Determining the validity of Guinier analysis in slit-smeared small angle scattering data

Roxanne Ware
SURF 2022, NIST Center for Neutron Research (NCNR) Mentor: Dr. Rachel Ford

Background Information

Small Angle Scattering is a powerful technique for investigating large scale particles or structures

- High Q
- Smaller length scales
- Shape of individual particles
- Low Q
- Larger length scales
- Plateau or peak
- Overall size and structure

Guinier analysis is a shape independent method for analyzing data

Radius of gyration, R_{g}

Guinier approximation

$$
\mathrm{I}(\mathrm{Q})-\mathrm{I}_{\mathrm{bgd}}=\mathrm{I}_{0} \mathrm{e}^{\frac{-1}{3} \mathrm{Rg}^{2} \mathrm{Q}^{2}}
$$

Guinier plot $\ln [I(Q)] v s Q^{2}$

$$
\begin{aligned}
I(Q)-I_{b g d} & =I_{0} e^{\frac{-1}{3} R_{g}^{2} Q^{2}} \\
\ln \left[I(Q)-I_{\text {bgd }}\right] & =\ln I_{0}-\frac{1}{3} R_{g}^{2} Q^{2} \\
\text { Slope } & =-\frac{1}{3} R_{g}^{2} \\
\text { Intercept } & =\ln \left[I_{0}\right]
\end{aligned}
$$

Approach to evaluating Guinier analysis on slit-smeared data

- Guinier analysis is a useful tool for understanding scattering data
- Slit-smearing causes distortions to data that can influence results from a Guinier fit

- We simulated data from four generic shapes with and without slit-smearing
- Performed Guinier analysis on both data sets and compared fit results and true values defined in the simulation

Results

Good agreement between fit R_{g} and true R_{g} for spherical model

Cylinder seems to have good agreement between fit R_{g} and true R_{g} with small aspect ratio

- Fit results seem to have good agreement
- Error under 10\%

Cylinder model has increasing deviation between fit R_{g} and true R_{g} value as aspect ratio increases

- Larger aspect ratios show more deviation
- Error between 15\% - 20\%

Disc model has similar trends as cylinder but with less

STATE UNIVERSITY overall error

- Observed similar trend as cylinder but less deviation
- Error under 10\%

Polymer chain has largest deviation between fit R_{g} and true R_{g} out of all models tested

- Large deviation in results
- Increasing deviation as dispersity increases

Conclusions

- Evaluated Guinier analysis for slit-smeared data
- Slit-smearing distorts sphere Guinier results the least
- More complex shapes show greater effect of smearing
- Guinier analysis is not ruled out for slit-smeared data, but if using more complex shapes, should be used with caution

Acknowledgements

- Thanks to Rachel Ford, Yun Liu, Julie Borchers, Joe Dura, Susana Teixeira, and all students for a great SURF 2022
- SASView (https://www.sasview.org/)

Shrinking Guinier region shows only slight improvement to

 cylinder with large aspect ratio. cylinder with large aspect ratio.

Shrinking Guinier allows disc with large aspect ratio to be within a reasonable percent error.

Spherical Model

Cylindrical Model

Disc Model

Gaussian Coil Polymer

- Shrinking Guinier plot only slightly improves cylinder and Gaussian polymer coil deviation.

Disc model deviates from true R_{g} but the effect of slitsmearing is not as drastic in higher aspect ratios.

- Deviation increases as radius increases but the effect of the increasing radius is not as strong.

$R \gg L$

