

Engineering, Test & Technology Boeing Research & Technology

Maintenance Work Order Natural Language

Al Salour, Ph.D., Technical Fellow, 314-232-1743 Boeing Research & Technology May, 21st, 2019

Aircraft Manufacturing Mission Critical Equipment

Composite Fabrication

Metal Fabrication

Drill & Fill Systems

Support Systems

Equipment Data Flow Architecture "Boeing Model"

Manufacturing Operations Management

Data collections for OEE

OEE

Manufacturing Operations

Management (MOM)

Historian – Time Stamped Data

BEN

Machine

Tool

Data

Agent

Apriso Dashboards

IT Web

Industrial PC

& Standard

Interface

Availability

Quality

Performance

Sensors

Data

- Historian
- Dashboards
- Legacy and New Equipment Plans

Process Control

- Product Quality Data
 Assessment
- Machine Capability assessment vs.
 Engineering Requirements
- As built vs. as Designed
 Digital Twin
- Performance to Plan

Total Productive Maintenance

- FMEA Integration
- System Interfaces
- Health Monitoring and Fault Detection
- CBM

Production Application Integration

Reliability plan

Copyright © 2018 Boeing. All rights reserved.

PLC

Factory

Floor

Maintenance Systems, Data Collections, & Performance Evaluation

Improvements that can reduce maintenance costs:

- Standardized operator daily effort
- Control or eliminate reactive maintenance
- Planned maintenance to include all details and lessons learned
 - Good mechanics training
 - Develop machine and process FMEA and Failure Tree
- Accuracy and reliability of machine and part data
 - Detailed operator tie-ins
 - Standardized report format

Performance data for visibility and actions

- Machine control data
- Sensor data
- OEE: Accurate Downtime Client data
- Health Monitoring: Deep learning & AI

Maintenance Work Order Tracking Tools & Standard Language Used to Document & Track Failures

Issues with Non-Standard Work Order Tracking

- Repetitive issues can occur under different naming conventions
- Root cause is not investigated due to lack of documentation
- Absence of sufficient data for analytic studies
- Lack of information to track problems for a family of machines
- Lack of information to make machine design improvements
- Increased maintenance costs
- Increased support costs

Challenges with Natural Language Planning in Large manufacturing

- Significant number of different machines and work centers
- Differences in priorities at each geographic location
- Difficulties to agree on standardizations
- Lack of support to enforce standard terms to identify machine problems
- Data may not be shared across the different sites
- Technology is still new and the benefits will need to be explored further
- Need a unified plan and software tool
- Expertise are limited
- A formal plan needs to be put in place, funded, and aligned to the legacy systems

Natural language standards and decision support will benefit large manufacturing firms System can build the foundation for improving the maintenance functions

