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                                                Course Outline

(1)   Will use material from Modern Regression
        Methods (Wiley, 1997) by Tom Ryan
        (course instructor), plus other materials,
        including some .NIST datasets

(2)  Review of some basic statistical concepts

    c statistical distributions relevant to the course

    c  inference:  estimation (point and interval)

                           hypothesis tests, -values�
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(3)  Regression fundamentals:

                   c uses of regression methods

                   c obtaining data

                   c postulating a model

                   c fitting the model

          model interpretationc

                   c model criticism and model diagnostics

                   c model improvement

          assumptionsc
                    c checking assumptions

                    c corrective action if assumptions are not
               met, at least approximately
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(4)  Beyond the Basics:

         inferences (e.g., prediction intervals)c

         inverse regressionc

         c multiple regression: and its nuances
             and complexities (e.g., “wrong signs”).

         outliers and influential observationsc

         selection of regression variables inc
              multiple regression

         robust regressionc

                  c nonlinear regression
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    c  ? ~ ( , )N � �� , with “~” read as “has”,
        meaning that the random variable   has?
        the indicated distribution, which in this
        case is a normal ( ) distribution withN
        the indicated parameters.

        The transformation

A y
? ^ �

�

        leads to use of the  since Z-table Z ~ (0, 1)N .
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                                         Chi-Square Distribution

 .  Results when a  random variable isN(0,1)
    squared

 .   The shape of the distribution depends upon
    the degrees of freedom, approaching a normal
    distribution as the degrees of freedom becomes
    very large. (The term “degrees of freedom” is
    not easily defined.  Loosely speaking, there are
    degrees of freedom for a sample of n n
    observations, with a degree of freedom being
    used whenever a parameter is estimated.)
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                                                    t-Distribution

c  The transformation

t y
? ^

 « �

�

l

          produces a random variable that has the
     , which results, in general,!-distribution
     when forming a ratio of the N(0,1)
     random variable divided by the square root
     of a chi-square random variable divided
     by it's degrees of freedom.
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                                                    -distributionF

c  Results from the ratio of two chi-square
      random variables, each divided by their
      respective degrees of freedom.

     That is,

- y
% «

% «
� �

�

�

� �

�

�

�

�

�

�

�

�

c  Shape of the distribution depends on the
      magnitudes of relationship� �� �  and and the 
      between them.
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                                     Confidence Intervals

c  constructed for parameters

c  constructed around a point estimator; e.g.,

                                                     ? a  a

               with ? a point estimator  of  �

c    constructed to contain the unknown parameter
      value with a given probability, usually .90,
      .95, or .99.
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c symmetric and of the general form

                              �V a ! 
�V

  

     when the -distribution is applicable,!
     with denoting an arbitrary parameter� 
     to be estimated,    is the corresponding�V

     point estimator of that parameter, and
     is the estimated standard deviation of 

�V
 

     the point estimator.

c confidence intervals are symmetric only
    when the relevant distribution is symmetric
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                    Prediction Intervals

c Used extensively in regression and should
     be used more often outside the field of
     regression.  A good source on various
     types of intervals is:

        Hahn, G. J., and W. Q. Meeker (1991).
        Statistical Intervals A Guide for: 
        Practitioners.  New York: Wiley.

c Consider the objective of predicting a future
     observation from a normally distributed
     population.

c A short,  necessary excursion

     into statistical theory follows,
     so as to facilitate a discussion
     of prediction intervals in regression.
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  c  A new observation, , will be independent%

       of computed from a sample,  so  %

       (= �� % ^ %® y = ��­%® ] = ��­ %®

                             y ] «�� �� �

                             .y ­� ] �«�®��

c  Since we are assuming that the individual

      observations have a normal distribution,

      then

                    ( )% ^ % ­� ] �«�®/�l

               is  5 (0,1).



15

    Since  is  we then(�^ �® «� � �

�^�
� � ¼

    have

             ! y�^�      
( )

(

%^%

­�]�«�®

�^�® «� �

�^�

�

�

l

m

y ( )%^%

 ­�]�«�®l

   with the  having  degrees of! � ^ �-statistic  
   freedom because the chi-square component

   of the expression before it is simplified has

   degrees of freedom.�^ �
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        It then follows that

 P  =­ ^ ! | | ! ® � ^
� �«�¼�^� «�¼�^�

%^%

 ­�]�«�®

( )
l �

        and with the necessary algebra we obtain

 P   ­% ^ !  ­� ] �«�® | % |
�«�¼�^�

l
           + % !  ­� ] �«�® ® y � ^

�«�¼�^�
l �

     so the endpoints of the (1 % prediction��� ^ ®�
     interval are

   Lower Limit:     % ^ !  ­� ] �«�® 
�«�¼�^�

l
   Upper Limit:     % ^ !  ­� ] �«�® 

�«�¼�^�
l
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                       Hypothesis Tests

c Loosely speaking, hypothesis tests are the
    flip side of confidence intervals (i.e.,
    there is a direct relationship between them
    when they are both used for testing hypotheses),
    but hypothesis tests are not as useful as
    confidence intervals.

c  p-value:

    The probability of obtaining a value for
    the test statistic (such as a )t-statistic
    that is at least as extreme, relative to the
    alternative hypothesis, as what was observed
    assuming the null hypothesis (H :  = 0) to� �i

    be true.
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                      What is Regression Analysis?

         From  of the :Page 3 course text

  “The user of regression analysis attempts to
    discern the relationship between a dependent
    variable and one or more independent
    variables. That relationship will not be a
    functional relationship, however, nor can a
    cause-and-effect relationship necessarily be
    inferred”.

  “Exact relationships do not exist in
    regression analysis...”

   (E.g., an exact relationship is F = C + 329
5

   There is no need to take a sample and attempt
    to model the relationship because the
    relationship is known exactly.)
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  Thus the values of the dependent variable will
  not be perfectly explained when a model is
  needed and is used. The objective is generally
  to explain as much of the variation in
  the values of the dependent variable
  as possible.

    We simply want a good proxy for the true,
     unknown model.  (“All models are wrong,
     but some are useful” --- George Box)
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Applications of Regression Analysis to be Presented

       c NIST applications:

          Alaska pipelinec

           Load cell calibration (Pontius data)c

     c College rankings data

            (discussed but data not analyzed)
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                      General Applications

 An extremely wide range of past andc
      potential applications, with examples
      of the former being:

 Extending applicable ranges of c regression
      equations for yarn strength forecasting.

 Multiple approach to optimizec  regression 
       drilling operations in the Arabian Gulf area.

  Performance of three basedc regression-
       models for estimating monthly soil
       temperatures in the Atlantic region.
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                             Uses of Regression Methods

    c Section 1.2 (page 4) of text

(A) General:

      c Prediction (“Statistics is prediction”,
                                 quote from Ed Deming)

  Primary use of a regression modelc
       is  --- predicting futureprediction
       value(s) of the dependent variable
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c Estimation description and  are closely
     related uses, as once the model parameters
     have been estimated, the relationship between
     the dependent variable and the one or more
     independent variables can be described,
     provided that there is only one independent
     variable or the data have come from a
     designed experiment.

c Control

    This is a seldom-mentioned but important use
     of regression analysis, as it is often necessary
     to try to control the value of the dependent
     variable, such as a river pollutant, at a
     particular level.  (See section 1.8.1 on page
     30 for details.)
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(B)  Specific:

 c Calibration

    Such as instrument calibration using
      inverse regression, classical theorythe 
      of calibration (section 1.8.2), or
      .Bayesian calibration

      This will be discussed later in these notes.

  c Process Monitoring

    A regression control chart or a cause-selecting
      chart might be used. Both employ regression
      methods.  See sections 12.7 and 12.8 of
      Statistical Methods for Quality Improvement,
      2nd ed., by T.P. Ryan for details.
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                Regression Models

Simple Linear Regression: (linear in parameters)

             =   Y X  +  �� + �� � �

        ( is the slope;   is the -intercept.�� �� Y
        Paradoxically,  is viewed as a nuisance��

        parameter in most applications, but
        no-intercept models are rarely used.)

     =    Prediction equation: Y XV � �V V]� � �

Multiple Linear Regression:

    =   Y X X   . . . X  + �� + �� � � � � �] ] ]� � �

   Prediction Equation:

   Y X  X   . . .   XV ] ] ]V V=    � �V V]� � � � �� �� �
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                     Regression Basics

   Ordinary Least Squares (OLS) is the usual
   method of estimating the �i

  OLS minimizes  (c �
�y�

�

Y Y� �
�^ V )

       with (�
�y�

�

Y Y� �^ V ) = 0

      In words, the sum of the (signed) vertical
      distances from the points to the regression
      line is zero, and the sum of the squares of
      the vertical distances is minimized -- as in
      the graph on the next page.
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   For simple linear regression:

   �V�
? @ ^­ ? ®­ @ ®«�

? ^­ ? ® «�

:

: =  = 
� � �
� �
� � � �

�
�

�
�

%&

%%

   �V� =  Y   X^ V��

  For multiple linear regression:

c  Companion forms are generally not written;
     matrix algebra is used instead (not covered in
     this course)

c Additional terminology:

     The  will in these notes additionallyX's
      be referred to as  and as“regressors”
     “predictors” .
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                     Residuals

       is the th (raw) residualY Y  = e  i� �^ V
�

   The  are substitutes for the (unobservable) e� ��»

   The  have different standard deviations,e�

  so in residual analysis it is desirable (for most
  uses) to “standardize” the residuals by dividing
  them by their respective standard deviations
  (i.e.,  e /�  e�

®.

  Unfortunately, the are usually not goode� 
   proxies for the More about this later.��»  
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               Model Assumptions

(1) that the model being used is an appropriate one

      and

(2) that �� � NID (0, )��
�

     In words, the errors are assumed to be normally
      distributed ( ), independent ( ), and haveN ID
      a variance ( ) that is constant and doesn't��

�

      depend on any factors in or not in the model.

  Assumptions must be checked!
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                      Checking Assumptions

(1)  Normally distributed errors:

     c Use simulation envelopes for standardized

          residuals (pages 53-60 of my regression book)

     c Normal probability plot of standardized

          residuals (which is typically what is used)

          is better than nothing, but residuals

          are “less non-normal” than model errors

          when the latter are non-normal.

         (For all practical purposes, the errors
          are  non-normal since normalityalways
          does not exist  in practice.)

     c With the appropriate algebra, we may
          derive (not given in text) the following
          result:
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             =  (1 )     e   h h  � �� �� �^ ^�� �
�y1

�

�

                                                     j i�

                    with, in simple linear regression

             =     h   ��
�
�

­% ^%®

­% ^%®
] �

�

�
��

�y�

�

and

                     h    �� =   �
�

­% ^%®­% ^%®

­% ^%®
] � �

�y�

�

�
��

  c There will be a Central Limit Theorem
       effect for large h��, so that the distribution
       of  could be considerably less non-normale  �
       than the distribution of the corresponding .��
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      supernormality propertyThis is termed the 
      of residuals and is why the regular normal
      probability plot should not be used.

      (This property has been discussed in
       various articles in the literature -- see the
       references listed on page 53 of the
       course text.)
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                    Simulation Envelopes

 c There are different methods of constructing
      the envelopes, as discussed in Section 2.1.2.3
      (pages 54-60).

      The general idea is to construct boundaries
      on what the residuals should be if the errors
      have a normal distribution.  This is done
      by generating sets of  -values, keepingN(0,1) Y
      the predictor values fixed at the observed
      values in the sample.  This causes the errors
      and residuals to be normally distributed.

      The use of constant predictor values
      facilitates transformation of the raw
      residuals into deletion residuals and/or
      other statistics.
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c Interpreting the plots is non-trivial because
    the probability of the envelope containing
    all of the standardized residuals cannot be
    determined directly since the standardized
    residuals are not independent.

    The envelopes are also highly sensitive to
    outliers, so a robust version like the Flack
    and Flores (1989) approach may be
    preferable.

    Despite some shortcomings and concerns,
    the envelopes can be very useful, although
    superimposing a plot with errors from a
    skewed distribution has been suggested
    as an aid in interpreting the plot.
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(2) Nonconstant variance:  

   c  Plot the residuals againststandardized 
          @V and against the predictors when
         there is more than one predictor.

         When there is only one predictor,
         the plot of the standardized residuals
         against will have the same  @V

         configuration as the plot against X
           when , and the two�V� is positive
         plots will be mirror images when
          �V�is negative.

    c The simplest (and most naive) plot for
         detecting (i.e., unequalheteroscedasticity 
         variances) is to plot the residuals against YV

         X.  or against  This plot should  be usednot
         to check the assumption of a constant ��
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         because the residuals do not have a constant
         variance even when   is constant.��

      Specifically, ,Var e  =  h( ) (1 )� �
�� ^ i

  with as given previously for one predictor.h  �i

  (on page 32 of these notes).

   Since  reflects the distance that ish�i   x  �
   from the   may differ considerably% Var e( )�
   if there are any extreme  values. X 

     Consequently, a plot of the (raw) residuals

     against  could exhibit nonconstantX 

     variability of the for this reason alone, e�  
     or the degree of nonconstancy could

     perhaps be exacerbated.  (See, for

     example, Cook and Weisberg (1982, p. 38)

     for further discussion of this issue.)
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(3) Independent errors: 

   c It is that thisabsolutely imperative 
       assumption be checked, and checked
       carefully.

       A classic example of the deleterious effects
       of the failure to detect dependent errors
       can be found in Box and Newbold (1971),
       who commented on a paper by Coen, Gomme
       and Kendall (1969).

       The latter thought they had shown that car
       sales seven quarters earlier could be used
       to predict stock prices, as was 14 times�V

�

       its standard deviation.

       Wouldn't it be great if we could actually
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        do this?

   Unfortunately, they failed to examine the
   residuals, and a residuals plot would have
   provided strong evidence that the errors
   were correlated.  After fitting an appropriate
   model, Box and Newbold showed that there
   was no significant relationship between the
   two variables.  (See also the discussion in
   Box, Hunter, and Hunter (1978, p. 496).)
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c Time sequence plot of the residuals

        It is okay to use raw residuals for this
        plot; the objective is to detect a non-
        random sequence.

        Unless the non-randomness is strong,
        the non-randomness may not be
        apparent from the graph. So it may be
        be necessary to use certain statistics.

c  Statistics applied to residuals

       Durbin-Watson, Box-Ljung-Pierce,
       ACF (autocorrelation function)
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                    EXAMPLE

   Alaska pipeline data (calibration data)

    Data provided by Harry Berger (NISTc
        Materials Science and Engineering Laboratory)

    Data listed in the c NIST/SEMATECH
        e-Handbook of Statistical Methods at

http://www.itl.nist .gov/div898/handbook/pmd/
                   section6/pmd621.htm

  Data consist of in-field ultrasonic measurements
   of the depths of defects in the Alaska pipeline ( ),Y
   and depths of defects re-measured in the laboratory
   ( ).X
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   The data were originally analyzed to calibrate the
    bias in the field measurements relative to the
    laboratory measurements.

   Let's first consider calibration in general before
   looking at these data.

   Let denote the measurement from a labX 
   instrument and let denote the measurementY 
   from a field instrument. If the relationship
   between  and  were an exact (i.e.,X Y
   functional) relationship, that relationship
   could be used to determine what the
   (accurate) measurement from the lab
   instrument would have been if it had been
   used instead of the field instrument.

   Do we regress on and then solve for whatY  X  
   would be, or do we simply regress on X X Y?
   That is, which one should be the dependent
   variable.  This is controversial and both
   approaches have been used.
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 The first approach is the classical method of
 calibration  and the second approach is called
 The controversy stems frominverse regression. 
 the fact that the dependent variable in a regression
 model must be a random variable.

  That is, for a given value of , must theoreticallyX Y  
 have a normal distribution.  But with  and  asX Y
 defined, all of the distribution will be at one point
 (i.e., the correct value), so the distribution is
 degenerate.

 As illustrated in Section 1.8.2, if   and areX Y 
 strongly correlated (which of course is necessary
 anyway), then the two methods will produce
 virtually the same result.
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 So the argument of which approach to use is
 essentially an academic argument.

c Back to the dataset:

  The batch number was also part of the dataset,
   but that won't be used here since batch was found
   to not have an effect.)

 are obviously not fixedc The values of  X  
      (pre-selected), but rather is obviously X 
      a random variable.

      Does it make any difference whether  X is
      fixed or random?

      Controversial topic, but we can generally
      proceed with random  X  the same way
      that we would proceed with fixed , X 
      provided that the conditions at the bottom
      of page 34 of the text are met.
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   First step?

          Graph the Data!  (Section 1.3 of text)
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                                                   as increases  X

   This will cause the plot of the standardized
     residuals against to have nonconstantX 
     vertical spread, as shown below.
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Will return to this problem later and discuss
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 appropriate corrective action

      Regression Analysis: Field versus Lab

The regression equation is

field = 4.99 + 0.731 lab

Predictor        Coef     SE Coef        T        P
Constant        4.994       1.126       4.44    0.00
lab                 0.731       0.025     29.78    0.00

S = 6.081       R-Sq = 89.4%     R-Sq(adj) = 89.3%

Analysis of Variance

Source               DF         SS        MS        F         P
Regression           1       32789   32789   886.74  0.00
Residual Error   105       3883         37
Total                  106     36672
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              Explanation of Output Components

       “ ” is self-explanatory and “ ”Predictor Coef
         represents the regression coefficients.

 SE Coef = standard error of the parameter estimate

     SE (constant) =  c n4:,­ ? ®

�:

� �

%%

     SE (lab) =  c m4:,
:%%

     MSE = mean square error = c �V�

�
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    = Coef/ SE(Coef)T 

   P  p-value = = probability of obtaining a
          value for the  that is at leastT-statistic
          as extreme, relative to the alternative
          hypothesis, as what was observed,
          assuming the null hypothesis (H  = 0)� � �i

          to be true

    =  S l4:,

     R-sq  = R  =  � percent of the variation in thatY
                         is explained by the regression model.

    =  R-sq (adj)  R�adjusted for the number
                        of predictors in the model
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  Analysis of Variance Table:

     DF represents “degrees of freedom”,

          DF(regression) is always the numberc
               of predictors in the model

           DF(residual error) = c � ^ �

         DF(total) = 1c � ^

    denotes Sum of Squares  SS 

          SS(Regression) = sum of squares due toc
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                                           the predictor(s)

        SS (residual error) = c  �
�y�

�

(Y Y� �
�^ V )

        c  SS(Total) = )�
�y�

�

(Y Y�
�^

    denotes mean squarec MS 

            MS = SS/DFc

    denotes the F-statistic for testing H :  = 0c F � �i

            Fc   = MS(regression)    
MS residual error­ ®

     is the same as described for the first partc P 
             of the output
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Unusual Observations

Obs    lab       field        Fit     SE Fit  Residual  Std Resid
 15     81.5     50.00    64.579    1.196    -14.579    -2.45R
 17     81.5     50.00    64.579    1.196    -14.579    -2.45R
 35     80.4     50.00    63.775    1.172    -13.775    -2.31R
 37     80.9     50.00    64.141    1.183    -14.141    -2.37R
 55     80.0     85.00    63.483    1.164     21.517      3.61R
100    77.4     45.00    61.582    1.109    -16.582    -2.77R

      Fit is  @V

      Std Resid is  e / , as previously defined�  e�

       R denotes an observation with a large
         standardized residual (“large” being 
         greater than 2 in absolute value)

   As expected, the “unusual observations”
   are all badly fit points with high lab
   readings.
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NOTE:   Although there weren't any such points
          identified for this data set, it is also
          important to identify good data points
          that are influential.

          Influential data points are covered later
          in these notes.
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   As we would have guessed, the least squares
   line goes through the center of the points with
   the highest lab measurements, and there are thus
  some points well off of the line, which were
  labeled  “ ”.unusual observations

Some of the lab measurement values occur
multiple times, so a “lack-of-fit test” (page 25
of text) is possible.

From a practical standpoint, however, we can
see that no other functional form than a straight
line is suggested by the scatter plot.



56

Nevertheless, to illustrate the test, we have
the following output:

Analysis of Variance

Source            DF         SS          MS          F          P
Regression         1       32789     32789   886.74  0.00
Residual Error   105     3883       37.0
 Lack of Fit          76       2799     36.8        0.99  0.54
 Pure Error           29       1084     37.4
Total                  106    36672

60 rows with no replicates

“Pure error” is a measure of the vertical spread
  in the data, with the sum of squares for pure
  error (SS ) computed using Eq. (1.17)�"�� �����

  on page 25.
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See pages 25-26 of text for detailed explanation
of the other components of the table.

Briefly, and as stated previously,

            SS  =  !�!��
�y�

��( )Y Y�
�^

             Y YSS ( )����� y ^ V�
�y�

�

�
�

            SS SS  �����  ��� !�!��y ^ SS�����

      mean squares (MS) =  corresponding sum of
                                          squares (SS) divided
                                          by the degrees of

                                       freedom (DF)
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               The Lack-of-Fit Test

  c isolates the pure error, which
       cannot be fit by any model, from
       the rest of the “residual”.

  is an -test given by     = c - F 4:

4:
���

�"�� �����

Here the ratio is , which is small, so there is0.99
no evidence of lack of fit, which we knew from
looking at the scatter plot.
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         Nonconstant Error Variance

c Consequence:  OLS estimators do not
                             have minimum variance,
                             but are still unbiased.

c How to correct the problem?

      Options:c

              (a) transform to correct problem;@
                   then transform  to retain quality
                   of original fit

              transform to correct problem;(b) @
                   then apply transform to the entire
                   right side of the regression equation,
                   excluding the error term.
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(a)   @ y� �� �� �] ? ] 	

­ ®b    @ y� �(� �� �] ? ]) 	

The latter is preferred because it is obviously
 better to transform the entire right side, analogous
to  W = a+b W +( ) ( ) +§ � �� y � � �� � �

There are conditions under which will work,(a) 
 however.

Specifically, Carroll and Ruppert (1988, p. 119)
state that it can be used appropriately when ?

 is a lagged value of  @  and when both variables
 are different measurements of the same quantity
 .... which is what we have with this dataset.
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 Thus, transforming each side individually is
 appropriate here.

  The analysis in the NIST/SEMATECH
 e-Handbook of Statistical Methods indicated
 that a log transformation of was a goodY 
 transformation, with a log transformation
 then applied to to try to retrieve theX 
 quality of the fit. (A log transformation is
 used when � = 0 appears to be the best choice.)
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c The transformation approach that I favor is the
  two-stage approach that I developed and
  presented in Section 6.6 of the course text.

 We will see how this works when applied
  to the Alaska pipeline data and compare
  the results with the log-log transformation
  suggested in the e-Handbook.

  As in Section 4.6.2.4 of the e-Handbook, my
  approach begins with the Box-Cox
  transformation analysis (i.e., using @ �), but I
  use several additional statistics in each of the
  two stages.

The application of my approach to these data
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 produces the following results:

  The first stage of my two-stage procedure
  produces the following results:

 r
@@V

�

raw
             log-           Rraw

�        � �3 r� �
Z Z

�
     � �/ /1 �

    SPREAD-

                                                                                          RATIOlikelihood

  0.084 -4.7E03   2.668   0.866  -1.0  -3E+02  0.109   0.025    8.00
  0.485  -30.023  2.430   0.881  -0.9  -3E+02   0.138   0.034    8.00
  0.557   -6.469   2.197   0.895  -0.8  -3E+02   0.156   0.071    8.00
  0.607   -2.234   1.969   0.908  -0.7  -3E+02   0.170   0.090    8.00
  0.647   -0.770   1.749   0.920  -0.6  -3E+02   0.181   0.096    8.00
  0.681   -0.105   1.538   0.932  -0.5  -3E+02   0.189   0.091    8.00
  0.710    0.246   1.337   0.942  -0.4  -3E+02   0.195   0.078    8.00
  0.736    0.451   1.148   0.952  -0.3  -2E+02   0.197   0.051    8.00
  0.759    0.580   0.972   0.961  -0.2  -2E+02   0.193   0.046    2.34
  0.779    0.665   0.812   0.970  -0.1  -2E+02   0.182   0.008    2.06
  0.796    0.724  -0.668   0.977   0.0  -2E+02  -0.183  -0.021    2.17
  0.812    0.767  -0.543   0.982   0.1  -2E+02  -0.123   0.018    2.17
  0.826    0.798  -0.438   0.986   0.2  -2E+02  -0.067   0.045    2.23
  0.839    0.822  -0.354   0.988   0.3  -2E+02   0.007   0.056    2.23
  0.850    0.840  -0.292   0.988   0.4  -2E+02   0.096   0.158    2.23
  0.860    0.854  -0.248   0.989   0.5  -2E+02   0.190   0.206    2.23
  0.869    0.866  -0.217   0.992   0.6  -2E+02   0.276   0.223    2.23
  0.877    0.875  -0.192   0.993   0.7  -2E+02   0.345   0.192    2.23
  0.883    0.883  -0.162   0.992   0.8  -2E+02   0.394   0.197    2.23
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  0.889    0.889  -0.116   0.990   0.9  -2E+02   0.423   0.241    3.58

These results suggest that   be-0.1 0.4 | |�

considered for the second stage
(transformation of  )X

c DEFINITION OF TERMS:

  (1) r  ---  
@@V

�

raw
This is the square of the

                       correlation between Y
                       and the predicted values
                       converted back to the original
                       scale.

  (2) =  1   R   raw
� ^

�

�
­@ ^@ ®V

­@ ^@ ®
raw

�

�

   This is the R  � value with the predicted
   values converted back to the raw scale.
   This statistic was recommended by Kvalseth¨
   (1985), but I don't recommend it because
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   the statistic will often be negative.

(3)  --  the standardized skewness coefficient  �3

               of the residuals

(4) r� �
Z Z

�
   ---  the correlation between the standardized

                    residuals and the normalized
               standardized residuals.

 (5)   the power in the Box-Cox power�   ---   

                  transformation, with  = 0 designating�

                  the log transformation.

(6)  log-likelihood --- the log of the likelihood
                                   function
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 The next three are all measures of
 heteroscedasticity (i.e, nonconstant error
 variance)

(7)  slight modification of a statistic�/1 ---   

                  suggested by Ruppert and Aldershof
                  (1989).

(8)   --- the correlation between  |e| and   �/�
log

                  | log | @V (motivated by Carroll and
                  Ruppert, 1988, p. 30)

(9)  --- the sum of the two  SPREAD-RATIO
                 largest ranges of standardized residuals
                 divided by the sum of the two smallest
                 ranges, after the standardized residuals
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                 have been placed into 6 groups.

Using  -0.1 0.4  for the second stage,| |�

 we obtain:

 � � � � �
� �

@ @ @ @V V
��$ ��$

                           SPREAD-          
­); ®

/ ­); ® / ­); ® � ��­); ®� � �
� �

Z Z
�
( )BT

                                                                                RATIO

0.779    0.904    -0.10  -0.19    0.331   0.261    1.40      0.228    0.986
0.798    0.904     0.01   -0.11  -0.208  -0.211    1.62     -0.217   0.985
0.815    0.905     0.12   -0.03  -0.075  -0.136    1.55     -0.202   0.986
0.830    0.905     0.23    0.05    0.053  -0.043   1.68      -0.182   0.986
0.844    0.905     0.34    0.13    0.160   0.010    1.80     -0.153   0.987
0.855    0.905     0.45    0.21    0.240   0.079    1.95     -0.115   0.989

c The results do strongly support a log
     transformation of  X, and also suggest that a log
     transformation of  Y would be reasonable.
     We may want to also consider � � 0.2
     for , if such a choice could be justified, as weY
     could do slightly better than a log transformation
     of each variable, although the latter might be the
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     easiest to justify.

DEFINITIONS :

(1)   the power transformation of �  ---   X

(2)   The others are as previously defined, with the
      addition that  means after the“BT”
      Box-Tidwell transformation approach has
      been applied.
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c Here is the plot of the standardized residuals
 against  transformation is appliedY V when a log
 to both variables.  (The configuration of points
 would be the same if the standardized residuals
 had been plotted against since and X X Y V are
 perfectly correlated and the sign of is positive.)�V

�
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  This is almost a perfect graph, relative to
  what we want to see, and shows that
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  the nonconstant variance has been removed.
  Here .��

@ @V raw
 = .900

 Using  and    we obtain essentiallyY log(X)�»� ,
 the same graph, as expected, but ��

@ @V raw
 = .905,

 so the fit is slightly better.  (Observe that the only
 noticeable difference in the two plots is in the
 scaling of the horizontal axis.)
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Alternatively, could beweighted least squares 
used.

 The analysis in Section 4.6.2.7 of the
 e-Handbook showed that the nonconstant
 variance could be removed by using either
 a transformation or .weighted least squares

   The latter entails assigning weights to values
   of the predictor variable (simple linear
   regression) or combinations of predictor
   values (multiple linear regression) in
   accordance with how variable @  is at
   those points.

   Specifically, predictor values at which
   @  has considerable variability are assigned
   small weights, with low variability points
   assigned larger weights.
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   Weighted least squares must be used very
   carefully, however (see pages 60-70 of
   the course text), as the weights could be
   poorly estimated if obtained from sample
   variances (see pages 60-70 of the course text).

   The best approach is to  ofmodel the variance
   @ , which uses all of the data in estimating each
   weight.
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                              Influential Data Points

 c Consider one-dimensional statistics such
     as the mean, variance, and standard deviation.

      Each of the   observations has the samen 
      weight in determining the value of those
      sample statistics, although bad data points
      can render useless any such sample statistic.

 c Regression involves two or more dimensions,
      which precludes points have equal
      weight/contribution to the determination
      of regression coefficients and fitted values.

c But we don't want some points to have
 much more influence than other points.
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 c Need influence statistics in order to identify
      observations that are overly influential

DFFITS (for influence on fitted values),

and  (for influence on regressionDFBETAS
coefficients) are frequently used.

They are given in the course text on pages

84-85.

It is important to look at these statistics,

which are part of various statistical software,

especially with small datasets, and many

NIST datasets are indeed small.
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c One problem, however, is that until the
     past few years, nobody had sought to go
   past the “benchmark stage” with some
   of these diagnostics.

 In particular, consider the following

 statement in the middle of page 85 of

 the course text:

   “Unfortunately, there is not an
     obvious threshold value for either
     DFBETAS or DFFITS”.

  The same can be said of Cook's -D

  statistic, as is discussed at the bottom

  of page 85 and the top of page 86.



76

c Why has this state of affairs existed?

     If a given statistic had a known distribution,

     a decision rule could be given based on

     the percentiles of that distribution.

     In order for this to happen, however, the

     statistic has to be “properly standardized”

     by using the appropriate denominator so

     that the statistic will have a known

     distribution.

     This issue has only recently been addressed

     in papers by LaMotte (1999) and Jensen

     (2000) --- both papers in .Metrika
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c A detailed discussion of those papers is
     beyond the scope of this course, but the
     papers should be studied.

     Unfortunately, since the papers “stirred

     things up” by pointing out flaws in

     well-established diagnostics, the papers

     were not published in a leading journal.

     But that does not diminish their importance.
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             Outliers of Various Types

c The most important type of outlier to detect

 in regression analysis is a regression outlier.

 But the term is used in very few books.

 Other types of outliers are of lesser

 importance.

c Definitions:

   (1)  Regression Outlier

          A point that deviates from the linear
          relationship determined from the other
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          1 points, or at least from the majorityn-  
          of those points.

    (2)   Residual Outlier

          A point that has a large standardized (or
          standardized deletion) residual when it
          is used in the calculations.

          It is important to distinguish between a
          regression outlier and a residual outlier

          To wit, a point can be a regression
          outlier without being a residual outlier
          (if the point is influential), and a point
          can be a residual outlier without there
          being strong evidence that the point
          is also a regression outlier.
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    (3)   -outlierX

           This is a point that is outlying only in
           regard to the -coordinate(s).x

           An -outlier could also be a regressionX
           and/or residual outlier.

   (4)   -outlierY

           This is a point that is outlying only
            because its -coordinate is extreme. y
           The manner and extent to which such an
           outlier will affect the parameter estimates
           will depend upon both its -coordinate andx
           the general configuration of the other points.
           Thus, the point might also be a regression
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           and/or residual outlier.

   (5)   and -outlierX- Y

          A point that is outlying in both
          coordinates may be a regression
          outlier, or a residual outlier (or both), or
          it may have a very small effect on the
          regression equation.  The determining
          factor is the general configuration of the
          other points.
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                                                Pontius Data

c Load Cell calibration data (from Paul
    Pontius, NIST scientist now deceased,
    data circa 1975)

c Forces the analyst to address the question:
     “How close is close enough?”

      I.e., When is  close enough to ?@ @V

     Y is Deflection

      is LoadX
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                                       Y X

                        0.11019     150000
                         0.21956     300000
                         0.32949     450000
                         0.43899     600000
                         0.54803     750000
                         0.65694     900000
                         0.76562    1050000
                         0.87487    1200000
                         0.98292    1350000
                         1.09146    1500000
                         1.20001    1650000
                         1.30822    1800000
                         1.41599    1950000
                         1.52399    2100000
                         1.63194    2250000
                         1.73947    2400000
                         1.84646    2550000
                         1.95392    2700000
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                         2.06128    2850000
                         2.16844    3000000
                                           Y X

                         0.11052     150000
                         0.22018     300000
                         0.32939     450000
                         0.43886     600000
                         0.54798     750000
                         0.65739     900000
                         0.76596    1050000
                         0.87474    1200000
                         0.98300    1350000
                         1.09150    1500000
                         1.20004    1650000
                         1.30818    1800000
                         1.41613    1950000
                         1.52408    2100000
                         1.63159    2250000
                         1.73965    2400000
                         1.84696    2550000
                         1.95445    2700000
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                         2.06177    2850000
                         2.16829    3000000

c For simplicity, and for comparison with a
     colleague's analysis, I will use X-values
     divided by 10 .4

c Start with scatter plot:

3002001000

2

1

0

X

Y

     

 c  As straight a line with actual data as one is
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       likely to ever see!

 c Let's look at the basic output:
The regression equation is
Y = 0.00615 + 0.00722 X

Predictor       Coef         SE Coef              T        P
Constant   0.0061497    0.0007132         8.62   0.00
X              0.00722103  0.00000397  1819.29  0.00

S = 0.002171  R-Sq = 100.0%  R-Sq(adj) = 100.0%

Analysis of Variance

Source           DF        SS         MS         F              P
Regression         1  15.604 15.604  3.310E+06  0.00
Residual Error  38    0.000  0.000
Total                 39  15.604

Unusual Observations
Obs   X        Y      Fit      SE Fit   Residual   St Resid
 1   15  0.11019  0.11447  0.00066 -0.00428 -2.07R
40 300 2.16829  2.17246  0.00066 -0.00417 -2.02R
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R denotes an observation with a large
standardized residual

         Y        |Y Y^ OV

      0.11019   0.0042751
           0.21956   0.0032205
           0.32949   0.0016058
             0.43899        0.004212
           0.54803        0.0003034
     0.65694    0.0008980
      0.76562   0.0012626
      0.87487   0.0021972
      0.98292   0.0019318
     1.09146   0.0021564
     1.20001   0.0023911
     1.30822   0.0022857
     1.41599   0.0017403
     1.52399   0.0014249
  1.63194   0.0010595
     1.73947   0.0002741
    1.84646    0.0010513
     1.95392    0.0019067
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    2.06128    0.0028620
     2.16844    0.0040174
                       Y                 |Y Y|^ V

                      0.11052          0.0039451
                      0.22018          0.0026005
                      0.32939          0.0017058
                      0.43886          0.0005512
                      0.54798          0.0002534
                      0.65739          0.0013480
                      0.76596          0.0016026
                      0.87474          0.0020672
                      0.98300          0.0020118
                      1.09150          0.0021964
                      1.20004          0.0024211
                      1.30818          0.0022457
                      1.41613          0.0018803
                      1.52408          0.0015149
                      1.63159          0.0007095
                      1.73965          0.0004541
                      1.84696          0.0005513
                      1.95445          0.0013767
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                      2.06177          0.0023720
                      2.16829          0.0041674

                 Average of |Y Y|  =  0.00183^ V

     Question:  Is this small enough?

         Should   norm be used as the criterion?L�

         That is, should  �|Y Y| ^ V be the criterion

          that is minimized?
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 Repeated  values permit lack-of-fit (LOF) test:c X

                 Analysis of Variance

Source            DF       SS        MS         F           P
Regression         1   15.604 15.604 3.310E+06 0.00
Residual Error 38     0.000   0.000
  Lack of Fit       18   0.000   0.000   214.75     0.00
  Pure Error        20   0.000   0.000
Total                39     15.604

    Strong signal from LOF testc

    Can look at residual plots to try to determinec
        what term to add
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    Start with standardized residuals plotc
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c Strong signal that a quadratic term should
 be added to the model

c No residuals plot can give the correct signal
 with high probability, so it is highly desirable
  to look at different types of plots.
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c Partial residual plot is usually better than a
 standardized residual plot.  This is in general,¼

 a plot of against (see page 145e X X� � �]V��   
 of text).

c For this dataset:
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c This gives a strong signal that a linear term
 (only) should be used.
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 This occurs because the linear component of
 the partial residual, totally dominates�V�X�, 
 e� .

  c Is the quadratic term really needed?

c We obtain the following results using
  a model with both the linear and quadratic
  terms:
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              Y               |Y Y^ OV

       0.11019          0.0002213
                0.21956          0.0004468
                0.32949          0.0000299
                0.43899          0.0002188
                0.54803          0.0000900
                0.65694          0.0000265
                0.76562          0.0002309
                0.87487          0.0002770
                0.98292          0.0002728
                1.09146          0.0001905
                1.20001          0.0000441
                1.30822          0.0000810
                1.41599          0.0001799
                1.52399          0.0000686
                1.63194          0.0001350
                1.73947          0.0000608
                1.84646          0.0004112
                1.95392          0.0002709
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                2.06128          0.0000884
                2.16844          0.0000363
                      Y               |Y Y^ OV

                0.11052          0.0001087
                0.22018          0.0001732
                0.32939          0.0000701
                0.43886          0.0000888
                0.54798          0.0000400
                0.65739          0.0004235
                0.76596          0.0001091
                0.87474          0.0001470
                0.98300          0.0001928
                1.09150          0.0001505
                1.20004          0.0000741
                1.30818          0.0000410
                1.41613          0.0000399
                1.52408          0.0000214
                1.63159          0.0002150
                1.73965          0.0002408
                1.84696          0.0000888
                1.95445          0.0002591
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                2.06177          0.0004016
                2.16829          0.0001137

           Average of |Y Y|  =  0.00016^ V

          for model with linear and quadratic
          terms

                             vs.

          Average of |Y Y|  =  0.00183^ V

          for model with linear term only

c Is three decimal-point precision necessary?
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   c Possible consequence of adding the
         quadratic term:

         Edge behavior could be compromised
         somewhat. That is, with ,future data
         (Var

                   
@V ) can become large at the edges

         as polynomial terms are added.        

         That  be a problem with these data.��"��
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 Confidence Intervals and Prediction Intervals

 Confidence intervals in regression are of c
       value only under certain situations

    c Confidence intervals on the are of no�i  
           value in multiple regression when the
           regressors are random since the  �Vi
             do not have the desired interpretability.
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    c Confidence intervals on the �i  when the
         data are from a designed experiment
          interpretable, however, and are ofare
         the general form

                         �Vi   a t�«�¼ �^�^� s�Vi 

        with    denoting the number of predictors�
        in the model.

    c Regression books, including mine, give
        a confidence interval for the mean of @

    given (i.e., ). (see page 23 of? �@ O?

        course text)
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     This is primarily of value because it
      is a natural connecting step to a
      prediction interval

 c Which would likely be of greater value,
      a confidence interval for the mean of @
      for a given value of ?, or a prediction
      interval for a future value of given @ ??

     The latter is much more important.

     Recall from the early part of these notes
     that the development of a prediction
     interval for a future observation, but not
     using regression, utilized  Va� % ^ %®( ,
     with   being our best estimate of a future%
     value of ?.
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 c  The development of a prediction interval
        in regression proceeds similarly.
        Specifically, our best estimate of a future
        value of is .   @ @V

        Therefore, we want ( ),Var @ ^ @V

         and analogous to the prediction interval
         given previously, the new and will@ @V  
         of course be independent, so

               ( )  = ( )  + ( )Var Var Var@ ^ @ @ @V V

          Therefore, a 100(1 )% prediction^ �

          interval thus constructed as

    @ aV   t�«�¼ �^�^� mVa r Va rV V­ ® ] ­ ®@ @V
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 Multiple Regression

c There are various questions that the user of
     multiple regression must address that are not
     encountered in simple regression.

In particular:

c If data are available on, say, variables k 

  that might seem to be related to the

  dependent variable, should all variablesk 

  be used?  If not, which ones should be

  used?

 What is gained, if anything, by using fewer

  than  predictors?k 
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c  Can regression coefficients in multiple

      regression be interpreted the same as

      in simple regression?

      (ANS:  No, especially when the predictors

                   are correlated)

c Can we use scatter plots to determine

  candidate predictors to include in the model?

c Can possible transformations of the predictors

    be determined simply by examining such

    scatter plots?
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c Should alternatives to least squares be

   used under certain conditions?  If so,

   under what conditions should they be used,

   and which ones should be considered?

   Specifically, should least squares still be

   used when there are high correlations

   among the regressors?
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            Multicollinearity  ---   What is It?

     The word has been usedmulticollinearity 
      to represent a  relationshipnear exact
      between two or more variables.

  If a X  a X   a X   . . .  a X   c� � � � � � " "] ] ] ] �

       a , a ,with denoting some constant and c � �

     . . ., a  " are also constants, some of which
     may be zero,  then the regressors  X , X ,� �

     . . . ,  X  " with non-zero constants are
     multicollinear .

  c Multicollinearity is a big issue, so much
      so that it even has its own website
     .  There(www.multicollinearity.com)
      are better sources of information on the
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      subject, however.

             Consequences of Multicollinearity

   c Various apparent oddities can occur
         regarding .p-values

         For example, assume that a regression
         model has two predictors and the p-value
         for testing the hypothesis that each
         corresponding parameter is zero is
         much greater than .05, despite the fact
         that  is greater than .90.9�

         Sound impossible?

         There is a simple explanation.

         Each  tells us whether or not thep-value
          corresponding predictor should be in the
          model when the other predictors are in the
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          model (or the single predictor in this
          example).

      If two predictors are highly correlated,
       then we generally want both ofdon't 
       them in the model.

       So we have to keep in mind the proper
       interpretation of p-values in regression.

       The bottom line is that -values cannotp
        be relied on when the data are multicollinear,
        just as the corresponding -statistics cannot!
        be relied upon.  (The direct problem with
        the latter is that multicollinearity inflates
        the estimates of the variances of the parameter
        estimates, thus deflating the -statistics).!

   An even more extreme example is givenc
        on page 136 of my book, with  being9�

        .932 for a four-predictor model with all
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        four of the statistics being less than!-
        1.0 in absolute value.

   c One of the accepted consequences of
        multicollinearity is that these inflated
        variance estimates will cause the
        confidence intervals for the regression
        parameters to be too wide. 

        The appropriateness of these confidence
        intervals for nonorthogonal data must
        first be addressed, however, and
        this issue is discussed later.
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  c  It is often stated that multicollinearity
        can cause the signs of the coefficients to
        be wrong (that is, the sign of is  �V�

        different from the sign of )r
? @�

.

        This issue requires careful consideration,
         however, as there is confusion about this
         that is undoubtedly caused by the fact that
         there is very little discussion of it in the
         literature.

  c  The following example should be
         helping in seeing how the signs of
         regression coefficients can be affected
         in an apparently adverse manner.
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           Orthogonal Regressors

                      Y      X  X� �

                     23.3    5    17
                     24.5    6    14
                     27.2    8    14
                     27.1    9    17
                     24.1    7    13
                     23.4    5    17
                     24.3    6    14
                     24.1    7    13
                     27.2    9    17
                     27.3    8    14
                     27.4    8    14
                     27.3    9    17
                     24.3    6    14
                     23.4    5    17
                     24.1    7    13
                     27.0    9    17
                     23.5    5    17
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                     24.3    6    14
                     27.3    8    14
                     23.7    7    13

             = 16.4 1.045 0.104  @V  X X] � �]

         c Note the of  sign �V »�

         c Also note that “orthogonal regressors” 
             means that the dot product of the columns
             can be made zero by an appropriate
             transformation, such as subtracting
             the mean of each column from every
             number in the column.
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               Correlated Regressors

   Y      X   X� �

                     23.3    5     13
                     24.5    6     14
                     27.2    8     17
                     27.1    9     17
                     24.1    7     14
                     23.4    5     13
                     24.3    6     14
                     24.1    7     14
                     27.2    9     17
                     27.3    8     17
                     27.4    8     17
                     27.3    9     17
                     24.3    6     14
                     23.4    5     13
                     24.1    7     14
                     27.0    9     17
                     23.5    5     13
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                     24.3    6     14
                     27.3    8     17
                     23.7    7     14

           @V  X   X=  9.26  0.261 1.19^ � �]

c Note that the sign of  is now �V�

         negative, even though neither Y nor
         X� has changed.  Only has changed.X  �

     Is the sign now ?c wrong

     c Why did the sign change?

    c  To see what is happening, we need to
          convert the data to correlation form.
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                                        Correlation Form

          Y   d
� =   @ ^@
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% %� �
�«� �

                                   =  ( )with  :% %
�y

�
�

� �
 X�

1
�� �^?
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 c Let denote the matrix formed by X  d

       the (without a column of ones) X  d��

   Then is a ( )X X  d dZ correlation matrix
       whose elements are the correlations
       between the regressors, and is a( )X Y  d dZ

       vector that contains the correlations
       between and each regressor.Y 

               Consider Two Regressors  (with the
      regressors and in correlation form)Y 
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            =
1

1
( )   X X  d dZ @ A�

�
��

��

         ( )X Y   d dZ =  @ A�
�
�@

�@

              so
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��
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                     �V
d

=   B C
r r r

r
r r r

r

�@ �� �@

�

��

�@ �� �@

�

��

^

^
1

1

^

^

     so,

   will be negative whenever  is�V ^
d

� r   r r�@ �� �@  

   negative.

       And will then be “wrong” if is positiver�@  

       But is the sign really wrong?

  c  has the same sign as  since� �V V
� �

d
  

               =    � �V V
� �

d( ):&&

S? ?1 1
 

�«�
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       “Wrong” signs are not necessarily caused
               by multicollinearity

(1)     Assume that = 99r  r  = r  = .�@ �@ ��

       so that there is a very high degree of
         correlation between and   ?� X� , 

                 However, the expression for  shows that the �V
d

         signs of   and   will be “right”.� �V Vd d

� �

                   Note that and  are equally correlated?� ?� 

         with , so that one is not weaker than theY
         other one.
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(2)       Assume = .3, = .8, and = .4,r  r r�@ �@ ��  

    the sign of   will be “wrong” even though�V
d

�

          there is only a slight-to-moderate correlation
          between and X  X .� �

        But note that is a much weakerX    �

          variable than X .�

   c Thus, the signs can be  even when“right”
        there is a high degree of multicollinearity
        and  when there is essentially “wrong” no
        multicollinearity!
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     c In truth, there is no such thing as a
        right or wrong sign of a regression
        coefficient.

     c This is not well-understood by users
         of regression, as well as many statisticians

      c Why?

     There is hardly any mention of this specific
     problem in the literature, or of the more
     general problem of not being able to interpret
     regression coefficients with observational data
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 c Authors generally stop short of making
     strong statements about the non-interpretability
     of regression coefficients.

        E.g.,  Cook and Weisberg state on page 232
        of their book Applied Regression
        including Computing and Graphics:

        “... changing one term like the prime interest
        rate may necessarily cause a change in other
        possible terms like the unemployment rate.
        In situations like these, interpretation of
        coefficients can be difficult”.

    I would prefer stronger statements than thisc
         regarding observational data.

    In c “Oh No! I Got the Wrong Sign!
        What Should I Do?”, a 2002 discussion paper
         by Professor Peter Kennedy of Simon
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         Fraser University  (see

      http://www.sfu.ca/economics/research/
                discussion/dp02-3.pdf)

        Professor Kennedy stated:

             Getting a “wrong” sign in empirical work
                is a common phenomenon.  Remarkably,
                econometrics textbooks provide very little
                information to practitioners on how this
                problem can arise.

   For a much shorter and more-to-the-pointc
        explanation that somewhat parallels the
        explanation in my book, see

http://www2.tltc.ttu.edu/westfall/images/5349/
wrongsign.htm
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         c In general, we should not expect any
         relationship between the signs of the

��@   and the signs of the corresponding
         regression coefficients.

         For example, for one company dataset I
         discussed in an industrial training course
         recently, a model with all 6 available
         predictors produced the following results:

�

V

�@

�

  .640 .353 .376 .359  .101 -.289

 0.01 -1.1E08 0.46 11.0 -0.16 0.28�

   Notice that 3 of the 6 regression coefficients
   have signs that differ from the signs of the
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   correlation coefficients, with being an �V2  

   enormous negative number even though    

   is not close to being negative.�2   @

                     Outlier-induced Multicollinearity

        c Need to check for outliers before
         concluding that multicollinearity exists

          c Consider the ( , ) data points:X X� �

             (1,2)  (5,3) (2,4) (1,5) (8,7) (7,8)
             (4,4)  (6,9) (3,10)  and (26,27)    

             the last data point, .487Without �? ?� �
 = 

              the last data point, .937With �? ?� �
 = 
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      Why does this occur?c

               Fitted line  the last point:without
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87654321

10

 9

 8

 7

 6

 5

 4

 3

 2

X1

X
2

S = 2.63210      R-Sq = 23.7 %      R-Sq(adj) = 12.8 %

X2 = 3.58403 + 0.533613 X1

Regression Plot

                  Fitted line  the last point included:with
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25201510 5 0

30

20

10

 0

X1

X
2

S = 2.67975      R-Sq = 87.7 %      R-Sq(adj) = 86.2 %

X2 = 2.09192 + 0.921917 X1

Regression Plot

      Notice that the slope has increased by about 75%.

       R� in simple linear regression is influenced by
   the slope of the line (as discussed on page 13 of
   my book), and here = R� ��

? ?� �

                                  Detecting Multicollinearity



128

(1) Looking at correlation matrices will
      usually suffice, but not necessarily

                          EXAMPLE

     Assume four regressors, and the population
     correlation coefficients,  , are���
      = =  = 0, with   =  = � � � � ��� ��

� � �
� � ���� 

     and  = .X  X   X   X� � �] ] 3

  It can be easily shown that  =  =  = .577.� � ��� �� ��

 Thus, three of the pairwise correlations are zero
   and the other three are not especially large,
   yet we have the most extreme multicollinearity
   problem possible in that there is an exact
   linear relationship between the four regressors.

(2)  Variance Inflation Factors (VIFs)
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              Var c( ) = � �Vd

� d
� d

��

       with denoting the c  d
�� variance inflation factor,

       which is the th diagonal element ofi  
       and  is the error variance(( ) )X Xd dZ ^� ��

d 
       for the correlation-form model, which of
       course must be estimated.

    c More intuitive form of VIFs:

           =              VIF i( )  �
�^9 ­�®�

                  with  denoting the  value that results9 ­�® 9� �

          when  is regressed on all of the otherX�

          predictors.

         c  Thus, VIFs are 1.0 for orthogonal regressors
          since  is 0.9 ­�®�
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            VIFs can be very large (into the thousands)
            for multicollinear data.

                c Rule-of-Thumb:  VIF's 10 signal{
                                         multicollinearity

(3)  Variance proportions can also be helpful.
       They are defined as follows.

           Let the matrix contain the eigenvectors
           of  ( )X X .d dZ

           Then

             == =Z Z( )X X  E  d d = diag( ... )� � �1, 2, m

            the diagonal matrix of eigenvalues of
          ( )X X .d dZ

         The  cd�� mentioned previously can be
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         written as

                            ( / )c  =  vd
��

�y

�
1

m
�
�� ��

                so a is defined asvariance proportion 

                    p   =  ��

#��� �

�y

 .
�

�

1

m
6 . 7#��� ��

                    with representing the proportion ofp  ��

          ( ) that results from the multicollinearityVIF  �
          (if one exists) represented by .��

These variance proportions thus show us  the



132

extent to which and consequentlyVIF i( ),

Var( ),�V� are inflated by the multicollinearity

corresponding to a small eigenvalue.

Although the nature of the multicollinearity

is not indicated by the variance proportion, it

is indicated roughly by the eigenvector that

corresponds to the small eigenvalue.

Accordingly, eigenvectors and variance

proportions can be used together to show

how certain forms of multicollinearity

inflate ( ).Var �V�

(3)   Gunst and Mason (1985, ) Technometrics
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        gave a 5-step procedure for detecting
        outlier-induced collinearities.

          (1) determine if collinearities exist

          (2) identify leverage points

               These are points whose predictor
               coordinates place the point a considerable
               distance from the other points in the
               predictor space.

               This can be most easily seen when there
                is only a single predictor, as the leverage
                values are then
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         =                   h   �
^ ®

­ ^ ®
�
�

­] x x
x x
�

�

�
��

      Obviously the further  is from  c  x   x,�

            the larger will be the leverage value,
  for that point.          h , �

            A frequently used threshold value for
            leverages is  3 /  , with  denotingp n p 
            the number of model parameters.

            (Note that in my example the point
            (26,27) was very much a leverage point.)
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       (3)  if pairwise collinearities exist, make
              scatterplots to determine whether
              leverage points induced the collinearities

       (4)   plot pairs of normalized principal
              components corresponding to large
              eigenvalues.  (Principal components
              are not covered in these notes. See
              any book on multivariate methods)

        (5)  eliminate suspected outlier-induced
               collinearities.
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 Harmful and Non-Harmful Multicollinearity

      c Variation inflation occurs only with the 
         the variances of estimators of coefficients
         of predictors involved in one or more
         multicollinearities (page 134 of text).

       This follows from the expression

     =              VIF( )  � �
�^9 ­�®�

          given previously.
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 EXAMPLE:

 Assume that two highly correlated regressors

 are combined with ( 2) regressors, withr ^

 the latter being orthogonal to the former.

 The ( 2) will be the same with orr Var^ ( )�V�

 without the other two highly correlated

 regressors.

  (  This of course is because the 2) r ^ 9 ­�®�

 values will not change because predictors

 are being added that are orthogonal to the

 predictors already in the model
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  Does Multicollinearity Hurt Prediction?

c Yes, and No

 c First, the “no”:

    Under the model assumption,

     ( ) = ( ) = ( 1)E Y E SSE n p( )� ^ @ ^ ^V � � �

    which does not depend upon the degree of

    multicollinearity (discussed on page 406 of

    my book)
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 A similar argument was made by Hoerl,

 Schuenemeyer, and Hoerl (1986,

 Technometrics), and Swamy, Mehta, and

 Rappoport (1978, Communications in

 Statistics-A) also show that prediction

 using least squares is not undermined by

 multicollinearity.

c Now, the “yes”:

  If  1,  a scatter plot of  versus � ?? ?� �
 = � ?�

  would be a straight line.  If the

  correlation is very close to 1, the points

  can be enclosed in a narrow ellipse.
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  Each time a regression equation with

  both and were used, the points?�  ?� 

  would have to fall within the ellipse, or

  be very close to it.

  Otherwise, extrapolation would occur ---

  which might produce poor results.

        Multicollinearity can cause the data space

    to be much smaller than what it would

    be if the data were near-orthogonal.

 c So the real danger of multicollinearity

    when the objective is prediction is the
    very real risk of extrapolation.
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         How to Detect Extrapolation?

   c Easy to detect in very low dimensions

   c Very difficult to detect in high dimensions

      No exact way to display data region c
            in high dimensions

            An approximate method was given by
            Sandy Weisberg in his regression book
            in the 1980s
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  Other Consequences of Multicollinearity

      c  Can make selection of regression
         variables somewhat hazardous, but,
         paradoxically, multicollinearity
         is the condition under which
         we would seemingly want to use a
         subset of variables.

        Variable selection is not a good strategy
         in the presence of multicollinearity because
         small data perturbations can cause the
         results to differ greatly (as stated on page
         228 of my book)

                  So what should practitioners do?
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Avoiding Multicollinearity --- Designed Experiments

 c Overall, apparently over half of all
       NIST data are from designed experiments

 c Consider simple linear regression

       How should the values be selected?X-

       options: c

             place them at equal intervals(1)
                  between the lowest desired value
                  and the highest desired value

           place the points at random between(2)  
                  the two extreme values

             place half of the points at the largest(3)
                  value and half at the smallest value
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           (4)  place an equal number at each
                 extreme and a few points in the
                 center

             use some other allocation scheme(5)

    Consider (3):

            Putting all of the points at the extreme
            values would minimize ( ), butVar �V

�

            that would not permit the detection
            of nonlinearity, if it existed, as there
            would not be any points in the center.

            So a compromise would be necessary,
            in general, and option  might thus(4)
            be used.



145

 c When experiments are statistically designed
      and regression is to be used as the method
      of analysis, a decision must be made as to
      the desired properties of the design.

      Chapter 12 of the course text is devoted
      to experimental designs for regression
      analysis.
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                    College Rankings Data

 c  Each fall U.S. News and World Report
       publishes its college rankings issue. The
       rankings data can be used to gain insight
       into how regression methods perform
       because:

         the weighting of the factors that is(1)
              used in determining each score is
              known (and published) so this is
              one of the rare instances in which
              the model is known.

              Specifically, the factors with the
              highest weights are the following
              (notice that the weights add to 94.5%):
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         Highest weighted criteria for university rankings

                                          

Academic reputation 25
Graduation rate 16
Financial resources 10
Faculty 

Criterion Weight (%)

compensation   7
% classes under 20   6
SAT score   6
% students in top 10% HS class   5.25
Graduation rate performance   5
Alumni giving   5
Freshman retention   4
% faculty with terminal degree   3
Acceptance rate   2.25

        Although the faculty compensation rank
        is not given, understandably, it is a part
        of the faculty resources rank, which is
        published.

(2)   So although the published data are not
        perfect for retrieving the known model,
        they do help provide insight into how
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        regression methods work.

  It can be shown that using the data on thec
       top 50 national universities and  ofonly 6
       the factors plus a function of one of the
       factors, we obtain a model with an valueR� 

       of .988, which far exceeds the sum of the
       weights of those factors, even when one
       of the weights is counted twice (to account
       for the fact that it is used in two forms).

       How can this be?

       Clearly there are correlations among the
       factors, so we don't need or want all of the
       factors.

       But wouldn't it seem better to use all
       of the relevant variables (factors)?

       The reason we do not do this is that
       adding variables to a model inflates
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       , and we don't want to inflateVar Y ( )V
        it unnecessarily.

 One or more of various available methodsc
      can be used to arrive at a model using a
      subset of available variables.  These
      methods include stepwise regression,
      forward selection, backward elimination,
      and all subsets regression.

      Looking at -statistics is inadvisable, ast
      illustrated earlier in these notes.

      A well-fitting parsimonious model should
      always be the objective, with the definition
      of “well-fitting” depending upon the
      application.
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                        Robust Regression

c Robust regression is an alternative to ordinary
     least squares that can be appropriately used
     when there is evidence that the distribution of
     the error term is ( ) non-normal,considerably
     and/or there are  that affect the equation.outliers

c The ordinary least squares (OLS) estimator
     can be inferior to other estimation approaches
     when the distribution of the error term has
     heavier tails than the tails of the normal
     distribution  (Princeton Robustness Study,
     1972).
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c We may also motivate a study of robust
     regression methods if we accept the
     following statement at the top of page 354
     of the course text:

          “ Hampel et al. (1986) indicate that data
              generally contain 1-10% gross errors ...”

      Obviously we would want to find the errors
     and discard the bad data, so we need
     methodology to allow us to do so.

     My view is that the best way to accomplish
     this is to use least trimmed sum of squares
     (LTS) in a sequential manner (see Sections
     11.5.2 and 11.6 in the course text.)
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     Then, if necessary,  a bounded influence
     estimator (Section 11.8) might be used to
     bound the influence of any observations
     that are overly influential.

     Thus, a two-step procedure could be used,
     with the first step to identify the bad data
     points (and any regression outliers if they
     exist), and then possibly bound the
     influence of influential observations in the
     second step.
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 Nonlinear Regression                                         

 c Much more complicated than linear regression

 c Unlike linear regression, there is not an
      obvious starting point unless there is
      prior information to suggest a tentative
      model.

 c What about automatic model fitting with
      software such as or , whichIGOR DataFit 
      will sift through hundreds, if not thousands,
      of models and identify the one that provides
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      the best fit?

 c Why won't this approach work?  Or will
       it work?

 c Analogy with the following quote from
      Section 2.1 of Herman Chernoff's online
      algebra book:

       (http://www.fas.harvard.edu/~stats/Chernoff/
        algebra1.pdf)

             “Memorizing rules for solving problems is usually
                     a way to avoid understanding. Without

                     understanding, great feats of memory are required

                to handle a limited class of problems, and there is
                     no ability to handle new types of problems”.

   c The algebra student who uses memorization
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       and the data analyst who lets software select
       a nonlinear model are both proceeding
       mechanically, with the results likely to be
       suboptimal in each case.

c Perhaps stating it somewhat better,
    GraphPad Software, Inc. in their note 
      “Why a computer program cannot pick a
         model for you”
       (http//www.curvefit.com/you_must_pick
         _model.htm) state

          “Some programs .... automatically fit data to hundreds
                or thousands of equations and then present you with
                the equation(s) that fit the data best ... The problem is
                that the program has no understanding of the scientific

            context of the experiment.  The equations that fit the
                data best are unlikely to correspond to scientifically
                meaningful models”.

   c  Of course a company that does not have
         software with automated model-fitting
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         capability can be expected to make such
         statements, but consider the following:

c  Outliers occur in nonlinear regression just
       as they do in linear regression, but an
       observation can be an outlier only relative
       to a particular model.

       If a model were selected mechanically,
       without regard to scientific considerations,
       can there be much faith in points that are
       identified as outliers?

 Nevertheless, we shouldn't dismissc  
       automatic nonlinear modeling software
       completely, as some users have found
       them to be quite helpful.



157

       The software might be used to identify a
       (moderate-sized) subset of reasonable
       models rather than identifying a particular
       model.

       How then do we identify a tentative
            nonlinear regression model?

  If subject-matter knowledge exists to suggestc
       a particular model, that should be the
       starting point.

  In the absence of scientific input, when therec
       is a single predictor variable, as is often the
       case, one might try to match a scatterplot of
       the data with one of the curves in
       D. A. Ratkowsky's 1990 book
       Handbook of Nonlinear Regression Models.
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     Some nonlinear models can be linearizedc

        Example:

                          Y X= ��

���

         is a nonlinear model but is not a nonlinear
         model because the error isn'tregression 
         additive (see top of page 417 of text).

         The model can be converted into the
         simple linear regression model

                        Y  X   Z Z Z=   � �� �] ] �
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         with

                            Y  ln Y X  ln X lnZ Z= = = ( ) ( )  ( )� �� �

             ( )� � �� =  and = ��

Z ln

c Question

  What if the error structure isn't multiplicative?

       We cannot linearize the model:

                      Y X  + = ��

�� �

       We , however, fit the linearized modelcan
        for the model with the multiplicative error
        structure and use the parameter estimates
        as initial parameter estimates in a
        nonlinear regression algorithm.
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        Of course, if � is small, the initial parameter
        estimates should be close to the final
        parameter estimates.

 The error structure for a nonlinear modelc
      will often be unknown and can even vary
      for a given model over different applications,
      as is true for the Michaelis-Menten model
      (see top of page 431of text).

 The Michaelis-Menten model, givenc
      (without the error structure specified), by

                         =  f x( , ) � �

�

�

�

?

]?

       is a frequently used model.  Notice, however,
       that we cannot linearize the model, even if the
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       error structure were multiplicative.

 The transformationc

                          =        Y   ^� 1 1
� �

�

� �

�] ]6 X7 �

              is often used in conjunction with the
              Michaelis-Menten model, as it is in
       the form of a linear regression model
       (see page 431), but this corresponds to
       the nonlinear model

                                                Y =  �

� � �

�

� �

?

?] ] ?
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               which is not a nonlinear regression model
        because of the position of the error term.

 Parameter Estimation for Nonlinear Regression

   Analogous to linear regression, we want toc
        minimize

               G y f x( ) = ( ( , ))� ��
�y�

�
�

� �^

       with  f x( , )� � representing an arbitrary
       nonlinear model (without the error term).

  Unlike linear regression, we cannot obtainc
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       closed-form expressions for the                             �V�

     Thus, must iterate, using the Gauss-c
          Newton method, until the chosen
          convergence criterion is satisfied.

    Possible problems with local minimac

    Better to use something like the c relative
         offset convergence criterion of Bates
         and Watts (pages 420-422, technical
         material) rather than other criteria that
         can be more easily fooled by local minima,
         such as relative change in the residual
         sum of squares

         This criterion is used (or at least claimed
          to be used) in various software
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  Not something to be done by hand,c  
        however, and the input for computer
        algorithms is frequently the partial
        derivatives

                      =  d  �
C�­% ¼ ®

C
�

�

�

� � �
�

� �
| = �

          with �
�

� denoting the starting value
         (estimate) of �

�
.
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    The iterative, Gauss-Newton procedure isc
         as given at the top of page 420 of the text.

   The documentation for PROC NLINc
        in SAS Software states that the Bates-Watts
        convergence criterion is used, but it isn't
        quite the same.

       What is used in  PROC NLIN isc  

                        m � ­ ® �Z Z ^�= = = = Z

::,

             with  denoting the vector of residuals,�  
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              is the residual sum of squares and::,
            is the Jacobian matrix (as on page 420)=

             Convergence is declared when this
             statistic changes by less than 10 .^5

  PROC MODEL in SAS uses a  c
         convergence criterion that is claimed to
         be similar to the Bates-Watts criterion,
         and which is practically the same as the
         criterion used by PROC NLIN

   The general idea is to use a convergence c
         criterion that indicates the extent to which
         the residual vector is almost orthogonal to
        with the latter being from the  Q QR�, 
         decomposition of .V
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             That is,  V = Q R� �

 c   Since this is a linear approximation to the
        expectation surface of a nonlinear
        regression model, it could be inadequate
        under certain conditions.

        This will occur if the intrinsic nonlinearity
         is much larger than the parameter effects
         nonlinearity. (The latter is removable by
         reparameterization.)

         Therefore, a relative curvature array
         must be used to separate the two and
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         determine their relative magnitudes.

         This is illustrated in my chapter Appendix
          (pp. 438-441).

               very technical materialc

              culminates in an -test (p. 441)c   F

              must be performed with appropriatec  
                    software

                    Available as contributed S-Plusc
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                          code (author is Bill Venables)

                         Part of StatLib:

                  http://lib.stat.cmu.edu/S/rms.curvatures

   A quadratic approximation will have toc
         be used if the intrinsic nonlinearity is
         large relative to the parameter effects
         nonlinearity

         not presented in my book (referencesc
             given in the middle of page 422)
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        Inferences in Nonlinear Regression

 Confidence intervals, prediction intervalsc
      and hypothesis tests are possible, but these
      require some thought.

      For example, in nonlinear regression there
      is not a direct correspondence between
      parameters and predictors, as there is
      in linear regression.  Furthermore, the
      number of parameters will frequently
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      exceed the number of predictors.

   Confidence Intervals:

     100(1 )% confidence intervals for the^ �

     are obtained as�� 

                �V a� t  s
�«�¼�^� ��l�

      with denoting the th diagonal element ofc  i��

   ( and    representing the number of= =V VZ )^� p
      parameters.
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As in linear regression, multicollinearity can

increase the width of a confidence interval

and thus limit its worth. Thus, a

“non-overparameterized” model is important.

            Prediction Intervals:

   c An approximate prediction interval for isY  
      produced from

             Y  t  sV a
�«�¼�^� m� ] # ­= = ® #V V

�

Z
Z

^�
�

      with  given byv   �
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                 =   v   �  C�­% ¼ ®
C

� �

� � �Z
�
yV

       Hypothesis Tests:

      Approximate tests could be constructedt-
    to test the , with the tests of the form��

             t = ��

s  l���

  As in linear regression, however, care must be
    taken when using confidence intervals and
    hypothesis tests as multicollinearity can inflate
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    variances and make confidence intervals too
    wide and produce non-significant results for
    hypothesis tests.

         Residual Plots in Nonlinear Regression

   Roughly analogous to what is done inc
       linear regression, but with some additional
       wrinkles

   Standardized residuals are defined (p. 425c
       of my book) as

                  � y�

�

V V�^#

�

���l
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        with the  the diagonal elements of#V��

        the matrix  , the Jacobian matrix at=V

        convergence.

 These can be plotted against   andc  @V

       against the regressors,  thatprovided

       the intrinsic nonlinearity is small.

       If the intrinsic nonlinearity is small,not 
       then a different type of residual must be

       used (not covered in my book -- see the

       references on page 425)
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     Diagnostics in Nonlinear Regression

    c Multicollinearity Diagnostics:

          check to see if the condition number of
          is greater than 30 and check to see= =V VZ

 
          if two or more variance decomposition
          proportions exceed 0.50.
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         (The condition number of a matrix is the
          square root of the ratio of the largest
          eigenvalue divided by the smallest eigenvalue
          Variance decomposition proportions are
          as defined previously, and as defined
          on page 137.)

 c  Outlier and Influence Diagnostics

        The problem is more complicated than in
        linear regression, as indicated by the following
        quote from my book (pp. 428-429):

             In linear regression we do not want data points
             that are well-removed from the other points to
             be influential. We should expect to frequently
             encounter influential data points in nonlinear
             regression, however, as in small data sets extreme
             points can be very important in suggesting certain
             certain models to consider.
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  A  in nonlinear regressionc  parameter plot
        corresponds to an added variable plot in
        linear regression. (As stated previously,
        in nonlinear regression the number of
        parameters will often not equal the
        number of variables; hence, the name
        “parameter” plot.  We might try to identify
        outliers with this plot, but what is stated
        directly above should be kept in mind.

                Software for Regression

  A combination of general statistical softwarec
       and special-purpose software works best.

       The course text was written with MINITAB
       (including MINITAB macros that I wrote),
       SYSTAT, and robust regression freeware.

       Whatever software is used, it is important
       that the software allow the user to perform
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       a complete analysis of the data.

                  Model Validation

 This can be somewhat tricky.  The bestc
      approach is to obtain new data, if possible,
      but care must be exercised to check that
      the new data are compatible with the data
      that were used to construct the model, and
      this can be hard to do.
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     A Strategy for Analyzing Regression Data

  Section 15.6 (page 491) of course textc  

  Analyzing regression data is very much anc  
        art, not a science.

  Analyzing data from designed experimentsc  
        is much easier than analyzing observational
        data, so designed experiments should be



181

        used whenever possible.

 c Good experience can be gained by:

       first repeating the analyses of experienced(a) 
             analysts and trying to understand why
             each step was taken --- as in the tutorials
             in the e-Handbook

       then after sufficient experience has been(b) 
             gained, try to analyze challenging
             datasets, such as Table 15.1 on page 469
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             of the course text, and compare your
             analyses with those given in the literature.

             Another dataset that should be used for
             practice is the college rankings data since
             the way in which the rankings is determined
             is known and published, and the data are
             non-esoteric.

      Remember that there is no “right answer”
      when analyzing regression data --- there are
      only good and bad analyses.



183

                      Additional Topics

(1)  Need for terms that are sums and products in
regression models:

 (A)    Sums: Constructing sums has sometimes
                     been used to address multicollinearity,
                     as if two predictors are deemed
                     necessary, but they are highly
                     correlated, their sum might be used
                     instead of the individual terms (see
                     the top of page 470).
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                     In general, if we are working with
                     percentages that are highly correlated,
                     we could simply use their sum.

                     If we have two percentages that add
                     to one, the only thing we can do is
                     delete one of them since the correlation
                     between them is 1 and the sum of^
                     course is a constant.

(B) Products:  Would we expect the response
                        variable to vary considerably
                        between the smallest product of
                        two variables and the largest
                        product?  If so, a product term
                        will likely be needed in the model.

                        If we suspect that a particular
                        product may be necessary, we
                        should plot the standardized
                        residuals from the model that we fit
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                        against the product term.

                        In the absence of prior information,
                        we could simply form all product
                        terms, writing a short program to do
                        so if necessary, and apply a variable
                        selection approach such as stepwise
                        regression to all of the product terms
                        in addition to linear terms and terms
                        in .X log(X)

     Simple exercise:  Let  = first 100 positiveX�

                                 integers in order.ascending 

                                 Let  = first 100 positiveX  2

                                 integers in  order.descending

        Let  =   Y X  + X X  + N(0,1) error� � 2

        Regress  on only, then plot theY X  �
        standardized residuals against .X X� 2
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        The result is a straight line plot because the
        correlation between the standardized residuals
        and the product term is virtually one.

(2)  Logistic Regression

  Used when can assume only a few integerc Y 
       values, frequently two: and .� �

 Chapter 9 of the course textc  

     P(Y = 1)= ( ) =  � X �%�­ ] ? ? ®
�]�%�­ ] ? ? ®

� � �

� � �
� � � � �

� � � � �

+ ....
+ ....
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          Applying the  (alsologistic transform
          called the ) to thislogit transform
          model produces

            log ( ) =  �
��^ � � � � �� � �] ? ] »»»» ?

           which is thus the logistic regression model.

    This model may be inappropriate ifc
          the percentage of zeros differs very
          much from the percentage of ones
          (see my “Reply to Greenland” in the
          August, 2003 issue of The American
          Statistician.)

 c     Two primary methods of estimating the ��:

            (used at least 90%maximum likelihood
           of the time) and exact logistic regression
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           There are problems with both approaches
           (see article by King and Ryan in the August,
           2002 issue of )The American Statistician

           Then what can be used?

           Bayesian/shrinkage methods have been
           successfully used in certain applications
           (see Greenland's letter in the August, 2003
           issue of  and myThe American Statistician
           reply to it).

           Suggested references:

            2nd. ed. (2000)Applied Logistic Regression,
              by Hosmer and Lemeshow»
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            Modelling Binary Data, 2nd ed. (2002)
              by Collett.

(3)  Generalized Linear Models

c models for which  is not necessarilyY
    normally distributed

   The distribution of can be any member ofc Y 
        the exponential family of distributions (normal,
        gamma, Poisson, etc.)
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   A is specified that links thec link function 
        expected value of to the linear combinationY 
        of the predictors that one has in a regression
        model.

     The logistic regression model is a c
           generalized linear model with link function

                               log ( )�

��^

            since the logistic regression model can
             be written as

              log ( ) =  �

��^ � � � � �� � �] ? ] »»»» ?

                           (as given previously)

SUGGESTED REFERENCES:
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 McCullagh, P. and J. A. Nelder (1989).
    , 2nd ed.Generalized Linear Models

 Dobson, A. (2001).  An Introduction to
    Generalized Linear Models, 2nd ed.

 Myers, R.H., D.C. Montgomery, and G.G.
   Vining (2001).  :Generalized Linear Models
   With Applications in Engineering and the Sciences
(4)  Ridge Analysis:

c  This is used in response surface analysis.
      The objective is to determining the optimum
      point on a response surface (maximum or
      minimum)

c  mentioned briefly on page 396 of course
      text
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c  is essentially steepest ascent (or descent)
      applied to second-order response surface
      models

c   works best when the design region is spherical

c  a good reference on ridge analysis is
      : Response Surface Methodology Process and
      Product Optimization using Designed
      Experiments by R.H. Myers and D.C.
      Montgomery  (Wiley, 1995; see Section 6.4)


