

Determining the validity of Guinier analysis in slit-smeared small angle scattering data

Roxanne Ware

SURF 2022, NIST Center for Neutron Research (NCNR) Mentor: Dr. Rachel Ford

Background Information

Small Angle Scattering is a powerful technique for investigating large scale particles or structures

- High Q
 - Smaller length scales
 - Shape of individual particles
- Low Q
 - Larger length scales
 - Plateau or peak
 - Overall size and structure

Guinier analysis is a shape independent method for analyzing data

Radius of gyration, $\rm R_g$

Guinier approximation $I(Q) - I_{bgd} = I_0 e^{\frac{-1}{3}R_g^2 Q^2}$

Guinier plot $\ln[I(Q)] vs Q^2$

$$I(Q) - I_{bgd} = I_0 e^{\frac{-1}{3}R_g^2 Q^2}$$

$$\ln[I(Q) - I_{bgd}] = \ln I_0 - \frac{1}{3}R_g^2 Q^2$$

$$Slope = -\frac{1}{3}R_g^2$$
$$Intercept = \ln[I_0]$$

I(Q)(1/cm)

Slit-smearing is an instrument geometry effect

- Slit geometry enables access to very low Q values
 - USAXS
 - USANS
- Slit geometry causes an effect known as slit-smearing

Approach to evaluating Guinier analysis on slit-smeared data

- Guinier analysis is a useful tool for understanding scattering data
- Slit-smearing causes distortions to data that can influence results from a Guinier fit
- We simulated data from four generic shapes with and without slit-smearing
- Performed Guinier analysis on both data sets and compared fit results and true values defined in the simulation

Results

Fit R_g(Å)

Good agreement between fit R_{g} and true R_{g} for spherical model

- Slit-smeared data seems to show good agreement
- Error between 1% 5%

Cylinder seems to have good agreement between fit $R_{\rm g}$ and true $R_{\rm g}$ with small aspect ratio

- Fit results seem to have good agreement
- Error under 10%

L>>R

Cylinder model has increasing deviation between fit R_g and true R_g value as aspect ratio increases

- L>>R $R_g = \sqrt{\frac{L^2}{12} + \frac{R^2}{2}}$
- Larger aspect ratios show more deviation
- Error between 15% 20%

Disc model has similar trends as cylinder but with less overall error

R>>L
$$R_g = \sqrt{\frac{L^2}{12} + \frac{R^2}{2}}$$

- Observed similar trend as cylinder but less deviation
- Error under 10%

9

Fit $R_g(Å)$

Polymer chain has largest deviation between fit $R_{\rm g}$ and true $R_{\rm g}$ out of all models tested

- Large deviation in results
- Increasing deviation as dispersity increases

- Evaluated Guinier analysis for slit-smeared data
- Slit-smearing distorts sphere Guinier results the least
- More complex shapes show greater effect of smearing
- Guinier analysis is not ruled out for slit-smeared data, but if using more complex shapes, should be used with caution

Acknowledgements

- Thanks to Rachel Ford, Yun Liu, Julie Borchers, Joe Dura, Susana Teixeira, and all students for a great SURF 2022
- SASView (https://www.sasview.org/)

Backup Slides (Just in case but not used in presentation)

Shrinking Guinier region shows only slight improvement to cylinder with large aspect ratio.

Percent Error: ~30% to ~24%

Decreasing Q_{max} used in Guinier plot

17

Shrinking Guinier shows only slight improvement to cylinder with large aspect ratio.

R_g*Q_{max}

Percent Error: ~37% to ~31%

Shrinking Guinier allows disc with large aspect ratio to be within a reasonable percent error.

Percent Error: ~12% to ~10%

R>>L

Spherical Model

Cylindrical Model

Disc Model

Gaussian Coil Polymer

• Shrinking Guinier plot only slightly improves cylinder and Gaussian polymer coil deviation.

Fit R_g(Å)

Disc model deviates from true R_g but the effect of slitsmearing is not as drastic in higher aspect ratios.

Deviation increases as radius increases but the effect of the increasing radius is not as strong.

R>>L