignored. When a matching vulnerability oc-
curs on a line with a BAD or OK annotation, it is noted as

Analyzer Specific

.c

Cases
Test

Source

Analyzer
Code

A

B

C

Grader

Report

Gets Confused 10%
Noisy 80%
Finds Bugs 20%

Report

Result
AnalyzerNormalizer

ϕλωθξψ

ABC

Figure 2: The ABM benchmarking process. Test cases are analyzed by the source code analyzer to be

measured. The results are then normalized and graded before a report is generated. The invocation of the

source code analyzer and the normalization of its results are the only analyzer-specific steps in this process.

fmt1-bad

Printf is called with a user supplied format string.

Port Size0 Complex0 Taint FormatString

13 BAD FormatString *MATCH* format printf If format

strings can be influenced by an attacker, they can

be exploited. Use a constant for the format

specification.

Raw results:

PASS fmt1-bad Port Size0 Complex0 Taint FormatString

Figure 4: The graded results of Flawfinder’s analysis

of fmt1-bad.c.

having matched. An analyzer is given a passing grade on
a test case if it matches any of the BAD lines and does not
match any of the OK lines. Upon completion, the grader
emits a list of passing and failing test cases and their asso-
ciated annotation keywords.

Notice that our grading process can ignore many reported
vulnerabilities. Each test case is constructed to measure the
analysis of a single type of vulnerability and the grader ig-
nores any information about other reported vulnerabilities.
Although it may appear that valuable information is dis-
carded, this is not necessarily the case. Discarded informa-
tion is not lost as long as there is another test case in the
suite to measure the behavior. We believe that this approach
of carefully focused measurment increases the reliability and
leads to better analysis.

Figure 4 shows an exerpt of the graded results from the
Flawfinder [5] analyzer. The group of lines at the top of the
figure describe the grading process, starting with the test
case name and the formal and informal descriptions of the
test case. Following the description is a line representing the
reported FormatString vulnerability at line 13. This line is
indicated as a match since the test case is a FormatString

test case. The Flawfinder tool passed this test case since
there was a match for a “BAD” line. Had it failed, failure
would be indicated in the output. These first lines are not
used directly but are provided to ease human review of the
grading process. The grader emits a table of graded results
at the end of its output with a line for each graded test case.
This is illustrated in the figure with a line that indicates that
Flawfinder passed the fmt1-bad case.

Grading the macro-benchmark test cases is even simpler
than grading micro-benchmark cases. As for the micro-

benchmark test cases, the results from the macro-benchmark
are first normalized. The benchmark cases were chosen in
part for their maturity and it is assumed that there are rel-
atively few vulnerabilities left in the code. For the purpose
of grading, we assume that all reported vulnerabilities are
false-positives. This assumption may introduce some error,
but the approximation should be quite good and the error
relatively small. Over time it is expected that a few bonafide
vulnerabilities will be discovered in macro-benchmark test
cases. We intend to maintain our current test cases and
augment them with annotations as this occurs.

3.4 Analysis
The analysis phase makes use of the graded benchmark re-

sults to generate a report of meaningful measurements about
an analyzer. The goal of the analysis is to measure the cov-
erage and strength of an analyzer. An analyzer’s coverage
is a measure of the relevance of an analyzer to a variety of
code defects. An analyzer with broad coverage is designed
to detect a broad range of vulnerabilities whereas an an-
alyzer with narrow coverage can only detect a small class
of vulnerabilities. An analyzer’s strength is a measure of
the quality of analysis over diverse and sometimes difficult
coding constructs. An analyzer with high strength can de-
tect vulnerabilities in both simple and complicated code.
Equally important, an analyzer with high strength is able
to differentiate between vulnerable and non-vulnerable in-
stances of similar code. An analyzer with low strength may
not be able to detect a vulnerability in complex code or may
incorrectly identify vulnerabilities where they do not exist.

In order to understand analysis of the results, it is nec-
essary to first understand the meaning of passed and failed
test cases. For “BAD” cases, a success indicates a “true pos-
itive” detection of a vulnerability while a failure indicates
a “false negative” or that the analyzer incorrectly indicated
that the vulnerability was not present. For “OK” cases, a
success indicates a “true negative” or that the analyzer cor-
rectly indicated that no vulnerability was present, while a
failure indicates a “false positive” detection of a vulnerabil-
ity.

The simplest measure of an analyzer is given by a tally
of the passing test cases. This measure imparts a rough
measure of the analyzer but does not provide much insight
into the analyzer’s strengths or weaknesses. A slightly bet-
ter measure is derived by partitioning the test cases into
“OK” and “BAD” cases. This provides a measure of true pos-
itives and negatives, or, conversely, false positives and false

BAD tests OK tests Total Discriminates

pass total perc pass total perc pass total perc pass total perc

All 26 48 54% 23 43 53% 49 91 54% 4 22 18%

Unsafe 2 2 100% 0 2 0% 2 4 50% 0 2 0%
InfoLeak 0 2 0% 0 0 - % 0 2 0% 0 0 - %
FormatString 3 3 100% 3 5 60% 6 8 75% 3 3 100%

fmt1 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt2 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt3 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt4 0 0 - % 0 1 0% 0 1 0% 0 0 - %
fmt5 0 0 - % 0 1 0% 0 1 0% 0 0 - %

Table 4: Exerpts of benchmark results for the Flawfinder scanner.

negatives. The number of true positives gives some indica-
tion of how well the analyzer does the job advertised while
the number of false positives gives a measure of how much
additional noise it produces.

By partitioning the test cases according to vulnerability
classes the coverage of an analyzer can easily be measured.
An analyzer is said to cover a vulnerability class if it can
report vulnerabilities in that class. If there are any true
positives in the class (ie. there is at least one “BAD” test case
that passed) then clearly the vulnerability class is covered.

Measuring an analyzer’s strength is a little more com-
plex. Some indication of an analyzer’s strength is given by
the number of false positives and false negatives that are
reported. We can gain further insight into an analyzer’s
performance by partitioning a set of test cases based on a
particular attribute. For example, by partitioning the set of
BufferOverflow test cases according to program size, the
effects of size on buffer overflow detection can be isolated.

One effect that is not easily isolated in this way is the
ability of an analyzer to discriminate between vulnerable
and non-vulnerable code. We introduce a new measure to
quantify this component of an analyzer’s strength. The dis-
crimination of an analyzer is a tally of how often an ana-
lyzer passed an “OK” test case when it also passed a match-
ing “BAD” test case. Together with the true negative and
true positive tallies, discrimination gives a good indication
of an analyzer’s strength. An analyzer that finds many in-
stances of a vulnerability but falsely reports the presence
of this vulnerability where it is not present will score well
when true-positives are measured but will not get a good
true-negative or discrimination score.

Besides isolating the effect of defect variations, analyzing
partitions based on keywords has an additional advantage
– it allows us to make level comparisons of diverse analyz-
ers. For example, the results of benchmarking an analyzer
that runs only on Win32 platforms cannot directly be com-
pared with the results from an analyzer that runs only in
UNIX. However, by isolating the portable test cases (those
described by the Port keyword) some amount of comparison
can be made.

The ABM analyzer generates a report by generating ta-
bles of successively more detailed partitions of the data set.
This process is straightforward because every test case is
described by a sequence of keywords. Subsets of test cases
are made by matching selected attribute keywords. These
subsets are then scored for tallies of passed test cases, true
positives, true negatives, and discrimination. Each tally is

reported as an absolute count and as a percentage.
Table 4 shows an exerpt of the analyzed results from

benchmarking the Flawfinder [5] source code analyzer. These
results can be viewed in their entirety at
http://vulncat.fortifysoftware.com. The line labelled “All”
shows the accumulated results for all the micro-benchmark
test cases. It shows that Flawfinder found 54% of the vul-
nerabilities, and properly did not report any vulnerabilities
for 53% of the non-vulnerable test cases. When it was able
to detect a vulnerability, it was able to discriminate it from
non-vulenerable code 18% of the time. The next three lines
show Flawfinder’s performance for three classes of Taint

vulnerabilities. Finally the last five lines show the indi-
vidual test case pairs used to measure FormatString vul-
nerabilities. The fmt1-bad.c test case presented earlier is
represented by the “BAD tests” column of the “fmt1” row.

Because of their nature, the macro-benchmark test cases
are not as easy to analyze and do not provide as much in-
formation. The only analysis we perform is a counting of
false-positives by attribute keyword. There is one subtlety
in this process: we accumulate attribute counts up to their
parent keywords. For example if there are five reported
FormatString vulnerabilities and two reported InfoLeak

vulnerabilities these counts are accumulated and reported
as seven Taint vulnerabilities. The reason for this accu-
mulation is to ease comparison of the results from different
analyzers: some analyzers may report vulnerabilities deeper
in the attribute taxonomy than other analyzers.

4. FUTURE WORK
We have built a prototype benchmark for source code an-

alyzers, but our work is not yet done. A primary goal of
this project has been to guide the development of our full
benchmark. While what we have implemented is important,
we consider what we have learned about what we must now
implement an equally important contribution of our work.

We are currently in the process of adding Java test cases to
the ABM suite. Although unexciting from a technical point
of view these new test cases are critical to our goal of provid-
ing a standard cross-platform benchmark. Details about the
Java test cases are available at http://vulncat.fortifysoftware.com.

The most glaring deficiency of the current benchmark is its
coverage. This is partly due to our desire to keep the number
of test cases manageably small in our prototype. A next-
generation benchmark will require a micro-benchmark test
suite one or two orders of magnitude larger. A hand-written
test suite would clearly not be practical and we anticipate

generating test cases programatically as was done in [1].
A larger macro-benchmark test suite will also be needed.

The process of incorporating more macro-benchmarks is te-
dious but fairly straightforward.

Test case generation will be guided by a classification sys-
tem. Our initial taxonomy was successful but somewhat
simplistic. Its classification of complexity and size lacks for-
mal definition. The ABM test suite has particularly poor
coverage of large or complex programs. A formal classifica-
tion of size and complexity will give us a better foundation
for addressing this deficiency. To ensure consistent and un-
biased coverage of the taxonomy’s attribute space we intend
to formalize the process by which we pick test cases. The
process of constructing matched OK cases also suffers from a
lack of formal structure which we hope to address by aug-
menting the taxonomy with alternate patch strategies.

The taxonomies created and employed by Zitser [6] and
Kratkiewicz [1] to describe programs with buffer overflows
are considerably more detailed than ours. In the future we
plan to incorporate attributes from their work into our tax-
onomy and expand our taxonomy to cover details particular
to vulnerabilities other than buffer overflows.

The area of result analysis is ripe for future research. As
with any benchmark, we anticipate that the availability of
raw data will stimulate others to find new ways of extracting
important information. There are two areas that we would
like to pursue further in the future. Currently the result
analysis places equal importance on each test case. This
artificially weights the aggregated results according to the
number of test cases in each category. We hope to address
this by investigating weightings that more properly reflect
the importance of test case properties in real-world situa-
tions. We hope that comparisons with macro-benchmark
results will prove useful in this effort.

A second area of future interest is to provide better syn-
ergy between the micro- and macro-benchmarking compo-
nents. As currently implemented our micro-benchmark and
macro-benchmark cases are used to measure very different
things. The relation between their results is not clearly ap-
parent in the results. We hope that future analysis will allow
the two suites to complement each other and corroborate
each other’s results.

A subtle issue that has been glossed over earlier in this
paper is the handling of macro-benchmark results across
disparate platforms. Even though the test case we chose
compiles on a wide range of platforms, the source code used
in the build process is not identical for all platforms. The
build environment selects certain platform specific files ap-
propriate for the platform. Conditional compilation selects
certain segments of code within files that are used by all
platforms. This makes comparisons of results obtained on
different platforms troublesome. We are currently investi-
gating stronger analysis techniques to remedy this.

Beyond the technical, there is a lot of work remaining
in getting our benchmark adopted. We hope to work with
the community to get feedback on our methodologies and
address any early concerns. We plan to support the bench-
mark’s adoption by promoting its fair use and the dissemi-
nation of results. We plan to continue benchmarking more
analyzers, and we will make both the benchmark and re-
sults for a wide range of analzers available for download
from http://vulncat.fortifysoftware.com.

5. REFERENCES
[1] K. Kratkiewicz. Evaluating static analysis tools for

detecting buffer overflows in c code. Master’s thesis,
Harvard University, March 2005.

[2] MIT. Corpora.
http://www.ll.mit.edu/IST/corpora.html, August 2005.

[3] NIST. Samate (nist software assurance metrics and tool
evaluation). http://samate.nist.gov/, August 2005.

[4] The Apache Software Foundation. The apache http
server project. http://httpd.apache.org/, August 2005.

[5] D. A. Wheeler. Flawfinder.
http://www.dwheeler.com/flawfinder/, August 2005.

[6] M. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts
Institute of Technology, August 2003.

[7] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. In SIGSOFT ’04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software
engineering, pages 97–106, New York, NY, USA, 2004.
ACM Press.

