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Background

Emergency management is a complex real-time operation
that involves several interdependent processes, including:

a) Emergency situation awareness

b) Scheme design for response and rescue
c) Equipment and personnel deployment
d) Start-to-finish mission support



Research Objectives

This research aims at accelerating public safety
innovation through the development of SAFE-NET.

SAFE-NET is a novel computational platform to support
efficient and safe dynamic mobilization of resources and
personnel for emergency response.



Presented Problems

Problem 1:

,_?_\_rea-wide Workload Balancing for Robust Response
ime

Problem 2:

Spatial Risk Modeling of Traffic Accidents for Emergency
Vehicle Routing

Problem 3:
Crowd Sourcing Flood Hazards



Part 1:

Area-wide Stochastic Workload Balancing for
Robust Response Time

Dr. Khaled Abdelghany

In Collaboration with:

Parya Roustaee and Aline Karak
Southern Methodist University
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Two Stations Example — Workload Cutoff
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Station A reduces its workload cutoff while Station B extends its workload cutoff




Problem Formulation

Objective Function
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Problem Formulation (Cont.)

Probability distribution for each station
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The Equilibrium Conditions

Lagrangian representation of the objective function
L=Z+pu-(N=-3X;n) (16)

L is convex. Thus, the optimality conditions can be derived by differentiating L(.) with
respect to n; for each stationi € S
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At equilibrium, all stations are having the same marginal cost of uncertainty



Solution
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Ohjective Function

Case Study: City of Dallas
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Case Study: City of Dallas (Cont.)
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Conclusion

* An equilibrium-based modeling framework for robust ER workload
balancing is introduced.

* The modeling framework is formulated as a NLP that determines the
optimal workload cutoff for each station.

* The solution to the NLP is equivalent to an equilibrium state in which no
station can improve its MCU value by unilaterally shifting a portion of its
workload to any other station.

* Based on the obtained results DFRD is adopting a near-optimal workload
balancing strategy.

 The framework can be applied to determine the optimal workload
balancing strategy considering changes in the operation conditions of the
service area.



Part 2:

Spatial demand modeling of emergency
vehicle routing

Dr. May Yuan
The University of Texas at Dallas



According to the National Highway Traffic
Safety Administration (NHTSA), there were
approximately 31,600 accidents involving
fire trucks from 2000 to 2009 in the
nation, and 70% of these fire truck
accidents occurred while in emergency
use. In the period from 1992 to 2011,
there were an estimated 4,500 accidents
per year involving ambulances. About 60%
of ambulance accidents occurred during
emergency response operations.
Therefore, it is important to consider

spatial risk during dispatch. ; o
68,480 traffic aCCidents 2015_2016 Dallas city limit

Our presentation in 2018 summarized findings of which streets and when
are of higher risk to traffic accidents than other streets in Dallas




This year, we focus on
incident calls and routing:

1. Where were the
emergency calls from?

2. What were routes taken?

3. Where could the routes
be more efficient?

Incident calls:

20 Oct 2015- 30 Nov 2017

535,825 calls from 114,485 locations
527 locations: more than 100 calls

6 locations: more than 1000 calls
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Hot spot analysis of incident calls: Getis-Ord G* statistics with
0.33 mile (0.53km) squared bins
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While persistent hotspots
were limited and localized,
the sizable area of an
intensifying hotspot in
downtown and surrounding
area would lead to an
increasing demand for
emergency service and
hence routing needs.



An example: routes to an incident
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An example routes to an incident (Cont’d)
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Data Analytics of all incident calls from 20 Oct 2015 to 30 Nov 2017

1. An AVL run arrived at the incident location if the end-point of the
AVL run was within 60 m (~197 ft) of the corresponding incident;

2. If anincident didn’t have any vehicle arriving within 60m, the
incident was called off before or during emergency dispatches;

3. Anincident was called off if there was no AVL run recorded with
the incident;

4. The response time to an incident is the earliest time that a GPS
point on any AVL at its minimum distance (< 60 m) to the incident.



Summary statistics of emergency vehicle dispatches to incidents in
the AVL data provided by Dallas Fire Department

Rate of
Total bevond called off, Arrived Arrived s onzees ci)n
Period Incident calls Y no dispatch  within 60m within 60m P _
(a) 60m (b) (¢) in 8 min (d) 8 minutes
(c/d)
20 Oct to 31

.329

December 2015 47,561 7,323 238 40,000 12,127 30.32%
1) to 31

anuary to 254,419 40,438 1,372 212,609 62,536  29.41%
December 2016
1) to 30

anuary to 233,845 37,465 3,121 193,259 59,080 30.57%

November 2017




Longitudinally, responses were rather consistent over the three years

ot aoie ooy

% incidents with one vehicle arrived 69.59% 68.32% 68.97%
within 60 m of the incident

% incidents with two vehicles arrived 27.04% 28.69% 27.95%

within 60 m of the incident

% called-off incidents 3.37% 2.99% 3.08%

How about geographically (hence, social-economical disparity)?
Are places with higher or lower rates?



Calculate the InTime rate and CallOff rate in each census block

ne number of incidents with arrivals in 8 minutes
he number of incidents with arrivals later than 8 minutes
ne number of incidents with no arrivals within 60 m

O ™ >
Il
~ e~ e~

InTime Rate (or In8min Rate) = A/(A+B)
CallOff Rate = C / (A+B+C)



2015 Census Blocks
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2017 Census Blocks
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Spatial risk of traffic acident ~ The spatial patterns of InTime rates
i 347 iigomar @i ccho the interwoven patterns of traffic
- ' @ accident risk.

§ Next step: register incident calls to

g ind M W street segments and conduct spatial

s % £ data analytics of traffic risk impacts on
1@ S 4 cmergency vehicle routing



Part 3:

Crowd Sourcing Flood Hazards

Arefeh Safaeli Moghadam
Barbara Minsker, Ph.D., P.E.
Southern Methodist University



Crowdsourcing Flood Hazards Fra—
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Official data sources
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Waze Flood Alerts Versus Rainfall

What is the correlation between rainfall intensity
and flood alerts?
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Waze Flood Alerts Versus
River Flooding

1
Alerts in flood zones defined by NFHL

69.3%

Bl Areas with 0.2% risk of annual river flooding (500 year event)
Bl Areas with 1% risk of annual river flooding (100 year event)
B Areas with reduced risk of river flooding due to levee

Areas of minimal river flooding hazard

1 - National Flood Hazard Layer



ldentifying Low-Lying Areas (Pits)
Susceptible to Surface Flooding L-meter ——

resolution Ma
LiDAR P

Pits: Low elevation grid cells in an area

. Adjusting th
surrounded by higher terrain. Generating bare o v

carth DEM terrzfur_\ to remove
digital dams

2\*-'3?..;\. ! Analysis in
‘~:}_' Nig P
‘Q A ArcGlIS, ArcHydro
o and TauDEM
- AA {r : Hyd ro-
S, e conditioned DEM
alue 2ss
k. Less that 0.5 feet ‘t.
. <2
<5 e .
s ) Extraction of
e S local surface

depressions (pits)



1.0

o
=}

Cumulative Probability

o
»

0.2

0.0

200

(X

[ Cumulative Step Histogram

400 600
Distance of Nearest Depression to Alerts (feet)

800

1000

—

—

Probability

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

B o-38

] Probability Density Plot

200 400 600 800 1000
Distance of Nearest Depression to Alerts (feet)



Future Steps

* Investigating criteria that affect number of flood alerts
Road characteristics:
s Traffic load
**Length of road inside the pit
**Number of lanes inside and outside the pit
Pit characteristics:
*»*Size, depth, and slope of depression
s Contributing Area
*Land Cover

* Investigating utility of satellite imagery to detect local surface flooding,
verify Waze reports



Questions?
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