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Background

Emergency management is a complex real-time operation 
that involves several interdependent processes, including: 

a) Emergency situation awareness
b) Scheme design for response and rescue
c) Equipment and personnel deployment
d) Start-to-finish mission support



Research Objectives

This research aims at accelerating public safety 
innovation through the development of SAFE-NET.

SAFE-NET is a novel computational platform to support 
efficient and safe dynamic mobilization of resources and 
personnel for emergency response. 



Presented Problems
Problem 1: 
Area-wide Workload Balancing for Robust Response 
Time 

Problem 2: 
Spatial Risk Modeling of Traffic Accidents for Emergency 
Vehicle Routing

Problem 3: 
Crowd Sourcing Flood Hazards



Part 1:

Area-wide Stochastic Workload Balancing for 
Robust Response Time 

Dr. Khaled Abdelghany
In Collaboration with:
Parya Roustaee and Aline Karak
Southern Methodist University



Problem Overview

Workload Distribution Response Time

Station 39

Service Area

Station 54

Given:
(1) Workload distribution for all 

stations in the service area
(2) Response time performance 

function for each station

Objective: 
Maximize service robustness
Minimize
Expected Response Time +  
Response Time Variation

Station 17

Decision Variables: 
The workload cutoff for each 
station



Original Workload 
Distribution for Station A 

Original Workload 
Distribution for Station B 

Modified Workload 
Distribution for Station A 

Modified Workload 
Distribution for Station B 
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Workload

Workload Distribution
Before Workload Balancing

Two Stations Example – Workload Cutoff

Workload Distribution
After Workload Balancing

Station A reduces its workload cutoff while Station B extends its workload cutoff



𝑁 = ∑$ 𝑛$ (5)
𝑁& = ∑'∑()*: ,(- 𝑛$&( ∀ 𝑙 ∈ 𝐿 (6)

𝑛$( = ∑& 𝑛$&( ∀ 𝑘 ∈ 𝐾$, ∀ 𝑖 ∈ 𝑆 (7)
𝑛$ = ∑()*: ,(- 𝑛$( ∀ 𝑖 ∈ 𝑆 (8)

Objective Function

Conservation of workload frequencies across all stations

Minimize   𝑍 = ∑$ �̇�$ + 𝜔 < �̈�$ (1)
�̇�$( = ∑> 𝑡 < 𝑔$ 𝑡|𝑘 ∀ 𝑘 ∈ 𝐾$, ∀ 𝑖 ∈ 𝑆 (2)
�̇�$ = ∑()*: ,(- 𝑝$ 𝑘 < �̇�$( ∀ 𝑖 ∈ 𝑆 (3)

�̈�$ = ∑()*: ,(- 𝑝$ 𝑘 < ( �̇�$( − �̇�$)E ∀ 𝑖 ∈ 𝑆 (4)

Problem Formulation



𝑝$ 𝑘 = F-G
F-

∀ 𝑖 ∈ 𝑆 (9)

∑()*: ,(- 𝑝$ 𝑘 = 1 ∀ 𝑖 ∈ 𝑆 (10)

𝑝$ 𝑘 ≥ 0 ∀ 𝑘 ∈ 𝐾$, ∀ 𝑖 ∈ 𝑆 (11)

Probability distribution for each station

𝑛$&(, 𝑛$( and 𝑛$ are positive integers ∀ 𝑘 ∈ 𝐾$, ∀ 𝑖 ∈ 𝑆 (15)

Station capacity constraint
,𝑘$ ≤ ∁$ ∀ 𝑖 ∈ 𝑆 (14)

Nonnegativity constraints

Workload shifting constraints

∆𝑛$= ∑N ∆𝑛$N . 𝛿$N ∀ 𝑖 ∈ 𝑆 (12)

𝑛$ = Q𝑛$ + ∆𝑛$ ∀ 𝑠 ∈ 𝑆 (13)

Problem Formulation (Cont.)



Lagrangian representation of the objective function

L is convex. Thus, the optimality conditions can be derived by differentiating 𝐿(. ) with 
respect to 𝑛$ for each station i ∈ 𝑆

𝐿 = 𝑍 + 𝜇 < (𝑁 − ∑$ 𝑛$) (16)

Define 𝜋$ =
∆V(.)
∆F-

, the term ∆W(.)
∆F-

can then be written as 𝜋$ − 𝜇

𝑛$∗. 𝜋$∗ − 𝜇 = 0 ∀ 𝑖 ∈ 𝑆 (19)
𝜋$∗ − 𝜇 ≥ 0 ∀ 𝑖 ∈ 𝑆 (20)

The Equilibrium Conditions

At equilibrium, all stations are having the same marginal cost of uncertainty



Solution Algorithm

Shifting workload from stations with
high MCU to stations with low MCU until
the state of equilibrium is reached



Case Study: City of Dallas

Objective Function MCU values for the Stations

The Algorithm’s Convergence Pattern



Response Time Distrubution before Modfying the 
Stations’ Worload Distributions 

Response Time Distrubution after Modfying the 
Stations’ Worload Distributions 

  
Mean = 405.51 (Min); Variance = 219.45  

Response Time = 3.55 (Min/Call) 
Mean = 398.91 (Min); Variance = 177.91 

Response Time = 3.49 (Min/Call) 
 

Case Study: City of Dallas (Cont.)

Simulated Response Time Distribution Before and After Workload Balancing

Before Workload Balancing After Workload Balancing



• An equilibrium-based modeling framework for robust ER workload 
balancing is introduced. 

• The modeling framework is formulated as a NLP that determines the 
optimal workload cutoff for each station.

• The solution to the NLP is equivalent to an equilibrium state in which no 
station can improve its MCU value by unilaterally shifting a portion of its 
workload to any other station.

• Based on the obtained results DFRD is adopting a near-optimal workload 
balancing strategy.

• The framework can be applied to determine the optimal workload 
balancing strategy considering changes in the operation conditions of the 
service area.

Conclusion



Part 2:

Spatial demand modeling of emergency 
vehicle routing

Dr. May Yuan 
The University of Texas at Dallas



According to the National Highway Traffic 
Safety Administration (NHTSA), there were 
approximately 31,600 accidents involving 
fire trucks from 2000 to 2009 in the 
nation, and 70% of these fire truck 
accidents occurred while in emergency 
use. In the period from 1992 to 2011, 
there were an estimated 4,500 accidents 
per year involving ambulances. About 60% 
of ambulance accidents occurred during 
emergency response operations. 
Therefore, it is important to consider 
spatial risk during dispatch. 

68,480 traffic accidents 2015-2016

Our presentation in 2018 summarized findings of which streets and when 
are of higher risk to traffic accidents than other streets in Dallas 



This year, we focus on 
incident calls and routing:
1. Where were the 

emergency calls from?
2. What were routes taken?
3. Where could the routes 

be more efficient?

Incident calls:
• 20 Oct 2015- 30 Nov 2017
• 535,825 calls from 114,485 locations
• 527 locations: more than 100 calls
• 6 locations: more than 1000 calls



2015 2016 2017

Hot spot analysis of incident calls: Getis-Ord G* statistics with 
0.33 mile (0.53km) squared bins 



Incident Calls

While persistent hotspots 
were limited and localized, 
the sizable area of an 
intensifying hotspot in 
downtown and surrounding 
area would lead to an 
increasing demand for 
emergency service and 
hence routing needs. 



An example: routes to an incident

Detoured?

Arrived in 5 minutes and 2 seconds



An example: routes to an incident (Cont’d)

Called off?

Block?



Data Analytics of all incident calls from 20 Oct 2015 to 30 Nov 2017

1. An AVL run arrived at the incident location if the end-point of the 
AVL run was within 60 m (~197 ft) of the corresponding incident;

2. If an incident didn’t have any vehicle arriving within 60m, the 
incident was called off before or during emergency dispatches;

3. An incident was called off if there was no AVL run recorded with 
the incident;

4. The response time to an incident is the earliest time that a GPS 
point on any AVL at its minimum distance (< 60 m) to the incident.



Summary statistics of emergency vehicle dispatches to incidents in 
the AVL data provided by Dallas Fire Department

Period
Total 

Incident calls 
(a)

beyond 
60m

called off, 
no dispatch 

(b)

Arrived 
within 60m 

(c)

Arrived 
within 60m 
in 8 min (d)

Rate of 
responses in 

8 minutes 
(c/d)

20 Oct to 31 
December 2015 47,561 7,323 238 40,000 12,127 30.32%

1 January to 31 
December 2016

254,419 40,438 1,372 212,609 62,536 29.41%

1 January to 30 
November 2017

233,845 37,465 3,121 193,259 59,080 30.57%



2015 2016 2017
% incidents with one vehicle arrived 
within 60 m of the incident

69.59% 68.32% 68.97%

% incidents with two vehicles arrived 
within 60 m of the incident

27.04% 28.69% 27.95%

% called-off incidents 3.37% 2.99% 3.08%

Longitudinally, responses were rather consistent over the three years

How about geographically (hence, social-economical disparity)? 
Are places with higher or lower rates? 



A = the number of incidents with arrivals in 8 minutes
B = the number of incidents with arrivals later than 8 minutes
C = the number of incidents with no arrivals within 60 m

InTime Rate (or In8min Rate) = A/(A+B)
CallOff Rate = C / (A+B+C)

Calculate the InTime rate and CallOff rate in each census block



2015 Census Blocks



2016 Census Blocks



2017 Census Blocks



Spatial risk of traffic accidents

2015
2016 2017

The spatial patterns of InTime rates 
echo the interwoven patterns of traffic 
accident risk.

Next step: register incident calls to 
street segments and conduct spatial 
data analytics of traffic risk impacts on 
emergency vehicle routing



Part 3:

Crowd Sourcing Flood Hazards

Arefeh Safaei Moghadam
Barbara Minsker, Ph.D., P.E.
Southern Methodist University



Urban Flooding:
• Fluvial (River Flooding)
• Pluvial (Surface Flooding)

Crowdsourcing Flood Hazards

Surface Flooding

River Flooding

Sensor networks
Citizen observation
Aerial Imagery

Citizen observations
Official data sources

Real-time information on flood conditions

ü Identification of road segments 
with high flood risk

Flood Alerts



Waze Flood Alerts Versus Rainfall

• In September 2018 two major 
floods occurred in Dallas 

• Precipitation of 2.5 and 1 
inches per hour on September 
8th and 22nd respectively.

• Number of flood alerts posted 
to Waze is consistent with the 
rainfall intensity

Flooding

Runoff

Insufficient 
Drainage 
Capacity

Rainfall

What is the correlation between rainfall intensity 
and flood alerts?



Waze Flood Alerts Versus 
River Flooding

1 - National Flood Hazard Layer

1



Identifying Low-Lying Areas (Pits) 
Susceptible to Surface Flooding 1-meter 

resolution 
LiDAR

Generating bare 
earth DEM

Open Street 
Map

Adjusting the 
terrain to remove 

digital dams

Analysis in 
ArcGIS, ArcHydro 

and TauDEM

Extraction of 
local surface 

depressions (pits)

Hydro-
conditioned DEM

Pits: Low elevation grid cells in an area 
surrounded by higher terrain.



Waze Flood Alerts Versus Surface Pits



Future Steps

• Investigating criteria that affect number of flood alerts
Road characteristics:
vTraffic load 
vLength of road inside the pit
vNumber of lanes inside and outside the pit
Pit characteristics:
vSize, depth, and slope of depression
vContributing Area
vLand Cover

• Investigating utility of satellite imagery to detect local surface flooding, 
verify Waze reports



Questions?



Get your hands on the tech!

Demos 
Open
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#PSCR2019


