A software for diffraction stress factor calculations for textured materials
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A software for the calculation of diffraction elastic constants (DEC) for materials both with and with-
out preferred orientation was developed. All grain-interaction models that can use the crystallite orien-
tation distribution function (ODF) are incorporated, including Kroner, Hill, inverse Kroner, and
Reuss. The functions of the software include: reading the ODF in common textual formats, pole figure
calculation, calculation of DEC for different (hkl,¢,y), calculation of anisotropic bulk constants from
the ODF, calculation of macro-stress from lattice strain and vice versa, as well as mixture ratios of
(hkI) of overlapped reflections in textured materials. © International Centre for Diffraction Data
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I. INTRODUCTION

Diffraction-based stress analysis depends critically on the
use of the correct diffraction elastic constants (DEC). A survey
through the literature makes it abundantly clear that in the vast
majority of cases in which lattice strain needed conversion to
stress-preferred grain orientation (texture) is — justifiably or
not — disregarded, and isotropic diffraction elastic constants
were used. The main reasons for this apparent oversimplifica-
tion are the added need to quantify the degree of preferred
grain orientation through pole figure measurements, and the
use of pole figures to determine the orientation distribution
function (ODF). Even with the ODF, further calculations are
hampered by the lack of freely available software tools to per-
form calculations of anisotropic diffraction elastic constants.
The IsoDEC (Gnéupel-Herold, 2011) software program intro-
duced here was developed to address this need.

Il. FEATURES AND FUNCTIONALITY

The main purpose of IsoDEC is the calculation of the
orientation and (hkl) dependent stress factors using the ODF
(in the textual form as provided by the output of freely avail-
able texture packages), the single crystal elastic constants and
the bulk elastic constants as input. The latter can be calculated
from the ODF. The software can also be used to calculate
stress from measured lattice strains using the thus determined
stress factors or, in reverse, calculate lattice strains from a
given stress tensor. Some of the implemented models for
DEC calculations also allow including the grain shape,
expressed as a general ellipsoid, into the calculation of the DEC.

Evidently the ODF is crucial. It needs to be supplied in
textual form, i.e., using the output from popLA (Kallend
et al., 1991) or MTEX (Hielscher and Schaeben, 2008). The
ODF is expected in a 5° x 5° x 5° equidistant spacing for the
three Euler angles ¢,@¢, (Bunge notation). This tabular
form is internally expanded to the full interval [O...27;
0...m; 0...27] and made quasi-continuous by means of tri-
linear interpolation. This allows the computation of pole
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figures (in popLA format) and orientation fibers (i.e., ODF
values for a series of Euler angle combinations) through
Euler space. Orientation fibers are a key element of DEC cal-
culations that use the ODF. The models for DEC calculations
are the Kroner model (Kroner, 1958; Bollenrath et al., 1967,
Behnken and Hauk, 1986), the Reuss model (Reuss, 1929;
Moller & Martin, 1939), the Hill model (Voigt, 1928;
Reuss, 1929; Hill, 1952), the inverse Kroner model (Kroner,
1958; Gnéaupel-Herold, 2012), and the modified Voigt
model (Murray and Noyan, 1999). The two Kroner-type
models allow the user to devise complex elastic interactions:
first, one can approximate multi-phase composites (e.g. elasti-
cally hard particles in a soft matrix such as SiC in Al) by using
appropriate set of single crystal constants and bulk constants.
Second, the effects of elongated or otherwise non-spherical
grains can be included by changing the grain-shape par-
ameters in IsoDEC.

Input and output in IsoDEC can be done through the
spreadsheet that allows the import and export of text files with
its content as well as basic copy and paste exchanges
with common spreadsheet programs such as EXCEL. Large
datasets consisting of d-spacings, their uncertainties, unstressed
d-spacings with uncertainties, and measurement directions (¢y)
can be treated this way. Stress tensor components and the
unstressed d-spacing can be fixed or free parameters in the
stress fit, depending on boundary/equilibrium conditions.

lll. OPERABILITY

IsoDEC offers two visual interfaces: one for isotropic cal-
culations and one for calculations that include preferred orien-
tation. The interface for isotropic calculations is shown in
Figure 1. The fewest possible steps for calculating the isotro-
pic constants s, (hkl) and V2s,(hkl) are loading a set of material
constants from the drop-down list, entering the indices #, k,
and /, and starting the calculation. Elastic constants that are
not found in the database included can be entered manually,
but must include the lattice parameters and, after entering
the single crystal elastic constants, a calculation of the isotro-
pic bulk constants (upper left).

For anisotropic calculations, the amount of information
that has to be provided increases as shown in Figure 2.

© 2012 JCPDS-ICDD 114



«I" Diffraction Elastic Constants for Polycrystals

| Isoliopic | DEC/Stiess/Stiain | Setiings

d-spacing

510 MPa™-1*10"-6 1/2s2 0

Figure 1. Screenshot of IsoDEC for isotropic calculations.

Generally the ODF has to be provided either in popLA format
or in MTEX format (“Load ODF”). There is also the possi-
bility of not using an ODF, and entering user values for the
bulk constants, e.g. using a rotated single crystal constants ten-
sor to simulate the effects of individual texture components on
the stress factors. Of course, the anisotropic bulk constants can
be calculated from the ODF, the average grain shape (as ellip-
soid axis ratios) can be entered, and the model (Hill, Reuss,
Kroner, inverse Kroner and Voigt/modified Voigt) can be cho-
sen. The stress factors are calculated for the fields in which 4,
k, 1, phi and psi are given. This step has to precede any stress or
strain calculations that require the stress factors. A stress cal-
culation needs the additional input of d-spacings, the d-uncer-
tainties, the reference or unstressed d-spacing and their
uncertainties, and a sorting qualifier (column 1 in the
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worksheet) that allows to group those data together that are
to be used for the calculation of the same stress tensor (i.e.,
same location on the sample or similar). The reverse calcu-
lation d-spacing/strain from stress naturally requires stress
values entered in their appropriate columns. The output of
this calculation is in the column “d_calc”, which means that
if strain is desired one has to perform the explicit calculation
(d — dy)ldy oneself.

IV. PLATFORM AND AVAILABILITY

IsoDEC was written in Turbo Delphi for the Windows
operating system. It can also be used under MacOS X+ and
x86 linux if Windows emulator software is present. Both
Darwine (MacOS X and Wine) have been tested successfully.
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Figure 2.  Interface for anisotropic calculations.
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The installation package contains a help file, a database of
single crystal elastic constants and several ODFs in textual
form that are readable by IsoDEC for use in further calculations
of DEC, pole figures, anisotropic bulk constants, and ODF
intensities for given specimen directions. The program home
page and the download link can be found at http:/www.ncnr.
nist.gov/programs/crystallography/software/isodec/.

DISCLAIMER

Certain commercial firms and trade names are identified
in this report in order to specify aspects of the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identified are necess-
arily the best available for the purpose.
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